2024年1月10日发(作者:罗远)
电脑三大件的发展史
目录
一、多媒体电脑的组成和电脑的发展过程 ...................................................................................
2
1.1多媒体电脑组成 .......................................................................................................................
2
1.2电脑发展过程 ................................................................................................................................
2
1.2.1、第一代计算机 .................................................................................................................
2
1.2.2、第二代计算机 .................................................................................................................
3
1.2.3、第三代计算机 .................................................................................................................
3
1.2.4、第四代计算机 .................................................................................................................
4
二、电脑三大件的发展史 .................................................................................................................
4
2.1CPU的发展史 .............................................................................................................................
4
2.1.1CPU的定义 ...............................................................................................................................
5
2.1.1CPU的发展过程......................................................................................................................
5
2.2内存的发展史 ..............................................................................................................................
6
2.2.1内存的定义及特点 .................................................................................................................
6
2.2.2内存的发展过程......................................................................................................................
7
2.2.2.1内存条的诞生......................................................................................................................
7
2.2.2.2内存的发展过程 ...................................................................................... 7
2.3硬盘的发展史 ................................................................................................... 10
2.3.1 硬盘定义 .................................................................................................. 10
2.3.2 硬盘的物理结构 ........................................................................................ 10
2.3.2.1 磁头 ...............................................................................................................................
10
2.3.2.2 磁道 ...............................................................................................................................
10
2.3.2.3 扇区 ...............................................................................................................................
10
2.3.2.4柱面 ..................................................................................................... 10
2.3.3
硬盘的发展过程 ............................................................................................................
10
1
电脑三大件的发展史
伴随着科技技术的发展,电脑已经成为人们生活中必不可少的通信工具,它无处不在,各个领域都有它的身影,比如工业、农业、军事、企业等等,说到电脑人人知晓,无人不知,因为“电脑”这个名称对我们来说太熟悉了。但是对于电脑的发展史,电脑的组成又是什么呢?其实我们要讨论的重点不是电脑,而是电脑三大件的发展史,可能对于电脑三大件有各式各样的说法,有称“主板、CPU和内存”为电脑三大件,有称“主板、CPU和显卡”为电脑三大件,有称“CPU、内存和硬盘”等,今天我们就讨论最后一种说法,以“CPU、内存和硬盘”为电脑三大件说法。
一、多媒体电脑的组成(图1.1)和电脑的发展过程:
1.1、多媒体电脑组成:
图1.1
图1.1为多媒体电脑的整机组成:显示器、主机、音响、键盘和鼠标,另外可能配置,耳机、打印机、视频等硬件设备。其中主机(图1.2)又包含了我们要讨论的电脑三大件CPU、内存和硬盘外,还有电源、磁盘、主板、CPU风扇、光驱、声卡、网卡、显卡等。
图 1.2 主机组成
1.2、电脑发展过程:
1.2.1、第一代计算机(1946-1958)是采用电子管作为逻辑元件,用阴极射线管或汞延迟线作主存储器,外存主要使用纸带、卡片等,程序设计主要使用机器指令或符号指令,应用领域主要是科学计算。当时的运算速度为5千——3万次
2
每秒。
1946年2月世界上第一台电子计算机ENIAC(图2)在美国的宾夕法尼亚大学诞生。它采用电子管作为计算机的基本元件,由18000多个电子管,1500多个继电器,10000多只电容器和7000多只电阻构成,占地170m2,重量30吨,每小时耗电30万千瓦,是一个庞然大物,每秒能进行5000次加法运算。
图2 ENIAC机房
1.2.2、第二代计算机(1959-1964)用晶体管代替了电子管,主存储器均采用磁芯存储器,磁鼓和磁盘开始用作主要的外存储器,程序设计使用了更接近于人类自然语言的高级程序设计语言,计算机的应用领域也从科学计算扩展到了事务处理、工程设计等多个方面。
1954年美国贝尔实验室建成世界上第一台晶体管计算机TRADIC。开始了第二代计算机的发展。
图3 第二代晶体管计算机 TRADIC
1.2.3、第三代计算机(1965-1970)采用中小规模的集成电路块代替了晶体管等分立元件,半导体存储器逐步取代了磁芯存储器的主存储器地位,磁盘成了不可缺少的辅助存储器,计算机也进入了产品标准化、模块化、系列化的发展时期,计算机的管理、使用方式也由手工操作完全改变为自动管理,使计算机的使用效率显著提高。
1964年研制出计算机历史上最成功的机型之一IBM S/360。S/360极强的通用性适用于各方面的用户,它具有“360度”全方位的特点,并因此得名。IBM为此投入了50亿美元的研发费用,远远超过制造原子弹的的20亿美元。IBM360成为第三代电脑的标
3
志性产品 。
图4 IBM S/360
1.2.4、第四代计算机(1971-至今)使用大规模和超大规模集成电路,主存储器均采用半导体存储器,主要的外存储器是磁带、磁盘、光盘,微处理器和微型计算机诞生。多媒体技术和网络技术的广泛应用,让计算机深入到社会的各个领域。
1976年苹果计算机:集成电路的发展,计算机开始了小型化的历程。
图5 IBM个人计算机
计算机从第一代发展到第四代,已由仅仅包含硬件的系统发展到包括硬件和软件两大部分的计算机系统。由于技术的更新和应用的推动,计算机一直处在飞速发展之中。依据信息技术发展功能价格比的莫尔定律,计算机芯片的功能每18个月翻一番,而价格减一半。该定律的作用从60年代以来,已持续40多年。集处理文字、图形、图像、声音为一体的多媒体计算机的发展正方兴未艾。各国都在计划建设自己的“信息高速公路”。通过各种通信渠道,包括有线网和无线网,把各种计算机互联起来,已经实现了信息在全球范围内的传递。用计算机来模仿人的智能,包括听觉、视觉和触觉以及自学习和推理能力是当前计算机科学研究的一个重要方向。与此同时,计算机体系结构将会突破传统的冯.诺依曼提出的原理,实现高度的并行处理。为了解决软件发展方面出现的复杂程度高、研制周期长和正确性难于保证的“软件危机”而产生的软件工程也出现新的突破。新一代计算机的发展将与人工智能、知识工程和专家系统等研究紧密相联,并为其发展提供新的基础。
二、电脑三大件的发展史:
2.1、 CPU(图6)的发展史
4
图6 cpu
2.1.1 CPU的定义:CPU是中央处理单元(Central Process Unit)的缩写,是计算机的核心,它负责处理、运算计算机内部的所有数据。CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心,再配上储存器、输入/输出接口和系统总线组成为完整的PC。
2.1.2、CPU的历史
可以说Intel公司的历史就是一部CPU的发展史,下面以Intel为例简单说一下CPU的历史。
1971年。世界上第一块微处理器4004在Intel公司诞生了。它出现的意义是划时代的,比起现在的CPU,4004显得很可怜,它只有2300个晶体管,功能相当有限,而且速度还很慢。
1978年,Intel公司首次生产出16位的微处理器命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。这就是X86指令集的来历。
1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,寻址范围仅仅是1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位,这样做只是为了方便计算机制造商设计主板。
1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。
1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但在CPU的内部集成了13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286也是应用比较广泛的一块CPU。
1985年Intel推出了80386芯片,它X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步。80386内部内含27.5万个晶体管,时钟频率从12.5MHz发展到33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存,可以使用Windows操作系统了。
1989年,Intel推出80486芯片,它的特殊意义在于这块芯片首次突破了100万个晶体管的界限,集成了120万个晶体管。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精
5
简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线(Burst)方式,大大提高了与内存的数据交换速度。
1971 年,Intel 推出了世界上第一款微处理器 4004,它是一个包含了2300个晶体管的4位CPU。
1978年,Intel推出了具有 16 位数据通道、内存寻址能力为 1MB、最大运行速度
8MHz 的8086, 并根据外设的需求推出了外部总线为 8 位的 8088, 从而有了 IBM
的 XT 机。随后,Intel 又推出了 80186 和 80188,并在其中集成了更多的功能。
到1982 年的时候, Intel 在8086 的基础上推出了80286,IBM 则采用80286 推出了AT 机并在当时引起了轰动,进而使得以后的 PC 机不得不一直兼容于PC XT/AT。
到了1985 年,Intel 推出了80386, 但并没有引起IBM 的足够重视,反而是
Compaq 率先采用了它。可以说,这是 P C 厂商正式走“兼容”道路的开始,也是AMD
等 CPU 生产厂家走“兼容”道路的开始和 32 位 CPU
的开始,直到今天的 P4 和 K7 依然是 32 位的 CPU(局部64位) 。
1989 年,80486 横空出世,它第一次使晶体管集成数达到了 120 万个,并且在一个时钟周期内能执行 2 条指令。
随后,AMD、Cyrix 等陆续推出了 80486 的兼容CPU,于是人们只知有 386 和
486 之分而不知有 Intel 和非Intel 之分。 鉴于这种情况, Intel 没有将486 的后一代产品称为 586,而是使用了注册商标 Pentium,Pentium 一经推出即大受欢迎,正如其中文名“奔腾”一样,其速度全面超越了 486CPU。尽管有浮点运 算错误的干扰,但对手的 5X86 更像是一个超级 486,就算是后来的 AMDK 5 也因为推出较晚和浮点运算不够强劲而大败于Pentium。在Pentium 家族中,早期的 50MHz、60MHz 为P5,而75MHz~200MHz的产品则为P54C。随后,Intel将MMX技术应用到 Pentium 中 ,这一代产品从 133MHz到233MHz,即P55C。其中的Pentium 166 MMX 的产品被玩家们亲切地称为 “黑金刚” ,从此张口不离超频二字。 其实在 P55C 之前,Intel 早就推出了Pentium Pro,但是当时微软的Windows95 尚未推出,彻底抛弃了 16 位代码的Pentium Pro在运行DOS时甚至可以用惨不忍睹来形容, 因而Pentium Pro只能在高端的32 位运算中一展风采。但正是Pentium Pro奠定了P6架构,甚至我们可以说PentiumⅡ= Pentium Pro + MMX。
2.2 内存的发展史
2.2.1内存(图7)的定义及特点
内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。 内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。
内存是由内存芯片、电路板、金手指等部分组成的。
6
图 7 内存
2.2.2内存的发展过程
在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。那时的内存芯片容量都特别小,最常见的256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。
2.2.2.1内存条的诞生
内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装和更换的问题彻底解决了。
在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。
2.2.2.2内存的发展过程
在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、 256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin
SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。
EDO DRAM(Extended Date Out RAM 外扩充数据模式存储器)内存,这是1991
年到1995 年之间盛行的内存条,EDO DRAM同FPM DRAM(Fast Page Mode RAM
快速页面模式存储器)极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU 的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的 486及早期的Pentium电脑上。
在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO DRAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内
7
存的容量已经达到4 ~16MB 。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO DRAM与FPM DRAM都必须成对使用。
SDRAM时代
自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO
DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。
第一代SDRAM 内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。
尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。
在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手锏,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066
1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM曾一度被认为是Pentium
4 的绝配。
尽管如此,Rambus RDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820 芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上,无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。
DDR时代
DDR SDRAM(Double Data Rate SDRAM)简称DDR,也就是“双倍速率SDRAM”的意思。DDR可以说是SDRAM的升级版本, DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增加。至于定址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。
DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代
8
DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过度,而DDR400内存成为目前的主流平台选配,双通道DDR400 内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象。
DDR2时代
随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。不可否认,紧紧依高频率提升带宽的DDR迟早会力不从心,因此JEDEC 组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。
DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。此外,DDR2
将融入CAS、OCD、ODT 等新性能指标和中断指令,提升内存带宽的利用率。从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400、533、 667MHz等不同的时钟频率。高端的DDR2内存将拥有800、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。
内存技术在2005年将会毫无悬念,SDRAM为代表的静态内存在五年内不会普及。QBM与 RDRAM内存也难以挽回颓势,因此DDR与DDR2共存时代将是铁定的事实。
PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一员。VCM即“虚拟通道存储器”,这也是目前大多数较新的芯片组支持的一种内存标准,VCM内存主要根据由NEC公司开发的一种“缓存式DRAM”技术制造而成,它集成了“通道缓存”,由高速寄存器进行配置和控制。在实现高速数据传输的同时,VCM还维持着对传统SDRAM的高度兼容性,所以通常也把VCM内存称为VCM SDRAM。VCM与SDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数据,所以VCM要比SDRAM处理数据的速度快20%以上。目前可以支持VCM SDRAM的芯片组很多,包括:Intel的815E、VIA的694X等。
RDRAM
Intel在推出:PC-100后,由于技术的发展,PC-100内存的800MB/s带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MB/s),同样不能满足日后的发展需求。Intel为了达到独占市场的目的,与Rambus 公司联合在PC市场推广Rambus
DRAM(DirectRambus DRAM)。
Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,基于一种RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,从而可以减少数据的复杂性,使得整个系统性能得到提高。Rambus使用400MHz的16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2=800MHz,理论带宽为 (16bit×2×400MHz/8)1.6GB/s,相当于PC-100的两倍。另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和
9
RIMM(Rambus In-line MemoryModules,Rambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。不过在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。
DDR3时代
DDR3相比起DDR2有更低的工作电压, 从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够达到2000Mhz的速度,尽管目前最为快速的DDR2内存速度已经提升到 800Mhz/1066Mhz的速度,但是DDR3内存模组仍会从1066Mhz起跳。
2.3硬盘的发展史
2.3.1 硬盘定义
硬盘是电脑主要的存储媒介之一,由一个或者多个铝制或者玻璃制的碟片组成。这些碟片外覆盖有铁磁性材料。绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。
2.3.2 硬盘(图8)的物理结构
2.3.2.1 磁头:磁头是硬盘中最昂贵的部件,也是硬盘技术中最重要和最关键的一环。需要兼容读写的两种特征。目前,MR磁头已得到广泛应用,它通过阻值变化而不是电流变化去感应信号幅度,因而对信号变化相当敏感,读取数据的准确性也相应提高。而采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant
Magnetoresistive heads)也逐渐普及。
图 8 硬盘及内部结构
2.3.2.2 磁道:当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。
2.3.2.3 扇区:磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。
2.3.2.4柱面:硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。磁盘的柱面数与一个盘单面上的磁道数是相等的。无论是双盘面还是单盘面,由于每个盘面都有自己的磁头,因此,盘面数等于总的磁头数。
2.3.3 硬盘发展过程
10
从第一块硬盘RAMAC的产生到现在单碟容量高达15GB多的硬盘,硬盘也经历了几代的发展,下面就介绍一下其历史及发展。
1.1956年9月,IBM的一个工程小组向世界展示了第一台磁盘存储系统IBM 350
RAMAC(Random Access Method of Accounting and Control),其磁头可以直接移动到盘片上的任何一块存储区域,从而成功地实现了随机存储,这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘,这些盘片表面涂有一层磁性物质,它们被叠起来固定在一起,绕着同一个轴旋转。此款RAMAC在那时主要用于飞机预约、自动银行、医学诊断及太空领域内。
2.1968年IBM公司首次提出“温彻斯特/Winchester”技术,探讨对硬盘技术做重大改造的可能性。“温彻斯特”技术的精隋是:“密封、固定并高速旋转的镀磁盘片,磁头沿盘片径向移动,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触”,这也是现代绝大多数硬盘的原型。
3.1973年IBM公司制造出第一台采用“温彻期特”技术的硬盘,从此硬盘技术的发展有了正确的结构基础。
4.1979年,IBM再次发明了薄膜磁头,为进一步减小硬盘体积、增大容量、提高读写速度提供了可能。
5.80年代末期IBM对硬盘发展的又一项重大贡献,即发明了MR(Magneto
Resistive)磁阻,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往20MB每英寸提高了数十倍。
6.1991年IBM生产的3.5英寸的硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此硬盘容量开始进入了GB数量级。
7.1999年9月7日,Maxtor宣布了首块单碟容量高达10.2GB的ATA硬盘,从而把硬盘的容量引入了一个新里程碑。
8.2000年2月23日,希捷发布了转速高达15,000RPM的Cheetah X15系列硬盘,其平均寻道时间只有3.9ms,这可算是目前世界上最快的硬盘了,同时它也是到目前为止转速最高的硬盘;其性能相当于阅读一整部Shakespeare只花.15秒。此系列产品的内部数据传输率高达48MB/s,数据缓存为4~16MB,支持Ultra160/m SCSI及Fibre
Channel(光纤通道) ,这将硬盘外部数据传输率提高到了160MB~200MB/s。总得来说,希捷的此款("捷豹")Cheetah X15系列将硬盘的性能提高到了一个新的里程碑。
9.2000年3月16日,硬盘领域又有新突破,第一款“玻璃硬盘”问世,这就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此两款硬盘均使用玻璃取代传统的铝作为盘片材料,这能为硬盘带来更大的平滑性及更高的坚固性。另外玻璃材料在高转速时具有更高的稳定性。此外Deskstar 75GXP系列产品的最高容量达75GB,这是目前最大容量的硬盘,而Deskstar 40GV的数据存储密度则高达14.3 十亿数据位/每平方英寸,这再次涮新数据存储密度世界记录。
11
2024年1月10日发(作者:罗远)
电脑三大件的发展史
目录
一、多媒体电脑的组成和电脑的发展过程 ...................................................................................
2
1.1多媒体电脑组成 .......................................................................................................................
2
1.2电脑发展过程 ................................................................................................................................
2
1.2.1、第一代计算机 .................................................................................................................
2
1.2.2、第二代计算机 .................................................................................................................
3
1.2.3、第三代计算机 .................................................................................................................
3
1.2.4、第四代计算机 .................................................................................................................
4
二、电脑三大件的发展史 .................................................................................................................
4
2.1CPU的发展史 .............................................................................................................................
4
2.1.1CPU的定义 ...............................................................................................................................
5
2.1.1CPU的发展过程......................................................................................................................
5
2.2内存的发展史 ..............................................................................................................................
6
2.2.1内存的定义及特点 .................................................................................................................
6
2.2.2内存的发展过程......................................................................................................................
7
2.2.2.1内存条的诞生......................................................................................................................
7
2.2.2.2内存的发展过程 ...................................................................................... 7
2.3硬盘的发展史 ................................................................................................... 10
2.3.1 硬盘定义 .................................................................................................. 10
2.3.2 硬盘的物理结构 ........................................................................................ 10
2.3.2.1 磁头 ...............................................................................................................................
10
2.3.2.2 磁道 ...............................................................................................................................
10
2.3.2.3 扇区 ...............................................................................................................................
10
2.3.2.4柱面 ..................................................................................................... 10
2.3.3
硬盘的发展过程 ............................................................................................................
10
1
电脑三大件的发展史
伴随着科技技术的发展,电脑已经成为人们生活中必不可少的通信工具,它无处不在,各个领域都有它的身影,比如工业、农业、军事、企业等等,说到电脑人人知晓,无人不知,因为“电脑”这个名称对我们来说太熟悉了。但是对于电脑的发展史,电脑的组成又是什么呢?其实我们要讨论的重点不是电脑,而是电脑三大件的发展史,可能对于电脑三大件有各式各样的说法,有称“主板、CPU和内存”为电脑三大件,有称“主板、CPU和显卡”为电脑三大件,有称“CPU、内存和硬盘”等,今天我们就讨论最后一种说法,以“CPU、内存和硬盘”为电脑三大件说法。
一、多媒体电脑的组成(图1.1)和电脑的发展过程:
1.1、多媒体电脑组成:
图1.1
图1.1为多媒体电脑的整机组成:显示器、主机、音响、键盘和鼠标,另外可能配置,耳机、打印机、视频等硬件设备。其中主机(图1.2)又包含了我们要讨论的电脑三大件CPU、内存和硬盘外,还有电源、磁盘、主板、CPU风扇、光驱、声卡、网卡、显卡等。
图 1.2 主机组成
1.2、电脑发展过程:
1.2.1、第一代计算机(1946-1958)是采用电子管作为逻辑元件,用阴极射线管或汞延迟线作主存储器,外存主要使用纸带、卡片等,程序设计主要使用机器指令或符号指令,应用领域主要是科学计算。当时的运算速度为5千——3万次
2
每秒。
1946年2月世界上第一台电子计算机ENIAC(图2)在美国的宾夕法尼亚大学诞生。它采用电子管作为计算机的基本元件,由18000多个电子管,1500多个继电器,10000多只电容器和7000多只电阻构成,占地170m2,重量30吨,每小时耗电30万千瓦,是一个庞然大物,每秒能进行5000次加法运算。
图2 ENIAC机房
1.2.2、第二代计算机(1959-1964)用晶体管代替了电子管,主存储器均采用磁芯存储器,磁鼓和磁盘开始用作主要的外存储器,程序设计使用了更接近于人类自然语言的高级程序设计语言,计算机的应用领域也从科学计算扩展到了事务处理、工程设计等多个方面。
1954年美国贝尔实验室建成世界上第一台晶体管计算机TRADIC。开始了第二代计算机的发展。
图3 第二代晶体管计算机 TRADIC
1.2.3、第三代计算机(1965-1970)采用中小规模的集成电路块代替了晶体管等分立元件,半导体存储器逐步取代了磁芯存储器的主存储器地位,磁盘成了不可缺少的辅助存储器,计算机也进入了产品标准化、模块化、系列化的发展时期,计算机的管理、使用方式也由手工操作完全改变为自动管理,使计算机的使用效率显著提高。
1964年研制出计算机历史上最成功的机型之一IBM S/360。S/360极强的通用性适用于各方面的用户,它具有“360度”全方位的特点,并因此得名。IBM为此投入了50亿美元的研发费用,远远超过制造原子弹的的20亿美元。IBM360成为第三代电脑的标
3
志性产品 。
图4 IBM S/360
1.2.4、第四代计算机(1971-至今)使用大规模和超大规模集成电路,主存储器均采用半导体存储器,主要的外存储器是磁带、磁盘、光盘,微处理器和微型计算机诞生。多媒体技术和网络技术的广泛应用,让计算机深入到社会的各个领域。
1976年苹果计算机:集成电路的发展,计算机开始了小型化的历程。
图5 IBM个人计算机
计算机从第一代发展到第四代,已由仅仅包含硬件的系统发展到包括硬件和软件两大部分的计算机系统。由于技术的更新和应用的推动,计算机一直处在飞速发展之中。依据信息技术发展功能价格比的莫尔定律,计算机芯片的功能每18个月翻一番,而价格减一半。该定律的作用从60年代以来,已持续40多年。集处理文字、图形、图像、声音为一体的多媒体计算机的发展正方兴未艾。各国都在计划建设自己的“信息高速公路”。通过各种通信渠道,包括有线网和无线网,把各种计算机互联起来,已经实现了信息在全球范围内的传递。用计算机来模仿人的智能,包括听觉、视觉和触觉以及自学习和推理能力是当前计算机科学研究的一个重要方向。与此同时,计算机体系结构将会突破传统的冯.诺依曼提出的原理,实现高度的并行处理。为了解决软件发展方面出现的复杂程度高、研制周期长和正确性难于保证的“软件危机”而产生的软件工程也出现新的突破。新一代计算机的发展将与人工智能、知识工程和专家系统等研究紧密相联,并为其发展提供新的基础。
二、电脑三大件的发展史:
2.1、 CPU(图6)的发展史
4
图6 cpu
2.1.1 CPU的定义:CPU是中央处理单元(Central Process Unit)的缩写,是计算机的核心,它负责处理、运算计算机内部的所有数据。CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心,再配上储存器、输入/输出接口和系统总线组成为完整的PC。
2.1.2、CPU的历史
可以说Intel公司的历史就是一部CPU的发展史,下面以Intel为例简单说一下CPU的历史。
1971年。世界上第一块微处理器4004在Intel公司诞生了。它出现的意义是划时代的,比起现在的CPU,4004显得很可怜,它只有2300个晶体管,功能相当有限,而且速度还很慢。
1978年,Intel公司首次生产出16位的微处理器命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。这就是X86指令集的来历。
1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,寻址范围仅仅是1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位,这样做只是为了方便计算机制造商设计主板。
1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。
1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但在CPU的内部集成了13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286也是应用比较广泛的一块CPU。
1985年Intel推出了80386芯片,它X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步。80386内部内含27.5万个晶体管,时钟频率从12.5MHz发展到33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存,可以使用Windows操作系统了。
1989年,Intel推出80486芯片,它的特殊意义在于这块芯片首次突破了100万个晶体管的界限,集成了120万个晶体管。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精
5
简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线(Burst)方式,大大提高了与内存的数据交换速度。
1971 年,Intel 推出了世界上第一款微处理器 4004,它是一个包含了2300个晶体管的4位CPU。
1978年,Intel推出了具有 16 位数据通道、内存寻址能力为 1MB、最大运行速度
8MHz 的8086, 并根据外设的需求推出了外部总线为 8 位的 8088, 从而有了 IBM
的 XT 机。随后,Intel 又推出了 80186 和 80188,并在其中集成了更多的功能。
到1982 年的时候, Intel 在8086 的基础上推出了80286,IBM 则采用80286 推出了AT 机并在当时引起了轰动,进而使得以后的 PC 机不得不一直兼容于PC XT/AT。
到了1985 年,Intel 推出了80386, 但并没有引起IBM 的足够重视,反而是
Compaq 率先采用了它。可以说,这是 P C 厂商正式走“兼容”道路的开始,也是AMD
等 CPU 生产厂家走“兼容”道路的开始和 32 位 CPU
的开始,直到今天的 P4 和 K7 依然是 32 位的 CPU(局部64位) 。
1989 年,80486 横空出世,它第一次使晶体管集成数达到了 120 万个,并且在一个时钟周期内能执行 2 条指令。
随后,AMD、Cyrix 等陆续推出了 80486 的兼容CPU,于是人们只知有 386 和
486 之分而不知有 Intel 和非Intel 之分。 鉴于这种情况, Intel 没有将486 的后一代产品称为 586,而是使用了注册商标 Pentium,Pentium 一经推出即大受欢迎,正如其中文名“奔腾”一样,其速度全面超越了 486CPU。尽管有浮点运 算错误的干扰,但对手的 5X86 更像是一个超级 486,就算是后来的 AMDK 5 也因为推出较晚和浮点运算不够强劲而大败于Pentium。在Pentium 家族中,早期的 50MHz、60MHz 为P5,而75MHz~200MHz的产品则为P54C。随后,Intel将MMX技术应用到 Pentium 中 ,这一代产品从 133MHz到233MHz,即P55C。其中的Pentium 166 MMX 的产品被玩家们亲切地称为 “黑金刚” ,从此张口不离超频二字。 其实在 P55C 之前,Intel 早就推出了Pentium Pro,但是当时微软的Windows95 尚未推出,彻底抛弃了 16 位代码的Pentium Pro在运行DOS时甚至可以用惨不忍睹来形容, 因而Pentium Pro只能在高端的32 位运算中一展风采。但正是Pentium Pro奠定了P6架构,甚至我们可以说PentiumⅡ= Pentium Pro + MMX。
2.2 内存的发展史
2.2.1内存(图7)的定义及特点
内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。 内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。
内存是由内存芯片、电路板、金手指等部分组成的。
6
图 7 内存
2.2.2内存的发展过程
在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。那时的内存芯片容量都特别小,最常见的256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。
2.2.2.1内存条的诞生
内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装和更换的问题彻底解决了。
在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。
2.2.2.2内存的发展过程
在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、 256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin
SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。
EDO DRAM(Extended Date Out RAM 外扩充数据模式存储器)内存,这是1991
年到1995 年之间盛行的内存条,EDO DRAM同FPM DRAM(Fast Page Mode RAM
快速页面模式存储器)极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU 的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的 486及早期的Pentium电脑上。
在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO DRAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内
7
存的容量已经达到4 ~16MB 。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO DRAM与FPM DRAM都必须成对使用。
SDRAM时代
自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO
DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。
第一代SDRAM 内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。
尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。
在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手锏,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066
1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM曾一度被认为是Pentium
4 的绝配。
尽管如此,Rambus RDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820 芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上,无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。
DDR时代
DDR SDRAM(Double Data Rate SDRAM)简称DDR,也就是“双倍速率SDRAM”的意思。DDR可以说是SDRAM的升级版本, DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增加。至于定址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。
DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代
8
DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过度,而DDR400内存成为目前的主流平台选配,双通道DDR400 内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象。
DDR2时代
随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。不可否认,紧紧依高频率提升带宽的DDR迟早会力不从心,因此JEDEC 组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。
DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。此外,DDR2
将融入CAS、OCD、ODT 等新性能指标和中断指令,提升内存带宽的利用率。从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400、533、 667MHz等不同的时钟频率。高端的DDR2内存将拥有800、1000MHz两种频率。DDR-II内存将采用200-、220-、240-针脚的FBGA封装形式。最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB。
内存技术在2005年将会毫无悬念,SDRAM为代表的静态内存在五年内不会普及。QBM与 RDRAM内存也难以挽回颓势,因此DDR与DDR2共存时代将是铁定的事实。
PC-100的“接班人”除了PC一133以外,VCM(VirXual Channel Memory)也是很重要的一员。VCM即“虚拟通道存储器”,这也是目前大多数较新的芯片组支持的一种内存标准,VCM内存主要根据由NEC公司开发的一种“缓存式DRAM”技术制造而成,它集成了“通道缓存”,由高速寄存器进行配置和控制。在实现高速数据传输的同时,VCM还维持着对传统SDRAM的高度兼容性,所以通常也把VCM内存称为VCM SDRAM。VCM与SDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数据,所以VCM要比SDRAM处理数据的速度快20%以上。目前可以支持VCM SDRAM的芯片组很多,包括:Intel的815E、VIA的694X等。
RDRAM
Intel在推出:PC-100后,由于技术的发展,PC-100内存的800MB/s带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MB/s),同样不能满足日后的发展需求。Intel为了达到独占市场的目的,与Rambus 公司联合在PC市场推广Rambus
DRAM(DirectRambus DRAM)。
Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,基于一种RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,从而可以减少数据的复杂性,使得整个系统性能得到提高。Rambus使用400MHz的16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2=800MHz,理论带宽为 (16bit×2×400MHz/8)1.6GB/s,相当于PC-100的两倍。另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和
9
RIMM(Rambus In-line MemoryModules,Rambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。不过在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。
DDR3时代
DDR3相比起DDR2有更低的工作电压, 从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够达到2000Mhz的速度,尽管目前最为快速的DDR2内存速度已经提升到 800Mhz/1066Mhz的速度,但是DDR3内存模组仍会从1066Mhz起跳。
2.3硬盘的发展史
2.3.1 硬盘定义
硬盘是电脑主要的存储媒介之一,由一个或者多个铝制或者玻璃制的碟片组成。这些碟片外覆盖有铁磁性材料。绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。
2.3.2 硬盘(图8)的物理结构
2.3.2.1 磁头:磁头是硬盘中最昂贵的部件,也是硬盘技术中最重要和最关键的一环。需要兼容读写的两种特征。目前,MR磁头已得到广泛应用,它通过阻值变化而不是电流变化去感应信号幅度,因而对信号变化相当敏感,读取数据的准确性也相应提高。而采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant
Magnetoresistive heads)也逐渐普及。
图 8 硬盘及内部结构
2.3.2.2 磁道:当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。
2.3.2.3 扇区:磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。
2.3.2.4柱面:硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。磁盘的柱面数与一个盘单面上的磁道数是相等的。无论是双盘面还是单盘面,由于每个盘面都有自己的磁头,因此,盘面数等于总的磁头数。
2.3.3 硬盘发展过程
10
从第一块硬盘RAMAC的产生到现在单碟容量高达15GB多的硬盘,硬盘也经历了几代的发展,下面就介绍一下其历史及发展。
1.1956年9月,IBM的一个工程小组向世界展示了第一台磁盘存储系统IBM 350
RAMAC(Random Access Method of Accounting and Control),其磁头可以直接移动到盘片上的任何一块存储区域,从而成功地实现了随机存储,这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘,这些盘片表面涂有一层磁性物质,它们被叠起来固定在一起,绕着同一个轴旋转。此款RAMAC在那时主要用于飞机预约、自动银行、医学诊断及太空领域内。
2.1968年IBM公司首次提出“温彻斯特/Winchester”技术,探讨对硬盘技术做重大改造的可能性。“温彻斯特”技术的精隋是:“密封、固定并高速旋转的镀磁盘片,磁头沿盘片径向移动,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触”,这也是现代绝大多数硬盘的原型。
3.1973年IBM公司制造出第一台采用“温彻期特”技术的硬盘,从此硬盘技术的发展有了正确的结构基础。
4.1979年,IBM再次发明了薄膜磁头,为进一步减小硬盘体积、增大容量、提高读写速度提供了可能。
5.80年代末期IBM对硬盘发展的又一项重大贡献,即发明了MR(Magneto
Resistive)磁阻,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往20MB每英寸提高了数十倍。
6.1991年IBM生产的3.5英寸的硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此硬盘容量开始进入了GB数量级。
7.1999年9月7日,Maxtor宣布了首块单碟容量高达10.2GB的ATA硬盘,从而把硬盘的容量引入了一个新里程碑。
8.2000年2月23日,希捷发布了转速高达15,000RPM的Cheetah X15系列硬盘,其平均寻道时间只有3.9ms,这可算是目前世界上最快的硬盘了,同时它也是到目前为止转速最高的硬盘;其性能相当于阅读一整部Shakespeare只花.15秒。此系列产品的内部数据传输率高达48MB/s,数据缓存为4~16MB,支持Ultra160/m SCSI及Fibre
Channel(光纤通道) ,这将硬盘外部数据传输率提高到了160MB~200MB/s。总得来说,希捷的此款("捷豹")Cheetah X15系列将硬盘的性能提高到了一个新的里程碑。
9.2000年3月16日,硬盘领域又有新突破,第一款“玻璃硬盘”问世,这就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此两款硬盘均使用玻璃取代传统的铝作为盘片材料,这能为硬盘带来更大的平滑性及更高的坚固性。另外玻璃材料在高转速时具有更高的稳定性。此外Deskstar 75GXP系列产品的最高容量达75GB,这是目前最大容量的硬盘,而Deskstar 40GV的数据存储密度则高达14.3 十亿数据位/每平方英寸,这再次涮新数据存储密度世界记录。
11