最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

数字电视最早诞生在德国上个世纪9

IT圈 admin 51浏览 0评论

2024年1月13日发(作者:迮昕昕)

数字电视

最早诞生在德国,上个世纪90年代初,德国的ITT公司推出了世界上第一台数字彩色电视机,一时惊动很大,但这台数字彩色电视机没有多大优势,因为它成本很高。成本高的原因是它使用了帧存储器,当时集成电路的生产技术与今天相比还很落后,电路密度很低,所以成本很高。这台数字彩色电视机在功能上虽然很简单,但在技术上已达到了非常高的水平,如,用数字滤波技术进行Y/C分离和场闪烁处理。ITT公司大约只生产了3000台这样的电视机后,就再也没有生产。由于当时人们都想象不到,电视技术能发展到今天这么快,由模拟信号一下子转变成全数字信号,因此人们都称它是世界上第一台数字电视机。

在此基础上,后来人们发明了画中画电视,尔后又发明了插行电视机,或叫改善清晰度电视机IDTV(Improved-Definition

Television),也就是现在的倍行、倍场等电视机之类。这些电视机都是只对视频信号做一些很简单的数字技术处理,图像质量并没有明显提高,但当时人们都认为是一种很了不起的数字电视技术,我们国家也把这种电视机定义为数字电视机,并制订了数字电视机标准,这个标准一直沿用到2000年。因此,国内很多电视机厂家都把自己的插行电视机说成是数字电视机——DIGITAL TV。

其实,那时候国外的全数字信号电视机早已诞生,并且于上个世纪90年代就已开始进行数字信号广播,如早期的MAC,MUSE,和

尔后的DVB-S,DVB-C,DVB-T,HDTV等。由于国内新的数字电视机标准迟迟未定,而旧的又不作废,因此国内的各种DIGITAL TV概念满天飞,如,某些公司的数码电视等。

数字电视的发展是一步一步走过来的,如果追索起源头,要追索到60多年前的付立叶先生,他的付立叶变换理论奠定了数字电视技术的基础,继他之后,还有一大堆应用科学家在默默地耕耘了五十多年。MPEG信源编码技术标准的诞生,标志着数字电视技术已经基本成熟。而MPEG信源编码技术中的17个重要专利技术,就有两个发生在1950年,分别为:哈夫曼编码(Huffmancoging),差动脉冲编码调制(DPCM)。后面的15个重要技术基本上也都是按均匀密度分布在时间轴上,可见工作之艰辛,并不是某人灵感一来就能发明成功的。这些技术的应用都是为了一个目的,就是使数字信号能够在各种线路中进行传输。

数字电视的技术基础是模数转换ADC(Analog-to-Digital

Converter)和编码(Coding)技术。编码技术现在已经成为一门很热门的科学技术,它是数学和物理学及其它科学交融在一起的,一个崭新领域中的应用技术。在全数字电视技术中,有两个很关键的编码技术——信源编码和信道编码。信源编码的主要任务是解决图像信号的压缩和保存问题;信道编码的主要任务是解决图像信号的传输问题。

ADC与二进制编码

ADC模数转换也叫取样,是把模拟信号转换成数字信号的必要过程。我们知道模拟信号是由无数个连续的点来组成,任何电路都无法对无数个点的信息进行如:插行、压缩等处理,因此只能从无数个点中抽出一些有代表性的点进行处理,这种方法就叫取样,或叫A/D(模拟/数字)转换。取样可以比喻成把图片通过一个丝网后再印到报纸上(这叫丝网印刷),报纸上的图片就变成由很多小点点组成,这些小点点就是从图片中无数个点取样后得来的。经过取样得到的点,越密和越细,图像就越逼真。

对视频信号取样也存在这样的道理,取样频率越高,相当于抽样的点越多,数据就越真实,但数据占的内存也多。除了点的密度对图像质量有影响外,每个点所表示数值的精度也会影响图像质量,这个叫量化,即分层。层分得越多,精度就越高,量化精度单位用bit(二进制的位)表示,即多少bit编码,或叫二进制编码。

目前对视频信号进行取样时,一般取样脉冲频率都是取视频最高频率的3倍,和用8bit进行量化编码,即把视频信号分成256层(也叫阶梯)。图1是对视频信号进行取样与二进制编码的原理图。

如果用上述方法对PAL制图像信号进行处理,那么对于6MHz的亮度信号取样脉冲频率应为18MHz,但为了减少干扰,一般都取彩色副载波频率的4倍,即17.72MHz为取样频率。为此求得传送亮度信号的码率为142Mbit/S,另外还有两个色差信号R-Y和B-Y也要传送,如果按3MHz带宽来计算,两个色差信号的码率为144Mbit/S,这样

全电视信号的码率为286Mbit/S,这个还没有把传输过程中的帧同步脉冲计算进去,如果把帧同步脉冲计算进去,码率还需要提高2-10%,即超过300Mbit/S。这么高的码率在一般线路中根本就无法传送,况且还有伴音信号也要传送呢。

对于HDTV高清晰度电视机,我国的HDTV高清晰度电视机视频最高带宽是64MHz,约为PAL制视频带宽的11倍,如果把它换算成码率就是3200Mbit/S,这么高的码率,任何线路都无法传输,目前用有线电视线路传输数字信号,最高码率只能达到30Mbit/S左右。因此,为了能够传输数字电视信号,数字电视信号本身也要进行压缩,要么数字电视节目广播就无法实现。

信源编码

字、符号、图形、图像、音频、视频、动画等各种数据本身的编码通常称为信源编码,信源编码标准是信息领域的基础性标准。无论是数字电视、激光视盘机,还是多媒体通信和各种视听消费电子产品,都需要音视频信源编码这个基础性标准。

大家用电脑打字一定很熟悉,当你用WORD编辑软件把文章(DOC文件)写完,存好盘后,再用PCTOOLS工具软件把你的DOC文件打开,你一定能看到你想象不到的东西,内容全是一些16进制的数字,这些数字叫代码,它与文章中的字符一一对应。现在我们换一种方法,用小画板软件来写同样内容的文章。你又会发现,用小画板软

件写出来的BMP文件,占的内存(文件容量)是DOC文件的好几十倍,你知道这是为什么?原来WORD编辑软件使用的是字库和代码技术,而小画板软件使用的是点阵技术,即文字是由一些与坐标位置决定的点来组成,没有使用字库,因此,两者在工作效率上相差几十倍。

目前模拟信号电视机图像信号处理技术就很类似小画板软件使用的点阵技术,而全数字电视机的图像信号处理技术就很类似WORD编辑软件使用的字库和代码技术。实际上这种代码传输技术在图文电视中很早就已用过,在图文电视机中一般都安装有一个带有图文字库的译码器,对方发送图文信号的时候只需发送图文代码信息,这样可以大大地提高数据传输效率。

对于电视机,显示内容是活动图像信息,它哪来的“字库”或“图库”呢?这个就是电视图像特有的“相关性”技术问题。原来在电视图像信号中,90%以上的图像信息是互相相关的,我们在模拟电视机中使用的Y/C(亮度信号/彩色信号)分离技术,就是利用两行图像信号的相关性,来进行Y/C分离。如果它们之间内容不相关,Y/C信号则无法进行分离。全数字信号电视也一样,如果图像内容不相关,则图像信号压缩也就要免谈。如果图像内容有相关性,那么上一幅图像的内容就相当于下一幅图像的“图形库”,或一幅图像中的某部分就是另一部分的“图形库”,因此,下一幅图像或图像中某一个与另一个相关的部分,在发送信号时,只需发送一个“代码”,而传送一个

“代码”要比送一个“图形库”效率高很多,显示时也只需把内容从“图形库”中取出即可,这就是MPEG图像压缩的原理。

利用电视信号的相关性,可以进行图像信号压缩,这个原理大家已经明白,但要找出图像相关性的内容来,那就不是一件很容易的事情,这个技术真的是太复杂了。为了容易理解电视图像的相关性,我们不妨设想做一些试验,把图像平均分成几大块,然后每一块,每一块的进行比较,如果有相同的,我们就定义它们有相关性;如果没有相同的,我们继续细分下去,把每大块又分成几小块,一直比较下去,最后会发现,块分得越细,相同块的数目就越多,但分得太细需要的代码也增多,所以并不是分得越细越好。我们在看VCD的时候经常发现,如果VCD读光盘数据出错,就会在图像中看到“马赛克”,这些“马赛克”就是图像分区时的最小单位,或把数码相片进行放大,也可以看到类似“马赛克”的小区,这就是数码图像的最小“图形库”,每个小“图形库”都要对应一个“代码”。

在单幅图像中找出相关性的几率并不是很大的,所以对单幅图像的压缩率并不很大,这个通过观察数码相片的容量就很容易明白,如果把寻找相关性的范围扩大到两幅图像,你就会发现,具有相关性的内容太多了,这是因为运动物体对于人的眼睛感觉器官来说,是很慢的,如果很快,人的眼睛就看不清楚,看不清楚的东西就不能算成图像。电视机每秒钟向人们演示图像是50次或以上(PAL为50次,NTSC为60次),如果你的眼睛是个摄影机,你也无法感觉到图像的微小

变化,这就表明相邻两幅图像的相关性非常大,而图像之间相隔距离较远时,其图像的相关性才逐步减小,并且这种相关性很强的图像变化时,一般都是有规律的,也就是说每一幅图像的变化是可以预测的。实际上在上一幅图像的基础上乘以一个带有方向的系数,即左、右、上、下移动,就可以得到一幅运动图像的新图像。这里顺便指出,上面说到的一幅图像,并不是特指人们从电视机显示屏上看到的整幅画面,而是可大可小的一部分。

利用图像的可预测性,可以大大的提高“图形库”的利用律,即很多幅图像都可以公用一个“图形库”。MPEG在传送图像时就是这样,对于高速变化的图像,如果时间来得及(即码率不是很高时),就传送新的内容来显示,如果来不及(即码率很高时)就用“图形库”中的内容来顶替(即预测),反正高速运动的图像人们也看不清。例如:MPEG在传送5幅图像时,可能只传其中的3幅(时间来得及时),也可能只传两幅(时间来不及时),具体过程是,先传第1和第5幅,然后时间来得及就传第3幅,时间来不及就插第3幅(根据1和5预测3),最后再插第2幅(根据1和3预测2),和第4幅(根据3和5预测4)。

上面我们只是从感性上和很肤浅的对图像压缩的原理进行了分析,如果我们把上面的分析内容移到数学领域,那么我们将要面对非常多的西格玛“∑”(求和)和矩阵符号。顺便介绍一下,对数字电视图像压缩处理最出名的理论是:DCT(Discrete Cosine Transform)离散余

弦变换(付立叶变换),和DPCM差动脉冲编码调制,还有哈夫曼编码(Huffmancoging)。

图像信号的压缩过程也是数字电路(或计算机)对数字信号的处理过程,计算机虽然很聪明,但它只会做加法运算。其它的减法、乘法、除法还有函数运算,计算机都是把它们转换成加法进行运算。付立叶先生60年前可能就预见到了我们要对数字信号进行处理,所以他发明了付立叶变换。其原理是:一个周期函数可以展开成无数个正弦或余弦函数之和,函数的周期越短其(级数)收敛就越快,周期越长其收敛就越慢。对于上面我们分析的图像信号,全部都可以看成是周期函数信号。相关性很强的图像信号可看成是短周期信号,相关性很弱的图像信号可看成是长周期信号。因此,经过付立叶变换后的信号,只需对展开成级数的各项系数(一般只取前几项)进行处理和传送。

DPCM差动脉冲编码调制也有人叫预测编码,它的定义是:在线性预测编码中,首先用过去的若干像素值对当前像素值进行线性预测,然后将其差值进行PCM编码传送,接收端将此差值积分而再生图像;哈夫曼编码也叫可变长编码,它对出现概率大的差值信号编以短码,对概率小的差值信号编以长码,哈夫曼编码可获得最小的平均码长。

在数字电视技术中,除了图像需要压缩以外,声音也要压缩,但声音压缩要比图像压缩简单很多,因为声音的信息量比起图像的信息量来,少得可怜。人的耳朵能听到声音的频率范围是20Hz到20kHz,如果我们把20Hz到20kHz按照一定的频带宽度分成很多个频率通

道,用来对声音进行过滤和处理,就能对声音信号进行压缩。这个频率通道就相当于,歌曲中的谐音:多、来、米、发、梭、拉、妻、多(12345671)。

声音压缩的原理也是利用“字库”的概念,在信号的译码端,安装有很多个与信号发送编码端对应的频率发生器(如12345671谐音器)。另外声音还有一个屏蔽效应,就是,人的耳朵对某个频率范围的声音灵敏度特别高(600Hz附近),对一些频率却很低(低频和高频);还有,如果有几种声音同时存在,声音大的内容很容易听到,而声音很小的东西要非常注意才能听到(对数特性)。利用这些特点,在编码的时候就可以分长码和短码来对不同的内容进行编码,对主要声音内容用长码,对次要内容用短码——这叫有所为和有所不为。经过多种方法对声音信号压缩处理后,声音信号传送的码率可变得非常低,即压缩比非常大。

声音信号压缩的原理可以比喻成,某人想听某钢琴家弹钢琴,一种方法是把钢琴家连同钢琴都请到家来;另一种方法是,只请钢琴家而用自己的钢琴进行演奏;再有一种方法是,只需对方把曲谱寄过来,而用自己的钢琴和家人来演奏,显然是最后一种方法最简便。

在全数字信号电视系统中,图像信号和音频号之所以能压缩,并不完全是信源编码端的功劳,接收端译码器的功劳也非常大,没有译码器强大的数据处理功能,图像信号和音频信号的压缩是不可能的。其实从信源端发送给接收端,真正属于图像内容的信息并不多,大部分都

是“补丁”(差值),和“指令”(代码),译码器通过对这些数据进行加工,不断地更新自己的“数据库”(图形库),然后重新编码输出,最后进行D/A转换,输出音视频。

目前图像压缩标准有MPEG1、MPEG2、MPEG4、MPEG7,根据用途的不同压缩方法和码率也不一样。MPEG1用于VCD,清晰度很低,但码率也很低;MPEG2用于SDTV或HDTV,清晰度很高,但码率也很高;MPEG4本来准备用于可视电话,它压缩比很高,码率也很低,活动图像质量比MPEG2差,但它可以在电脑上进行标清节目显示,所以有人准备把它进行升级来替代MPEG2或更高版本(JVT);MPEG7用于图书馆档案查询,压缩比非常高,码率很低。声音压缩标准现在较常用的有杜比和AC3两种。

我们国家目前也想自己搞一套音视频压缩编码标准AVS(Audio Video

coding Standard),AVS1.0的标准准备与新的国际音视频标准JVT(Joint

Video Team)兼容,性能与MPEG4的升级版本差不多,这个AVS标准是否成功,取决于国内IC生产厂家愿不愿意跟进,和政府扶植的力度。

信道编码

数字信号传输和模拟信号传输是不一样的,模拟信号一般通过高频调制以后就可以通过线路进行传输,接收端对输入信号进行解调后,就可以输出模拟信号;而数字信号传输就不同了,数字信号不但需要调

制,调制之前还要进行编码,接收端对输入信号首先进行解调,然后再解码。经过编码的信号一般含有同步头,用户码、数据码、自由码、结束码等,这叫做一帧编码,数字信号就是一帧,一帧地进行传送的,如MPEG数字信号,每帧为188bit。对数字信号解码也必须按顺序,一帧,一帧地进行。

同步头一般人都很容易理解,它表示一帧编码信号的开始;用户码用来表示这帧内容的属性,即这一帧东西是谁的,在数码通信中一般都有多个用户同时在进行通信,编码时就按用户分帧来传输信号,这样对解码比较简单,如果只有一个用户,可以不需要用户码;数据码是需要传输的最主要内容,在属性不容易出错的情况下,它可以有多组数据码,每组分别表示一个信号分量;自由码一般是作为备用的,用来加密或其它用途;结束码表示这一帧内容传输已经结束,告诉译码器做好下一帧信号解码的准备。

模拟信号需要同时传输多路信号时(或多个信号分量),一般是采用正交调制或复合调制,如PAL电视信号:亮度信号,6MHz(标称为6MHz,实际只有4.15MHz),对38MHz载波调幅;两个色差Y-R和Y-B,1.5MHz,对4.43MHz付载波正交调幅;伴音,500KHz,对6.5MHz付载波调频。它占用的频率资源,除了载波频率外还要把频率带宽算上,因为载波是可选择的,所以一般都只说频率带宽,PAL电视信号的带宽为8MHz(6 + 1.5 + 0.5)。PAL电视信号的4个模拟分量在传输时,属于同时传输。

而数字信号需要同时传输多路信号时(或多个信号分量),一般是采用串行编码,即一帧编码中可以有多组数据码(代表多个信号分量),如数据码1代表亮度信号,数据码2表示色差信号Y-R,数据码3表示色差信号Y-B,等等,如一帧容量有限,可以加用户码分帧来传输多个信号分量。数字信号调制要比模拟信号简单很多,一般用QPSK(正交调相)或QAM(正交调相又调幅)调制,也可以用FSK(键控调频)或ASK(键控调幅)调制,很少用AM(调幅)和FM(调频)调制。因为前者调制效率非常高,特别是QAM调制,256QAM调制的频谱利用率是8bit/Hz,还有一种多载波调制COFDM,其频谱利用率更高,可达16bit/Hz。数字信号传输占用的频率资源,除了载波频率带宽以外,还有一个传输码率。例如利用有线电视信号传输网络6MHz带宽可以传输两路标清电视信号,最高码率达36Mbit/S(64QAM)。

数码通信的好处是,可以把多路信号,或多个用户信号同时挤在一条线路上,只要这条线路传输码率足够高。这种情况叫打包,或就信号复用,解码时,则需要先拆包(也叫解复用)后才能解码。打包的原理就是上面的帧编码原理,不同传输系统,帧编码的长度是不一样的,因此在进行多种信号传输过程中,经常要拆包和重新打包。

数字彩色信号在传输过程中,一般不是按电视机的扫描顺序来传送信号的,这是因为信号在传输过程中可能会出错。当信号在传输过程中出错时,如果信号按顺序传送,则电视画面上会集中在某个地方出现

一大片马赛克,使人看起来非常不爽;如果信号不是按顺序传送,而是按某种分布规律来传送,同样出错时,马赛克会被均匀地散布在整个画面上,使人看起来感到还可以接受。这种错位传输信号的方法称为RS编码或卷积,这是也是数字电视信道编码中的一项重要技术。

SDTV和HDTV

SDTV和HDTV人们分别把它们叫标准清晰度数字电视和高清晰度数字电视,SDTV电视节目很早在欧洲就开始广播,如,DVB-S(卫星数字视频广播)、DVB-C(有线数字视频广播)、DVB-T(地面数字视频广播),这些都是属于标准清晰度数字电视,目前SDTV电视图像分辨率标准为:576×720 4:3 ,即扫描参数与现在的模拟电视一样,但水平清晰度提高了一倍多。HDTV的概念第一个提出来,和第一个进行节目广播的是日本,但它的HDTV技术标准(MUSE)没有人跟风。最后美国于1995年又推出一种新的HDTV标准(ATSC),并于1996年开始正式广播。此事一时引起很大的轰动,连日本已经开始广播了两年的MUSE-HDTV节目也被迫停止广播,准备跟风美国。

目前SDTV和HDTV都是采用MPEG2图像压缩标准,但由于MPEG-LA公司提出要对MPEG标准的使用者收费,加上HDTV的传输码率要比SDTV高好几倍,使得HDTV-T(地面广播)在传输技术上遇到了较大的难度,一时人们对HDTV的热情开始冷却了下来。

我国政府对实现SDTV和HDTV数字电视广播的热情很高,并制定了未来5年和15年数字电视发展的时间表,但我国的SDTV和HDTV标准迟迟没有定下来。

从技术上考虑,SDTV和HDTV数字电视的显示格式一共有18种(HDTV 6种、SDTV 12种),其中14种采用逐行扫描方式。

(1) HDTV,1920象素(H)×1080象素(V),宽高比16:9,帧频60Hz/隔行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(2) HDTV,1280×720,16:9宽高比,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(3) SDTV,704×480,16:9或4:3宽高比,帧频60Hz/隔行扫描,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(4) SDTV,640×480,4:3宽高比,帧频60Hz/隔行扫描,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

在6种HDTV格式中,因为1920×1080格式不适合在6MHz信道内以60帧/秒进行逐行扫描,故以隔行扫描取代之。SDTV的640×480图像格式与计算机的VGA格式相同,保证了与计算机的适用性。在12种SDTV格式中,有9种采用逐行扫描,保留3种为隔行扫描方式以适应现有的视频系统。

我们国家可能采用的标准:

(1) SDTV标准 576×720 4:3

(2) SDTV标准 576×1024 16:9

(3) SDTV标准 540×720 4:3

(4) SDTV标准 540×960 16:9

(5) HDTV标准 1080×1920 16:9

另外,还有三种信号传输标准格式:

(1) ATSC标准

ATSC数字电视标准由四个分离的层级组成,层级之间有清晰的界面。最高为图像层,确定图像的形式,包括象素阵列、幅型比和帧频。接着是图像压缩层,采用MPEG-2压缩标准。再下来是系统复用层,特定的数据被纳入不同的压缩包中,采用MPEG-2压缩标准。最后是传输层,确定数据传输的调制和信道编码方案。对于地面广播系统,采用Zenith公司开发的8-VSB传输模式,在6MHz地面广播频道上可实现19.3Mb/s的传输速率。该标准也包含适合有线电视系统高数据率的16-VSB传输模式,可在6MHz有线电视信道中实现38.6Mb/s的传输速率。

(2) DVB标准

DVB传输系统涉及卫星、有线电视、地面、SMATV、MMDS 等所有传输媒体。它们对应的DVB标准为:DVB-S、DVB-C、DVB-T、DVB-SMATV、DVB-MS和DVB-MC。

DVB-S(ETS 300 421)

为数字卫星广播系统标准。卫星传输具有覆盖面广、节目容量大等特点。数据流的调制采用四相相移键控调制(QPSK)方式,工作频率为11/12GHz。在使用MPEG-2MP@ML格式时,用户端若达到CCIR 601演播室质量,码率为9Mb/s;达到PAL质量,码率为5Mb/s。一个54MHz转发器传送速率可达68Mb/s,可用于多套节目的复用。DVB-S标准几乎为所有的卫星广播数字电视系统所采用。我国也选用了DVB-S标准。

DVB-C(ETS 300 429)

为数字有线电视广播系统标准。它具有16、32、64QAM(正交调幅)三种调制方式,工作频率在10GHz以下。采用64QAM时,一个PAL通道的传送码率为41.34Mb/s,可用于多套节目的复用。系统前端可从卫星和地面发射获得信号,在终端需要电缆机顶盒。

DVB-T(ETS 300 744)

为数字地面电视广播系统标准。这是最复杂的DVB传输系统。地面数字电视发射的传输容量,理论上与有线电视系统相当,本地区覆盖

好。采用编码正交频分复用(COFDM)调制方式,在8MHz带宽内能传送4套电视节目,传输质量高;但其接收费用高。

DVB-SMATV(ETS 300 473)

为数字卫星共用天线电视(SMATV)广播系统标准。它是在DVB-S和DVB-C基础上制定的。

DVB-MS(ETS 300 748)

为高于10GHz的数字广播MMDS分配系统标准。

它基于DVB-S,使携带大量节目的微波信号直接入户。用DVB-S接收机配上一个MMDS频率变换器,就可接收DVB-MS信号。

DVB-MC(ETS 300 749)

为低于10GHz的数字广播MMDS分配系统标准。

它基于DVB-C,使携带大量节目的微波信号直接入户。用DVB-C接收机配上一个MMDS频率变换器,就可接收DVB-MC信号。

(3) ISDB标准

ISDB(综合业务数字广播)是新型的多媒体广播业务,它系统地综合了各项数字内容,每一项内容可以包括从LDTV到HDTV的多节目视频、多节目音频、图形、文本等。如今大部分的数字内容均被编码到MPEG-2传输流格式并被广泛传输。由于ISDB包含了不同的业

务,其传输系统必然要涵盖各种业务不同的需求,例如HDTV需要一个大的传输容量,而数据业务需要极高的业务可靠性,诸如条件接入的键控传输,软件下载等。为了集成这些业务需求不同的信号,要求传输系统提供一系列可供选择的调制和误码保护方案,并且能够灵活组合以满足所集成业务的每一需求,特别是工作在11~12GHz卫星广播业务(BSS)频段、又处于高雨衰区国家的卫星ISDB系统的需求。ISDB标准首先是日本提出和使用,这个标准比前面的两个标准复杂,但用途更广,和更有前途。

数字电视三种标准的比较

DVB

DVB-T DVB-C

MPEG2

DVB-S

MPEG2

视频编码方式

音频编码方式

复用方式

调用方式

ATSC ISDB

MPEG2 MPEG2 MPEG2

AC-3 MPEG2 MPEG2

MPEG2

QAM

-

MPEG2

MPEG2

QPSK

-

MPEG2

MPEG2

QPSK

27M

MPEG2 MPEG2

8VSB COFDM

8M 带宽(Hz) 6M

欧洲DVB-T

DVB-T标准采用的大量导频信号插入和保护间隔技术使得系统具有较强的多径反射适应能力,在密集的楼群中也能良好接收,除能够移动接收外,还可建立单频网,适合于信号有屏蔽的山区。另外,欧洲系统还对载波数目、保护间隔长度和调制星座数目等参数进行组合,形成了多种传输模式供使用者选择。但欧洲标准也存在缺陷:①频带损失严重;②即使防止了大量导频信号,对信道估计仍是不足;③在交织深度、抗脉冲噪声干扰及信道编码等方面的性能存在明显不足;④覆盖面较小。

美国ATSC

美国于1996年12月24日决定采用以HDTV为基础的ATSC作为美国国家数字电视标准。美国联邦通信委员会(FCC)决定用9年时间完成模拟电视向数字电视的历史性过渡。

ATSC标准具备噪声门限低(接近于14.9dB的理论值)、传输容量大(6MHz带宽传输19.3Mbps)、传输远、覆盖范围广和接收方案易实现等主要技术优势。但是也存在一系列问题,最主要的是不能有效对

付强多径和快速变化的动态多径,造成某些环境中固定接收不稳定以及不支持移动接收。

日本ISDB-T标准

日本于1996年开始启动自主的数字电视标准研发项目,在欧洲COFDM技术的基础上,增加具有自主知识产权的技术,形成ISDB-T地面数字广播传输标准,于1995年7月在日本电气通信技术审议会上通过。2001年,该标准正式被ITU接受为世界第3个数字电视传输国际标准。

频谱分段传输与强化移动接收是日本ISDB-T标准的两个主要特点,是对地面数字电视体系众多参数及相关性能进行客观分析优化组合的结果,但是此标准是日本根据本国具体情况及产业发展战略进行权衡取舍的。在实现系统特定功能的同时也为之付出相应的代价,如频谱分段传输对系统频率分集性能与净载荷率的影响,采取以频谱分段为基础实现不同误码保护率分层传输对系统复杂度的影响,在系统内层采用延时长达数百毫秒交织环节对系统及业务同步响应的影响等。

目前,世界各国都根据本国的具体情况,慎重地选择地面数字电视标准。从世界范围看,除了美国外,还有加拿大、阿根廷、韩国等国家

采用美国的ATSC标准。而欧洲所有国家和澳大利亚、新加坡、印度等国则选用了欧洲联盟的DVB-T标准。

数字电视可以提供给我们更多的频道和更高质量的图像,无论是采用标准清晰度电视(SDTV)或者是高清晰度电视(HDTV)。高清晰度电视(HDTV)将向家庭传送影院质量的图像和高保真的环绕声。这将把电视变成”家庭影院”。HDTV将向我们的眼睛呈现5倍于SDTV的信息量。广播工作者可以选择播放HDTV节目或者是SDTV节目。我们今天所用的标准模拟电视频道,将供广播工作者进行选择:传送一路HDTV节目或者挨在一起的几路SDTV节目。在不久的将来,广播工作者将能够在极大地改进图像和声音质量,与极大地增加节目选择之间进行决策。

观看者将变成使用者

数字技术和多种数字媒体的融合,将在我们所理解的现今”电视”的那种传统的一对多的通讯模式之外提供更多的选择。先进的数字技术的运用将提供许多新的服务:多对一,多对多,和一对一的通信。结合交互式的反回通道(例如通过带接口的移动电话),数字信息接收者将提供给用户多种增强服务,从简单的交互式问答显示到无线英特网连接,以及电视和互联网的混合资源服务。你能在电视上做的任何事情你将能够在你的个人电脑上做,反之亦然。

移动着的电视(和其他数字电视设备)

模拟电视不能被移动电视接收机接收。而数字电视将可以使汽

车、公共汽车、火车上安装的电视机、甚至手持电视接收机接收到水晶般清晰透亮的电视节目。不仅如此,新的增强的和交互式的服务(包括高速英特网连接)也能够发送到移动接收机。例如,用随身携带的GSM车载电话,以及一台内插智能卡的DVB-T地面DTV接收机,你将能够以2-14Mb/s的速率浏览因特网,比28.8K的调制解调器快一千倍。

未来已经开始

电视已经大部分数字化了,可是观众感觉不到。技术上逐渐的变化已经伴随着电视节目进入千家万户。革命已经完成,数字技术是最终的胜利者。今天我们用来生产电视节目的大多数设备是数字的;在演播室、在站点之间分配信号,也都是数字化的。虽然我们在家中仍然接收模拟信号,就其质量和稳定性来说,很明显,这些节目内容不可能没有数字化的生产和分配技术的参与。当你通过有线电视、卫星或地面广播观看电视节目的时候,你是坐在传输链的终端,除了这最后一站之外,全部的传输都是在数字领域进行的。例如在新闻广播中,现场记者用数字卫星传送设备上行其报道回馈至节目中心;素材通过数字化接收、解码并且与演播厅中的动态节目一起进行数字化编辑;再被数字化的分配到世界各地的专业接收者;最后被转换成模拟电视信号并发送给你。现在这最后一步正在进入数字时代。

将数字视频、音频和多媒体数据信号编码为MPEG-2视频、音频及多媒体信号,经过传输复用电路复用为信源输出信号。可分别馈送

至DVB-S/C/T信道。

DVB-S用于卫星信道。卫星信道的特点是:可用频带宽、功率受限、干扰大、信噪比低。所以要求采用可靠性高的信号调制方式、强的信号纠错能力,对带宽要求不是特别高。因此DVB-S采用前向纠错(FEC)(包括Viterbi编码、交织、RS编码及加扰等电路), 正交移相键控(QPSK)调制的信道处理,然后馈给卫星链路。接收时进行相反的处理。

DVB-C用于有线信道。有线信道的特点是:信噪比高、频带资源窄、存在回波和非线性失真。这些特点要求DVB-C采用带宽窄、频带利用率高、抗干扰能力较强的调制方式。同时,由于信道信噪比高,误码率较低,纠错能力要求不很高。因此,DVB-C的信道部分采用RS码和卷积码交织技术,正交幅度调制(QAM)。

DVB-T用于地面广播信道。地面广播的特点是:地形复杂、存在时变衰落和存在多径干扰、信噪比较低。因此DVB-T采用前向纠错(FEC)(包括内码交织、内码Viterbi编码、外码交织、外码RS编码)和能有效消除多径干扰的正交频分复用技术(COFDM)和格雷码映射4/16/64QAM调制等进行信道处理。然后在原来用于模拟的6MHZ、7MHZ和8MHZ的频带内发送数字电视节目。DVB-T发送的比特率是可变的。例如:在6MHZ频带可在3.7~23.8Mbit/s比特率之间进

行选择; 在8MHZ频带可在4.9~31.7Mbit/s比特率之间进行选择。以适应不同的接收环境、如移动接收应适当降低发送的码率。

ATSC如何工作?

ATSC与DVB-T在信源处理和信道处理上除了音频采用杜比AC-3、发射机调制采用8-VSB(8电平残留边带调制)之外,其他大致相同。ATSC的DTV向原模拟NTSC的6MHZ无线信道传送19.39MHZ的固定码率数字信号。

ATSC规定有18种不同的视频格式以供选择。如:480p/30(480逐行扫描/30赫兹)、720p/60(720逐行扫描/60赫兹)、1080I(1080隔行扫描),等等。

DVB-T的优缺点

在基于大量小功率、工作在同一频道的众多发射机,每一个均覆盖一个较小的区域的这样一种单频网络来说,DVB是一种最佳选择。这种概念类似于GSM蜂窝覆盖图。每个发射机通过卫星传送参考信号进行同步。在COFDM调制系统中,有2000至8000个带有保护间隔的载波信号以及误码校正处理,用以提供多径选择性来选择可接收到的几个信号中最强的信号。采用COFDM也提供了良好的移动接收性能。

这种优良的抗多径能力会有一些代价:其载/噪比低于8-VBS,并且限制了信号的有效传输距离;COFDM也对来自于电机,如真空吸尘器和电扇的脉冲干扰较敏感;另外数量几千的载波导致较高的峰/均值比,并且需要较高功率的发射机;保护间隔降低了频谱效率并明显减少带宽的比特/赫兹率。

ATSC的优缺点

ATSC开发的8-VSB标准期望覆盖美国以及世界其他地区现有发射机所覆盖的广大面积。ATSC 8-VSB具有二个好处:一是广播工作者希望用少于COFDM的发射功率复盖现在的NTSC覆盖区。二是ATSC标准明显地减少了脉冲干扰。另外在美国很关注RF信号(射频信号)的密度,最大的频谱效率是有强制性限制的。另外,8-VSB信号可将与原模拟NTSC信号的同频和邻频干扰减至最小。

这些优点所付出的代价是:8-VBS不能抵抗多径干扰,并且在城市高楼地区将会有些影响;8-VBS标准不支持移动接收。

我国采用那种数字电视标准?

目前我国尚未认定采用何种数字电视标准。但是ATSC已经在深圳进行试播,DVB-T在北京进行试播。在建国50周年国庆阅兵式上,中央电视台对两种制式的高清晰系统也都进行了试用。同时,国家广电总局广科院也提出了与ATSC、DVB-T不同的所谓混合调制系统,在一个8MHZ带宽内可以同时实现HDTV固定接收和多媒体移动接收。该系统也在建国50周年大庆期间使用QAM调制成功地实现了HDTV广播,实现移动接收的试验正在进行中。有理由相信数字电视广播已经离我们很近很近了。

DVB-H是为通过地面数字广播网络向手持终端提供多媒体业务所制订的传输标准

DVB-H系统依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手持终端能够稳定地接收广播电视信号

DVB-H可以保证移动终端在移动环境和微功耗条件下接收数字电视节目,从而很好地配合3G网络的应用

数字电视地面广播标准DVB-T于1997年发布。标准的初衷并不面向移动接收,然而,在新加坡和德国试运营中证明DVB-T在高码率传输移动环境中表现非常好(见图1)。但是由于功耗比较大,不适合靠电池供电的移动终端通过地面数字电视广播网络接收数字电视节目。为此,需要在DVB-T的基础上引入新的技术,形成新的适合于移动终端接收地面广播数字电视节目的传输标准。

2002年前后开始研究的DVB-H(早期为DVB-X)标准全称为手持数字视频广播,是DVB(欧洲数字电视广播标准化团体,1993年成立,

由来自35个国家的300多家企业组成)组织为通过地面数字广播网络向便携/手持终端提供多媒体业务所制订的传输标准。DVB-H标准被认为是DVB-T标准的扩展应用。但是和DVB-T相比,DVB-H终端具有更低的功耗,移动接收和抗干扰性能更为优越,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收数字电视信号,而不占用移动通信网络中宝贵的频带资源。实际上,DVB-H标准就是依托目前DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等便携设备能够稳定地接收广播电视信号的标准。

1 对DVB-H标准的商业需求

1.1 广播电视公司的商业需求

近年来广播电视的普及率越来越高,但是这些业务大都是单向的,不能满足广大用户日益增长的个性化多媒体业务要求,为此有必要引入交互式多媒体业务。目前,虽然用户主要通过电视机来接收每天的电视节目,但电视节目的移动接收也开始有市场,因此广播公司需要采取合适的方式来实现电视节目的移动接收。

使用DVB-T进行下行链路广播以及地面回传信道数字视频广播(DVB-RCT)作为反馈回路实现交互式多媒体业务不失为一种好的解决方案,可以很好地实现固定接收,通过选择合适的系统参数,它也适合于移动接收。但是,消费者更倾向于在他们日常使用的3G终端上观看数字电视节目,因此上述方案不能使广播公司吸引大量的消费者。

消费者要求广播公司提供更多的业务,广播公司需要选择合适的传输方式来实现消费者要求的业务,例如电视广播,以及给移动用户提供个性化的多媒体业务,后者在广播网络中很难实现,但是移动通信系统可以满足后者,这就促进了广播网与蜂窝网的融合。

1.2 移动通信运营商的商业需求

3G可以提供多种多样的交互式多媒体业务,运营商需要确保这些业务能够为他们带来收益。Internet使许多消费者习惯获得免费的资源,因此需要创新业务来鼓励消费者使用付费内容。业务的及时性是非常重要的,3G能给用户提供无论何时何地的快速接入。

从2G角度看,3G的容量似乎非常大,但是从个性化多媒体业务角度看,3G网络[1, 2]很快就会变得拥挤不堪。例如,一个3G基站有能力同时给10个用户传输100 kb/s的视频流,但是相同的带宽可以给100个用户传递话音业务。如果3G基站总是有多余的资源,那么传递视频流不会影响3G网络整体的性能,但是实际情况并非如此。例如,3G用户使用的一种新视频业务,该业务可以使他们接收他们喜欢的足球队比赛进球的精彩回放。然而,如果有100万个用户购买同一球队的进球瞬间即时回放业务,情况就大不相同了。假设100 kb/s的视频流长100 s,并在1 000 s内通过10 000个基站进行传递,这样每一个基站必须在16~17分钟内一直以1 Mb/s的速度进行传递,在这段时间内用户需求将耗尽3G网络的全部资源。同样的视

频片断可以通过广播网络传输,只使用该同等频带宽度网络1%的资源就可以为这些移动用户服务,因此是一种更为经济的解决方案。

上面的对比在很多情况下并不极端,它说明了行业发展的需求:广播网络和蜂窝网络的融合。融合后的网络可以提供对称的或非对称的多媒体业务,从而有效利用已有的频谱资源。

2 DVB-H标准

DVB-H标准是建立在DVB和DVB-T两个标准之上的标准。

一个DVB-H系统前端由DVB-H封装器和DVB-H调制器构成,DVB-H封装器负责将IP数据封装成MPEG-2系统传输流(TS),DVB-H调制器负责信道编码和调制;系统终端由DVB-H解调器和DVB-H终端构成,DVB-H解调器负责信道解调、解码,DVB-H终端负责相关业务显示、处理。

(1)系统要求

由于移动终端采用电池供电,为提高电池的使用时间,终端应能够周期地关掉一部分接收电路以节省功耗。

对于漫游的用户,当用户进入新区域后应仍能非常顺利地接收DVB-H业务。

对于室内、室外、步行、乘车等不同的接收方式,传输系统应能保证在各种移动速率下顺利接收DVB-H业务。

在充斥大量脉冲干扰的环境中,传输系统应能采取有效的措施减少该类干扰带来的影响。

DVB-H作为手持终端的通用业务规范,系统应能提供足够的灵活性以满足不同传输带宽和信道带宽应用。

(2)协议层次划分

网络层不在DVB-H标准范围内,标准只实现数据链路层和物理层。

数据链路层采用时间分片技术,用于降低手持终端的平均功耗,便于进行平稳、无缝的业务交换。采用多协议封装(MPE)前向纠错技术,可以提高移动使用中的信噪比(C/N)门限和多普勒性能,同时也能增强抗脉冲干扰的能力。

物理层在DVB-T的基础上进行补充,增加了4K传输模式和深度符号交织等内容,除原有DVB-T的技术特点外,在传输参数信令(TPS)比特中增加了DVB-H信令,用于提高业务发展速度。蜂窝标识在TPS中指示,用于支持移动接收时的快速信号扫描和频率交换。增加4K模式可以适应移动接收特性和单频网蜂窝的大小,提高网络设计、规划的灵活性。2K和4K模式进行深度符号交织,可以进一步提高在移动环境和冲击噪声环境下系统的鲁棒性。

3 关键技术

DVB-H技术是DVB和DVB-T两种技术的融合,但是如果仅仅

依靠上述两种技术是不能完全解决DVB-H所面临的问题的。例如,虽然DVB-T已经被证明在固定、移动、便携接收等方面具有非常出众的性能,但是对于手持设备而言还需要进行进一步的改进,如功耗、蜂窝移动下的性能、网络设计等方面。为此DVB-H增加了新的技术模块,它们主要包括:

(1)时间分片

时间分片技术采用突发方式传送数据,每个突发时间片传送一个业务,在业务传送时间片内该业务将单独占有全部数据带宽,并指出下一个相同业务时间片产生的时刻。这样手持终端能够在指定的时刻接收选定的业务,在业务空闲时间做节能处理,从而降低总的平均功耗。当然,这期间前端发射机是一直工作的,在相同业务的两个时间片之间将会传送其他业务数据,DVB-H信号就是由许多这样的时间片组成的。从接收机的角度而言,接收到的业务数据并非是如传统恒定速率的连续方式,数据以离散的方式间隔到达,因此称之为突发传送。如果解码终端要求数据速率较低但必须是恒定码率,接收机可以对接收到的突发数据首先进行缓冲,然后生成速率不变的数据流。突发带宽一般为固定带宽的10倍左右。突发带宽在固定带宽两倍的情况下功耗就可以节省50%,因此如果带宽为10倍,可以节省90%。

(2)多协议封装-前向纠错

DVB-H标准在数据链路层为IP数据报增加了里德·所罗门(RS)纠错编码,作为MPE的前向纠错编码,校验信息将在指定的前向纠

错(FEC)段中传送,我们称之为多协议封装-前向纠错(MPE-FEC)。MPE-FEC的目标是提高移动信道中的C/N、多普勒性能以及抗脉冲干扰能力。

实验证明即使在非常糟糕的接收环境中,适当地使用MPE-FEC仍可以准确无误地恢复出IP数据。MPE-FEC的数据开销分配非常灵活,在其他传输参数不变的情况下,如果校验开销提高到25%,则MPE-FEC能够使手持终端达到和使用天线分集接收时相同的C/N。DVB-H采用基于IP的数据广播方式。

(3)4K模式和深度符号交织

DVB-H标准在DVB-T原有的2K和8K模式下增加了4K模式,通过协调移动接收性能和单频网规模进一步提高网络设计的灵活性。同时,为进一步提高移动时2K和4K模式的抗脉冲干扰性能,DVB-H标准特为两者引入了深度符号交织技术。在DVB-T系统中,2K模式可比8K模式提供更好的移动接收性能,但是2K模式的符号周期和保护间隔非常短,使得2K模式仅仅适用于小型单频网。新增加的4K模式符号具有较长的周期和保护间隔,能够建造中型单频网,网络设计者能够更好地进行网络优化,提高频谱效率。虽然这种优化不如8K模式的效率高,但是4K模式比8K模式的符号周期短,能够更频繁地进行信道估计,提供一个比8K更好的移动性能。总之,4K模式的性能介于2K和8K模式之间,为覆盖范围、频谱效率和移动接收性能的权衡提供一个额外的选项。

(4)传输参数信令

DVB-H的传输参数信令(TPS)能够为系统供一个鲁棒性好、容易访问的信令机制,能使接收机更快地发现DVB-H业务信号。TPS是一个具有良好鲁棒性的信号,即使在低C/N的条件下,解调器仍能快速将其锁定。DVB-H系统使用两个新的TPS比特来标识时间片和判断可选的MPE-FEC是否存在,另外用DVB-T中已存在的一些共享比特表示4K模式、符号交织深度和蜂窝标识。

4 DVB-H标准的发展趋势

DVB-H将对广播和通信领域产生重大影响。DVB-H业务2005年可以投入使用,预计到2007年手机电视用户将达到1亿,而到2009年这个数字将增长到3亿。DVB-H继承于DVB-T,在DVB-T网络上只要做很小的修改就可以发送符合DVB-H标准的数据流。对采用DVB-T的国家(约有50多个国家,主要集中在欧洲)来说,推广DVB-H的代价相对较低,但是对于采用其他地面数字电视传输标准的国家,这个问题就需要做进一步的探讨。在美国,地面数字电视传输标准ATSC采用8-VSB技术,移动性较差,需要引入新的技术或标准来推广数字电视,目前已有公司采用DVB-H技术布网;在日本,考虑到功耗、移动性等因素,DVB-H甚至有取代日本本土ISDB-T标准的趋势。

DVB-H标准主要是为数字电视广播做准备,因此视频压缩技术是其中极其重要的技术,广播中传统的视频压缩标准,如MPEG-2,

显然不能满足DVB-H的需求。DVB组织的DVB-H成员考查了多种视频压缩格式,其中最为看重的是H.264(即MPEG-4的第10部分),见文献[3,4],目前问题主要集中于H.264的知识产权上;另一个压缩格式是微软的Win Media9,它的性能正在逐步提高。但是过多的选择可能会使移动视频陷于混乱的局面,显然用户不希望面对这些彼此不兼容的平台,预计DVB组织很快将给出最后的答案。在中国,能否在最终确定的数字电视地面传输标准上做微小的改动,推出适合手机等移动便携设备收看数字电视的标准,值得关注。目前在手机等移动便携设备上收看数字电视的实现方案有两种:基于移动通信系统、基于数字地面广播。中国联通和中国移动目前推出的手机电视业务属于前者,实际上是一种移动网络上的流媒体业务。比较而言,后者的优势在于频谱资源丰富,对用户数量敏感度低,视频流传输速度及质量与带宽无关,而前者在这些方面明显处于弱势;后者对突发及应急事件承受能力强,而前者则会争夺资源,一旦用户饱和就不能传送。

DVB-H可以保证移动终端在移动环境和微功耗条件下接收数字电视节目,可以很好地和3G网络配合使用。3G网络除完成它自身的功能外,还充当DVB-H网络的反向控制信道,传输诸如视频点播、电视投票、电视浏览、交互式游戏等业务信令,提供多种个性化的多媒体业务,从而实现两种网络的融合。

数字电视相关技术及应用前景

前 言

数字HDTV是继黑白模拟电视、彩色模拟电视之后的第三代电视,其图象清晰度在水平和垂直方向比现行电视提高一倍以上,象素和信息量比现行电视增加约5倍。采用30英寸以上的16:9宽高比的大屏幕显示器观看,图象细腻逼真,在视觉效果上达到或接近35mm宽银幕电影的水平,并配以多路环绕立体声音响,有很强的临场感。

数字高清晰度电视集成了近年来高速发展的超大规模集成电路、高分辨率大屏幕显示器件、高密度数字记录、计算机多媒体技术、数字通讯与传输技术、数字压缩与解压缩技术、激光技术、数模转换技术等方面的最新成就,使电视生产技术更趋向于数字化、集成化、模块化,是电视技术领域内由模拟技术全面转向数字技术的一场革命。数字高清晰度电视的产业化将带动我国微电子制造业、电信业、电视系统、

计算机软硬件、影视业等行业的发展,从而有力地拉动电子信息及相关产业的腾飞。

一、各类电视有关概念的对比

1.模拟传输与数字传输

数字(Digital)在英语中原本是手指脚趾(Digit)这一名词的形容词形式,表示的"数值"或"离散值"等含意,例如:0,1,……。模拟(Analog)这个词的意思是指相似物或类似物,有"连续的数值"的含意。

由上述词源可知,在传输方式上,模拟传输是把信息作为"连续值"处理;数字传输是把信息作为"数值"处理。即:在振幅调制和频率调制这样的模拟传输方式中,是让载波的振幅和频率等参数与所有发送信息成比例的变化,以此来实现信息的传输;而在数字传输方式中,通常是采用载波,但也会用脉冲串取代载波,并根据脉冲的有无来实现信息的传输。所以在传输中,数字信号比模拟信号抗干扰能力强。

2.模拟电视与数字电视

数字高清晰度电视作为一种全数字电视,实现了电视节目摄、录、播、发、输、收整个系统的数字化,是对现有电视广播系统的整体变革。具体来讲,数字高清晰度电视采用数字摄像机、数字录像机等数字设备完成节目的制作和编排,电视台发射传输和电视接收机接收到的载波信号均为数字载波信号,电视接收机内部则全部采用数字信号处理电路。数字电视与模拟电视的最大区别在于:数字电视载波传输的为数字信号,模拟电视载波传输的为模拟信号。因此,数字电视与传统模拟电视系统和近年来市场上出现的载波仍然传输模拟信号、仅在电

视接收机内部信号处理电路上作部分数字化处理的数字化彩电相比有了质的变化。

描述

模拟电视 数字电视

采用模拟信号传输电视图象、伴音、采用数字信号传输电视图象、伴音、附加功能等信号 附加功能等信号

信源编解码 因为信号数据量不大,所以不存在电视信号数字化后,其信号的数据传信息编码压缩问题 输率很高,可达1Gbit/s,因而必须具有良好的数据编码压缩技术,这是数字电视首要技术难点

复用 无复用器,视频、音频信号分别传将编码后的视频、音频、辅助数据信输 号分别打包后复合成单路串行的比特流,这使数字电视具备了可扩展性、分级性、交互性、与网络互通性的基础

信道编解码调制解调

图象信号按行、场排列,并具有行、因为有压缩及复用,因而传送时的信场同步信号、前后均衡脉冲等,并号不再有场 、行标志及概念。通过对视频信号有补偿处理。调制方式纠错、均衡来提高信号抗干扰能力,一般采用调频或调幅

调制采用QAM、COFDM等新方法。而且同一种调制方法随着技术的改进,传输效率会得到大幅提高,每套节目所占的带宽会越来越小

特点 信号数据量少,技术成熟,价格便信号不易在传输中失真,清晰度高。宜 占用频带窄,例如PAL信道可播放四套标准格式数字电视。数字电视信号可方便地在数字网络中传输,与计算机具有良好接口,或许数字电视今后象计算机一样具有插板结构、可进行系统升级。

3.数字化电视与数字电视

所谓数字化电视就是在现有模拟彩色电视机体制下,充分利用目前数字图象处理和微电子技术的成果,对模拟的彩色电视信号图象进行数字化的处理,以求获得更好的图像重现的效果。从本质上讲,数字化电视仍属于模拟电视的范畴。

数字化电视与数字电视二者之间最大的区别是数字化电视的图象、伴音传输信号仍为模拟信号,数字电视的图象、伴音传输信号是数字信号;二者的共同之处在于在电视接收机的信号处理上都不同程度地采用了数字处理技术。

数字化电视与模拟电视的最大区别是信号处理方法的不同。

图1

显然数字化电视是从模拟电视至数字电视的一种过渡性产品,按一台电视机10年的使用奉命寿命计,在实现全数字电视之前,我国现有的电视至少还要更新一次。与数字电视相比,数字化电视便宜得多;与模拟电视相比,数字化电视有以下优点:(1)采用双倍扫描技术,清除了目前50场/秒扫描带来的大面积闪烁感,对眼睛有益;(2)实现了逐行显示的标准VGA图象,可成为计算机终端显示器;(3)数字降噪技术可减轻画面噪点;(4)数字梳状滤波器使亮色完全分离,消除串扰;(5)易于实现多视窗、画中画、画外画、视窗放大、静止画面等功能。

4.普通电视与高清晰度电视

随着社会的发展,普通电视的显示效果已逐渐不能满足人们的需求,人们追求的目标是增强观看电视的真实感,也就是要使观看者有身临其境的感觉。有关人员研究的结果表明必须增加图象的宽度,使它和人的视觉系统的视场相适应,这就要使图象的总面积增加。可以通过改善普通电视的宽高比和增加屏幕尺寸来实现这个目标,但仅采取这个措施是不行的,这样会使观看者感到图象的分解力下降,并使行的结构明显。要避免这一点,就需采

用有能产生更多扫描线的新的扫描格式,同时在模拟电视情况下,传输带宽就要增加以便容纳更高的水平分辨力和更宽的图象格式。

一般来说,高清晰度电视系统的设计要求是需达到观看者在图象高度的大约3倍距离处能看到或接近看到图象清楚细节的程度,使视力正常的观看者具有看原始景物的感觉,图象质量的视觉效果可达到或接近35mm宽银幕电影的水平。高清晰度电视具有以下鲜明的特点:(1)图象清晰度在水平和垂直方向上均是普通电视的2倍以上。(2)扩大了彩色重显范围,使色彩更加逼真,还原效果好。(3)画面宽高比从普通电视的4:3变为16:9,符合人眼的视觉特性。(4)具有高保真多声道环绕立体声。(5)具有大屏幕显示器。

从高清晰度电视的发展过程来看,高清晰度电视有模拟高清晰度电视及数字高清晰度电视。但目前全数字化是各国电视发展的统一趋势,因而现在一般所说的HDTV应该特指数字高清晰度电视。

5.数字SDTV与数字HDTV

数字电视(Digital TV)包括数字HDTV、数字SDTV和数字LDTV三种。三者区别主要在于图像质量和信道传输所占带宽的不同。从视觉效果来看,数字 HDTV(1000线以上)为高清晰度电视(High Definition Television)的简称,图象质量可达到或接近35mm宽银幕电影的水平;SDTV(500-600线)即标准清晰度电视,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV(200-300线)即普通清晰度电视,主要是对应现有VCD的分辨率量级。因为电视全数字化是今后的趋势,所以目前提HDTV以及SDTV、LDTV如无特别说明,均指全数字体制。

采用MPEG-1标准的VCD将逐渐被采用MPEG-2标准的DVD所替代,因而LDTV将被逐渐淘汰。SDTV与HDTV&9;均符合MPEG-2标准。虽然数字高清晰度电视是世界电视发展的趋势,但对于我国来说,在HDTV普及之前,至少还有10年以上的过渡期,这为

SDTV的应用提供了条件。数字SDTV的接受将主要通过普通电视上增加机顶盒的方式来实现,这将使用户充分利用现已购买的普通模拟电视的资源。

数字SDTV与普通模拟电视的图象显示行数一样,那么为什么还用机顶盒来接收SDTV呢?原因是数字信号的抗干扰能力强,标准格式(SDTV)的数字电视机提供的影像、声音质量均超过现有电视机的水平。用户对目前的模拟电视显示效果不满意,一个重要的原因不是显示器分辨率不够,而是模拟信号抗干扰能力差,造成了雪花、噪声、重影、闪烁等不良后果。应用数字SDTV可以最大限度地发挥现有电视的显示效果。此外,虽然数字SDTV与普通模拟电视的图象显示行数一样,但可以带来多样性的服务,如交互式电视教育、视频点播等,为"三机合一"、"三网融合"提供了技术上的可能性。

概括起来说,模拟电视是目前常用电视,数字化电视及数字SDTV是过渡性产品,数字HDTV是今后的发展方向。

二、数字电视相关技术简介

1.数字电视广播流程及实现手段

数字电视广播,其信号流程包括制作(编辑)、信号处理、广播(传输)和接收(显示)几个过程,如图2所示

图2

目前用于数字节目制作的手段主要有:数字摄像机和数字照像相机、计算机、数字编辑机、数字字幕机;用于数字信号处理的手段有:数字信号处理技术(DSP)、压缩、解压、缩放等技术;用于传输的手段有:地面广播传输、有线电视(或光缆)传输、卫星广播(DSS)

及宽带综合业务网(ISDN)、DVD等;用于接受显示的手段有:阴极射线管显示器(CRT)、液晶显示器、等离子体显示器、投影显示(包括前投、背投)等。

2.数字电视关键技术

以上所述的各种手段中包括了数字电视系统中各种主要的技术,全数字高清淅度电视对各种技术要求更高。原国家科委所组织的HDTV总体组在攻关过程中涉及九个单位,包括七个专项课题。这七个专项课题虽然不完全包括数字电视广播流程中的所有技术,但涉及了所有关键技术。我国于1998年9月在北京试验的系统样机框图如图3

图3

在这七个专项课题中信源编解码、复用、信道编解码及调制解调是HDTV的技术核心。3.数字电视的信源编解码技术

信源编解码技术包括视频压缩编解码技术及音频压缩编解码技术。在我国的HDTV功能样机研制中,视频压缩编解码技术由上海交大、天津大学、电子科学研究院共同完成;音频压缩编解码技术由电子部三所完成。

3.1视频编解码技术是&9;HDTV的技术难点

数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中 ,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。

视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。视频编码计算时主要有以下客观依据:(1)图像时间的相关性。视频信号由连续图像组成,相邻图像有很多相关性,找出这些相关性就可减少信息量。(2)图像空间的相关性。例如图像中有一大块单一颜色,那么不必把所有像素存贮。(3)人眼的视觉特性。人眼对原始图像各处失真敏感度不同,对不敏感的无关紧要的信息给予较大的失真处理,即使这些信息全部丢失了,人眼也可能觉察不到;相反,对人眼比较敏感的信息,则尽可能减少其失真。(4)事件间的统计特性。事件发生的概率越小,则其熵值越大,表示信息量越大,需分配较长的码字;反之,发生的概率越大,则其熵值越小,只需分配较短的码字。

3.2音频编解码技术

与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。

音频信号的压缩编码主要利用了人耳的听觉特性。(1)听觉的掩蔽效应。在人的听觉上,一个声音的存在掩蔽了另一个声音的存在,掩蔽效应是一个较为复杂的心理和生理现象,包括人耳的频域掩蔽效应和时域掩蔽效应。(2)人耳对声音的方向特性。对于2KHZ以上的高频声音信号,人耳很难判断其方向性,因而立体声广播的高频部分不必重复存贮。3.3信源编解码的相关标准

国际上对数字图像编码曾制订了三种标准,主要用于电视会议的H.261,主要用于静止图像的JPMG标准,主要用于连续图像的MPEG标准。

在HDTV视频压缩编解码标准方面,美国、欧洲、日本设有分歧,都采用了MPEG-2标准。MPEG(Moving Picture Expert Group)意思是"运动图像专家组",压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。

在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比公司(Dolby)的AC-3方案,MPEG-2为备用方案。

对于我国来说,今后信源编解码标准也会与美国、欧洲、日本一样采用MPEG-2标准。3.4 MPEG的相关应用

MPEG-1已经广泛地用于VCD和CD-ROM等光盘产品中。MPEG-2不仅已被国际上公认为HDTV信源压缩编码的标准,而且在许多方面得到了实际的应用,例如DVD就是应用了MPEG-2标准。在国外MPEG-2解码器已做成芯片,而目前我国HDTV关键芯片仍需进口,这将制约我国HDTV的进一步发展及产业化。

4.数字电视的复用系统

数字电视的复用系统是HDTV的关键部分之一。从发送端信息的流向来看,它将视频、音频、辅助数据等编码器送来的数据比特流,经处理复合成单路串行的比特流,送给信道编码及调制。接受端与此过程正好相反,如图所示。我国的HDTV功能样机,复用器部分由原广电部广播科学研究院研制开发。

4.1数据的打包功能提供了网络通信的接口

模拟电视系统不存在复用器。在数字电视中,复用器把音频、视频、辅助数据的码流通过一个打包器打包(这是通俗的说法,其实是数据分组),然后再复合成单路。目前网络通信的数据都是按一定格式打包传输的。HDTV数据的打包将使其具备了可扩展性、分级性、

交互性的基础。

4.2数字电视的有条件接受

付费电视是现在和将来电视发展的一个方向。复用器可对打包的节目信息进行加扰,使其随机化,接收机具有密钥才能解扰。

4.3复用器的相关标准

在HDTV复用传输标准方面,美国、欧洲、日本也没有分歧,都采用了MPEG-2标准。美国已有了MPEG-2解复用的专用芯片。我国恐怕也会采用MPEG-2作为复用传输的标准。

HDTV数据包长度是188个字节,正好是ATM信元的整数倍。今后以光纤为传输介质,以ATM为信息传输模式的宽带综合业务数字网极有可能成为未来"信息高速公路"的主体设施。可用4个ATM信元来完整地传送一个HDTV传送包,因而可达到HDTV与ATM的方便接口。

5.数字电视的信道编解码及调制解调

数字电视信道编解码及调制解调的目的是通过纠错编码、网格编码、均衡等技术提高信号的抗干扰能力,通过调制把传输信号放在载波或脉冲串上,为发射做好准备。我们目前所说的各国数字电视的制式,标准不能统一,主要是指各国在该方面的不同,具体包括纠错、均衡等技术的不同,带宽的不同,尤其是调制方式的不同。

5.1数字传输的常用调制方式

正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。

键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。

残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。

编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。

5.2美国数字电视的标准

美国地面电视广播迄今仍占其电视业务的一半以上,因此,美国在发展高清晰度电视时首先考虑的是如何通过地面广播网进行传播,并提出了以数字高清晰度电视为基础的标准-ATSC。美国HDTV地面广播频道的带宽为6MHZ,调制采用8VSB。预计美国的卫星广播电视会采用QPSK调制,电缆电视会采用QAM或VSB调制。我国的HDTV样机由浙江大学承担了8VSB的信道编解码及调制解调部分的研制工作。

5.3欧洲数字电视的标准

从1995年起,欧洲陆续发布了数字电视地面广播(DVB-T)、数字电视卫星广播(DVB-S)、数字电视有线广播(DVB-C)的标准。欧洲数字电视首先考虑的是卫星信道,采用QPSK调制。欧洲地面广播数字电视采用COFDM调制,8M带宽。欧洲电缆数字电视采用QAM调制。我国的HDTV样机,原电子部飞虹公司承担了COFDM制式的信道编解码及调制解调部分的研制工作。

5.4日本数字电视的标准

日本数字电视首先考虑的是卫星信道,采用QPSK调制。并在1999年发布了数字电视的标准--ISDB。

各国数字电视标准对比

1

1

美国标准ATSC

地面 卫星 有线

欧洲标准DVB

地面 卫星有线日本标准ISDB

地面

分段卫星有线QPSKQAM调8VSB/16VSB QPSK QAM 2k/8kCOFDMQPSKQAM

制方式

视频编码方式

音频编码方式

复用方式

三、数字电视前景分析

MPEG-2 MPEG-2

AC-3 MPEG-2

MPEG-2 MPEG-2

COFDM

MPEG-2

MPEG-2

MPEG-2

1. 政府应该在数字电视推广中给予巨大支持

国外公司意识到数字高清晰度电视技术复杂度高,产业规模大,竞争风险大,在操作层面上采取了战略合作的方式。如美国早期的"大联盟",英国的"数字电视集团"等。这些集团在完成联合研究开发的同时,说服政府和广播者对其支持,同时协调相关产业(计算机和通信等)共同发展的关系。总之,可认为国际上发达国家的产业内部已形成保护其发展的基本规则,使发达国家的电视产业可以从容应对数字高清晰度电视这场革命性的产业变革。

我国的主管部门已认识到数字化进程中我们技术准备的不足。但由于数字电视不仅技术复杂度高,而且推动产业发展的相关因素多,仅靠企业自主开发有困难。企业普遍认为政府应有效地协调资源,将企业与科研单位组织起来,开发自主知识产权,以推动产业发展。2.数字SDTV、数模兼容电视机将首先走向市场

据有关资料统计,目前国内电视机用户已达3.4亿台,保守的估计,如果我国以20年时间完成向数字高清晰度电视的过渡,替换市场将形成平均年销售约1500万台的市场规模,可见市场十分庞大。电视接收机数字化过程中,对于我国来说主要问题为数字电视市场最初的主导产品是什么。

高清晰度数字/模拟兼容电视机的市场目前已启动。目前我国数字电视标准没有制定,电视台也没有发射数字电视信号,因而现在用户不可能购买数字高清晰度电视机。但数字高清晰度电视是未来的发展方向,这一点无可质疑。对于用户来说,如果现在购买电视机,肯定要考虑几年后能不能用,目前市场上销售的模拟电视机肯定不能接收数字高清晰度电视节目。为充分考虑用户今后的利益,牡丹、TCL、康佳等目前推出了高清晰度数字/模拟兼容电视机,该型电视机可接收目前的模拟电视信号,并采用了数字处理技术,使电视信号更加细腻逼真;而且该型电视机保留了HDTV的信号接口,今后当数字电视信号发

2024年1月13日发(作者:迮昕昕)

数字电视

最早诞生在德国,上个世纪90年代初,德国的ITT公司推出了世界上第一台数字彩色电视机,一时惊动很大,但这台数字彩色电视机没有多大优势,因为它成本很高。成本高的原因是它使用了帧存储器,当时集成电路的生产技术与今天相比还很落后,电路密度很低,所以成本很高。这台数字彩色电视机在功能上虽然很简单,但在技术上已达到了非常高的水平,如,用数字滤波技术进行Y/C分离和场闪烁处理。ITT公司大约只生产了3000台这样的电视机后,就再也没有生产。由于当时人们都想象不到,电视技术能发展到今天这么快,由模拟信号一下子转变成全数字信号,因此人们都称它是世界上第一台数字电视机。

在此基础上,后来人们发明了画中画电视,尔后又发明了插行电视机,或叫改善清晰度电视机IDTV(Improved-Definition

Television),也就是现在的倍行、倍场等电视机之类。这些电视机都是只对视频信号做一些很简单的数字技术处理,图像质量并没有明显提高,但当时人们都认为是一种很了不起的数字电视技术,我们国家也把这种电视机定义为数字电视机,并制订了数字电视机标准,这个标准一直沿用到2000年。因此,国内很多电视机厂家都把自己的插行电视机说成是数字电视机——DIGITAL TV。

其实,那时候国外的全数字信号电视机早已诞生,并且于上个世纪90年代就已开始进行数字信号广播,如早期的MAC,MUSE,和

尔后的DVB-S,DVB-C,DVB-T,HDTV等。由于国内新的数字电视机标准迟迟未定,而旧的又不作废,因此国内的各种DIGITAL TV概念满天飞,如,某些公司的数码电视等。

数字电视的发展是一步一步走过来的,如果追索起源头,要追索到60多年前的付立叶先生,他的付立叶变换理论奠定了数字电视技术的基础,继他之后,还有一大堆应用科学家在默默地耕耘了五十多年。MPEG信源编码技术标准的诞生,标志着数字电视技术已经基本成熟。而MPEG信源编码技术中的17个重要专利技术,就有两个发生在1950年,分别为:哈夫曼编码(Huffmancoging),差动脉冲编码调制(DPCM)。后面的15个重要技术基本上也都是按均匀密度分布在时间轴上,可见工作之艰辛,并不是某人灵感一来就能发明成功的。这些技术的应用都是为了一个目的,就是使数字信号能够在各种线路中进行传输。

数字电视的技术基础是模数转换ADC(Analog-to-Digital

Converter)和编码(Coding)技术。编码技术现在已经成为一门很热门的科学技术,它是数学和物理学及其它科学交融在一起的,一个崭新领域中的应用技术。在全数字电视技术中,有两个很关键的编码技术——信源编码和信道编码。信源编码的主要任务是解决图像信号的压缩和保存问题;信道编码的主要任务是解决图像信号的传输问题。

ADC与二进制编码

ADC模数转换也叫取样,是把模拟信号转换成数字信号的必要过程。我们知道模拟信号是由无数个连续的点来组成,任何电路都无法对无数个点的信息进行如:插行、压缩等处理,因此只能从无数个点中抽出一些有代表性的点进行处理,这种方法就叫取样,或叫A/D(模拟/数字)转换。取样可以比喻成把图片通过一个丝网后再印到报纸上(这叫丝网印刷),报纸上的图片就变成由很多小点点组成,这些小点点就是从图片中无数个点取样后得来的。经过取样得到的点,越密和越细,图像就越逼真。

对视频信号取样也存在这样的道理,取样频率越高,相当于抽样的点越多,数据就越真实,但数据占的内存也多。除了点的密度对图像质量有影响外,每个点所表示数值的精度也会影响图像质量,这个叫量化,即分层。层分得越多,精度就越高,量化精度单位用bit(二进制的位)表示,即多少bit编码,或叫二进制编码。

目前对视频信号进行取样时,一般取样脉冲频率都是取视频最高频率的3倍,和用8bit进行量化编码,即把视频信号分成256层(也叫阶梯)。图1是对视频信号进行取样与二进制编码的原理图。

如果用上述方法对PAL制图像信号进行处理,那么对于6MHz的亮度信号取样脉冲频率应为18MHz,但为了减少干扰,一般都取彩色副载波频率的4倍,即17.72MHz为取样频率。为此求得传送亮度信号的码率为142Mbit/S,另外还有两个色差信号R-Y和B-Y也要传送,如果按3MHz带宽来计算,两个色差信号的码率为144Mbit/S,这样

全电视信号的码率为286Mbit/S,这个还没有把传输过程中的帧同步脉冲计算进去,如果把帧同步脉冲计算进去,码率还需要提高2-10%,即超过300Mbit/S。这么高的码率在一般线路中根本就无法传送,况且还有伴音信号也要传送呢。

对于HDTV高清晰度电视机,我国的HDTV高清晰度电视机视频最高带宽是64MHz,约为PAL制视频带宽的11倍,如果把它换算成码率就是3200Mbit/S,这么高的码率,任何线路都无法传输,目前用有线电视线路传输数字信号,最高码率只能达到30Mbit/S左右。因此,为了能够传输数字电视信号,数字电视信号本身也要进行压缩,要么数字电视节目广播就无法实现。

信源编码

字、符号、图形、图像、音频、视频、动画等各种数据本身的编码通常称为信源编码,信源编码标准是信息领域的基础性标准。无论是数字电视、激光视盘机,还是多媒体通信和各种视听消费电子产品,都需要音视频信源编码这个基础性标准。

大家用电脑打字一定很熟悉,当你用WORD编辑软件把文章(DOC文件)写完,存好盘后,再用PCTOOLS工具软件把你的DOC文件打开,你一定能看到你想象不到的东西,内容全是一些16进制的数字,这些数字叫代码,它与文章中的字符一一对应。现在我们换一种方法,用小画板软件来写同样内容的文章。你又会发现,用小画板软

件写出来的BMP文件,占的内存(文件容量)是DOC文件的好几十倍,你知道这是为什么?原来WORD编辑软件使用的是字库和代码技术,而小画板软件使用的是点阵技术,即文字是由一些与坐标位置决定的点来组成,没有使用字库,因此,两者在工作效率上相差几十倍。

目前模拟信号电视机图像信号处理技术就很类似小画板软件使用的点阵技术,而全数字电视机的图像信号处理技术就很类似WORD编辑软件使用的字库和代码技术。实际上这种代码传输技术在图文电视中很早就已用过,在图文电视机中一般都安装有一个带有图文字库的译码器,对方发送图文信号的时候只需发送图文代码信息,这样可以大大地提高数据传输效率。

对于电视机,显示内容是活动图像信息,它哪来的“字库”或“图库”呢?这个就是电视图像特有的“相关性”技术问题。原来在电视图像信号中,90%以上的图像信息是互相相关的,我们在模拟电视机中使用的Y/C(亮度信号/彩色信号)分离技术,就是利用两行图像信号的相关性,来进行Y/C分离。如果它们之间内容不相关,Y/C信号则无法进行分离。全数字信号电视也一样,如果图像内容不相关,则图像信号压缩也就要免谈。如果图像内容有相关性,那么上一幅图像的内容就相当于下一幅图像的“图形库”,或一幅图像中的某部分就是另一部分的“图形库”,因此,下一幅图像或图像中某一个与另一个相关的部分,在发送信号时,只需发送一个“代码”,而传送一个

“代码”要比送一个“图形库”效率高很多,显示时也只需把内容从“图形库”中取出即可,这就是MPEG图像压缩的原理。

利用电视信号的相关性,可以进行图像信号压缩,这个原理大家已经明白,但要找出图像相关性的内容来,那就不是一件很容易的事情,这个技术真的是太复杂了。为了容易理解电视图像的相关性,我们不妨设想做一些试验,把图像平均分成几大块,然后每一块,每一块的进行比较,如果有相同的,我们就定义它们有相关性;如果没有相同的,我们继续细分下去,把每大块又分成几小块,一直比较下去,最后会发现,块分得越细,相同块的数目就越多,但分得太细需要的代码也增多,所以并不是分得越细越好。我们在看VCD的时候经常发现,如果VCD读光盘数据出错,就会在图像中看到“马赛克”,这些“马赛克”就是图像分区时的最小单位,或把数码相片进行放大,也可以看到类似“马赛克”的小区,这就是数码图像的最小“图形库”,每个小“图形库”都要对应一个“代码”。

在单幅图像中找出相关性的几率并不是很大的,所以对单幅图像的压缩率并不很大,这个通过观察数码相片的容量就很容易明白,如果把寻找相关性的范围扩大到两幅图像,你就会发现,具有相关性的内容太多了,这是因为运动物体对于人的眼睛感觉器官来说,是很慢的,如果很快,人的眼睛就看不清楚,看不清楚的东西就不能算成图像。电视机每秒钟向人们演示图像是50次或以上(PAL为50次,NTSC为60次),如果你的眼睛是个摄影机,你也无法感觉到图像的微小

变化,这就表明相邻两幅图像的相关性非常大,而图像之间相隔距离较远时,其图像的相关性才逐步减小,并且这种相关性很强的图像变化时,一般都是有规律的,也就是说每一幅图像的变化是可以预测的。实际上在上一幅图像的基础上乘以一个带有方向的系数,即左、右、上、下移动,就可以得到一幅运动图像的新图像。这里顺便指出,上面说到的一幅图像,并不是特指人们从电视机显示屏上看到的整幅画面,而是可大可小的一部分。

利用图像的可预测性,可以大大的提高“图形库”的利用律,即很多幅图像都可以公用一个“图形库”。MPEG在传送图像时就是这样,对于高速变化的图像,如果时间来得及(即码率不是很高时),就传送新的内容来显示,如果来不及(即码率很高时)就用“图形库”中的内容来顶替(即预测),反正高速运动的图像人们也看不清。例如:MPEG在传送5幅图像时,可能只传其中的3幅(时间来得及时),也可能只传两幅(时间来不及时),具体过程是,先传第1和第5幅,然后时间来得及就传第3幅,时间来不及就插第3幅(根据1和5预测3),最后再插第2幅(根据1和3预测2),和第4幅(根据3和5预测4)。

上面我们只是从感性上和很肤浅的对图像压缩的原理进行了分析,如果我们把上面的分析内容移到数学领域,那么我们将要面对非常多的西格玛“∑”(求和)和矩阵符号。顺便介绍一下,对数字电视图像压缩处理最出名的理论是:DCT(Discrete Cosine Transform)离散余

弦变换(付立叶变换),和DPCM差动脉冲编码调制,还有哈夫曼编码(Huffmancoging)。

图像信号的压缩过程也是数字电路(或计算机)对数字信号的处理过程,计算机虽然很聪明,但它只会做加法运算。其它的减法、乘法、除法还有函数运算,计算机都是把它们转换成加法进行运算。付立叶先生60年前可能就预见到了我们要对数字信号进行处理,所以他发明了付立叶变换。其原理是:一个周期函数可以展开成无数个正弦或余弦函数之和,函数的周期越短其(级数)收敛就越快,周期越长其收敛就越慢。对于上面我们分析的图像信号,全部都可以看成是周期函数信号。相关性很强的图像信号可看成是短周期信号,相关性很弱的图像信号可看成是长周期信号。因此,经过付立叶变换后的信号,只需对展开成级数的各项系数(一般只取前几项)进行处理和传送。

DPCM差动脉冲编码调制也有人叫预测编码,它的定义是:在线性预测编码中,首先用过去的若干像素值对当前像素值进行线性预测,然后将其差值进行PCM编码传送,接收端将此差值积分而再生图像;哈夫曼编码也叫可变长编码,它对出现概率大的差值信号编以短码,对概率小的差值信号编以长码,哈夫曼编码可获得最小的平均码长。

在数字电视技术中,除了图像需要压缩以外,声音也要压缩,但声音压缩要比图像压缩简单很多,因为声音的信息量比起图像的信息量来,少得可怜。人的耳朵能听到声音的频率范围是20Hz到20kHz,如果我们把20Hz到20kHz按照一定的频带宽度分成很多个频率通

道,用来对声音进行过滤和处理,就能对声音信号进行压缩。这个频率通道就相当于,歌曲中的谐音:多、来、米、发、梭、拉、妻、多(12345671)。

声音压缩的原理也是利用“字库”的概念,在信号的译码端,安装有很多个与信号发送编码端对应的频率发生器(如12345671谐音器)。另外声音还有一个屏蔽效应,就是,人的耳朵对某个频率范围的声音灵敏度特别高(600Hz附近),对一些频率却很低(低频和高频);还有,如果有几种声音同时存在,声音大的内容很容易听到,而声音很小的东西要非常注意才能听到(对数特性)。利用这些特点,在编码的时候就可以分长码和短码来对不同的内容进行编码,对主要声音内容用长码,对次要内容用短码——这叫有所为和有所不为。经过多种方法对声音信号压缩处理后,声音信号传送的码率可变得非常低,即压缩比非常大。

声音信号压缩的原理可以比喻成,某人想听某钢琴家弹钢琴,一种方法是把钢琴家连同钢琴都请到家来;另一种方法是,只请钢琴家而用自己的钢琴进行演奏;再有一种方法是,只需对方把曲谱寄过来,而用自己的钢琴和家人来演奏,显然是最后一种方法最简便。

在全数字信号电视系统中,图像信号和音频号之所以能压缩,并不完全是信源编码端的功劳,接收端译码器的功劳也非常大,没有译码器强大的数据处理功能,图像信号和音频信号的压缩是不可能的。其实从信源端发送给接收端,真正属于图像内容的信息并不多,大部分都

是“补丁”(差值),和“指令”(代码),译码器通过对这些数据进行加工,不断地更新自己的“数据库”(图形库),然后重新编码输出,最后进行D/A转换,输出音视频。

目前图像压缩标准有MPEG1、MPEG2、MPEG4、MPEG7,根据用途的不同压缩方法和码率也不一样。MPEG1用于VCD,清晰度很低,但码率也很低;MPEG2用于SDTV或HDTV,清晰度很高,但码率也很高;MPEG4本来准备用于可视电话,它压缩比很高,码率也很低,活动图像质量比MPEG2差,但它可以在电脑上进行标清节目显示,所以有人准备把它进行升级来替代MPEG2或更高版本(JVT);MPEG7用于图书馆档案查询,压缩比非常高,码率很低。声音压缩标准现在较常用的有杜比和AC3两种。

我们国家目前也想自己搞一套音视频压缩编码标准AVS(Audio Video

coding Standard),AVS1.0的标准准备与新的国际音视频标准JVT(Joint

Video Team)兼容,性能与MPEG4的升级版本差不多,这个AVS标准是否成功,取决于国内IC生产厂家愿不愿意跟进,和政府扶植的力度。

信道编码

数字信号传输和模拟信号传输是不一样的,模拟信号一般通过高频调制以后就可以通过线路进行传输,接收端对输入信号进行解调后,就可以输出模拟信号;而数字信号传输就不同了,数字信号不但需要调

制,调制之前还要进行编码,接收端对输入信号首先进行解调,然后再解码。经过编码的信号一般含有同步头,用户码、数据码、自由码、结束码等,这叫做一帧编码,数字信号就是一帧,一帧地进行传送的,如MPEG数字信号,每帧为188bit。对数字信号解码也必须按顺序,一帧,一帧地进行。

同步头一般人都很容易理解,它表示一帧编码信号的开始;用户码用来表示这帧内容的属性,即这一帧东西是谁的,在数码通信中一般都有多个用户同时在进行通信,编码时就按用户分帧来传输信号,这样对解码比较简单,如果只有一个用户,可以不需要用户码;数据码是需要传输的最主要内容,在属性不容易出错的情况下,它可以有多组数据码,每组分别表示一个信号分量;自由码一般是作为备用的,用来加密或其它用途;结束码表示这一帧内容传输已经结束,告诉译码器做好下一帧信号解码的准备。

模拟信号需要同时传输多路信号时(或多个信号分量),一般是采用正交调制或复合调制,如PAL电视信号:亮度信号,6MHz(标称为6MHz,实际只有4.15MHz),对38MHz载波调幅;两个色差Y-R和Y-B,1.5MHz,对4.43MHz付载波正交调幅;伴音,500KHz,对6.5MHz付载波调频。它占用的频率资源,除了载波频率外还要把频率带宽算上,因为载波是可选择的,所以一般都只说频率带宽,PAL电视信号的带宽为8MHz(6 + 1.5 + 0.5)。PAL电视信号的4个模拟分量在传输时,属于同时传输。

而数字信号需要同时传输多路信号时(或多个信号分量),一般是采用串行编码,即一帧编码中可以有多组数据码(代表多个信号分量),如数据码1代表亮度信号,数据码2表示色差信号Y-R,数据码3表示色差信号Y-B,等等,如一帧容量有限,可以加用户码分帧来传输多个信号分量。数字信号调制要比模拟信号简单很多,一般用QPSK(正交调相)或QAM(正交调相又调幅)调制,也可以用FSK(键控调频)或ASK(键控调幅)调制,很少用AM(调幅)和FM(调频)调制。因为前者调制效率非常高,特别是QAM调制,256QAM调制的频谱利用率是8bit/Hz,还有一种多载波调制COFDM,其频谱利用率更高,可达16bit/Hz。数字信号传输占用的频率资源,除了载波频率带宽以外,还有一个传输码率。例如利用有线电视信号传输网络6MHz带宽可以传输两路标清电视信号,最高码率达36Mbit/S(64QAM)。

数码通信的好处是,可以把多路信号,或多个用户信号同时挤在一条线路上,只要这条线路传输码率足够高。这种情况叫打包,或就信号复用,解码时,则需要先拆包(也叫解复用)后才能解码。打包的原理就是上面的帧编码原理,不同传输系统,帧编码的长度是不一样的,因此在进行多种信号传输过程中,经常要拆包和重新打包。

数字彩色信号在传输过程中,一般不是按电视机的扫描顺序来传送信号的,这是因为信号在传输过程中可能会出错。当信号在传输过程中出错时,如果信号按顺序传送,则电视画面上会集中在某个地方出现

一大片马赛克,使人看起来非常不爽;如果信号不是按顺序传送,而是按某种分布规律来传送,同样出错时,马赛克会被均匀地散布在整个画面上,使人看起来感到还可以接受。这种错位传输信号的方法称为RS编码或卷积,这是也是数字电视信道编码中的一项重要技术。

SDTV和HDTV

SDTV和HDTV人们分别把它们叫标准清晰度数字电视和高清晰度数字电视,SDTV电视节目很早在欧洲就开始广播,如,DVB-S(卫星数字视频广播)、DVB-C(有线数字视频广播)、DVB-T(地面数字视频广播),这些都是属于标准清晰度数字电视,目前SDTV电视图像分辨率标准为:576×720 4:3 ,即扫描参数与现在的模拟电视一样,但水平清晰度提高了一倍多。HDTV的概念第一个提出来,和第一个进行节目广播的是日本,但它的HDTV技术标准(MUSE)没有人跟风。最后美国于1995年又推出一种新的HDTV标准(ATSC),并于1996年开始正式广播。此事一时引起很大的轰动,连日本已经开始广播了两年的MUSE-HDTV节目也被迫停止广播,准备跟风美国。

目前SDTV和HDTV都是采用MPEG2图像压缩标准,但由于MPEG-LA公司提出要对MPEG标准的使用者收费,加上HDTV的传输码率要比SDTV高好几倍,使得HDTV-T(地面广播)在传输技术上遇到了较大的难度,一时人们对HDTV的热情开始冷却了下来。

我国政府对实现SDTV和HDTV数字电视广播的热情很高,并制定了未来5年和15年数字电视发展的时间表,但我国的SDTV和HDTV标准迟迟没有定下来。

从技术上考虑,SDTV和HDTV数字电视的显示格式一共有18种(HDTV 6种、SDTV 12种),其中14种采用逐行扫描方式。

(1) HDTV,1920象素(H)×1080象素(V),宽高比16:9,帧频60Hz/隔行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(2) HDTV,1280×720,16:9宽高比,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(3) SDTV,704×480,16:9或4:3宽高比,帧频60Hz/隔行扫描,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

(4) SDTV,640×480,4:3宽高比,帧频60Hz/隔行扫描,帧频60Hz/逐行扫描,帧频30Hz/逐行扫描,帧频24Hz/逐行扫描。

在6种HDTV格式中,因为1920×1080格式不适合在6MHz信道内以60帧/秒进行逐行扫描,故以隔行扫描取代之。SDTV的640×480图像格式与计算机的VGA格式相同,保证了与计算机的适用性。在12种SDTV格式中,有9种采用逐行扫描,保留3种为隔行扫描方式以适应现有的视频系统。

我们国家可能采用的标准:

(1) SDTV标准 576×720 4:3

(2) SDTV标准 576×1024 16:9

(3) SDTV标准 540×720 4:3

(4) SDTV标准 540×960 16:9

(5) HDTV标准 1080×1920 16:9

另外,还有三种信号传输标准格式:

(1) ATSC标准

ATSC数字电视标准由四个分离的层级组成,层级之间有清晰的界面。最高为图像层,确定图像的形式,包括象素阵列、幅型比和帧频。接着是图像压缩层,采用MPEG-2压缩标准。再下来是系统复用层,特定的数据被纳入不同的压缩包中,采用MPEG-2压缩标准。最后是传输层,确定数据传输的调制和信道编码方案。对于地面广播系统,采用Zenith公司开发的8-VSB传输模式,在6MHz地面广播频道上可实现19.3Mb/s的传输速率。该标准也包含适合有线电视系统高数据率的16-VSB传输模式,可在6MHz有线电视信道中实现38.6Mb/s的传输速率。

(2) DVB标准

DVB传输系统涉及卫星、有线电视、地面、SMATV、MMDS 等所有传输媒体。它们对应的DVB标准为:DVB-S、DVB-C、DVB-T、DVB-SMATV、DVB-MS和DVB-MC。

DVB-S(ETS 300 421)

为数字卫星广播系统标准。卫星传输具有覆盖面广、节目容量大等特点。数据流的调制采用四相相移键控调制(QPSK)方式,工作频率为11/12GHz。在使用MPEG-2MP@ML格式时,用户端若达到CCIR 601演播室质量,码率为9Mb/s;达到PAL质量,码率为5Mb/s。一个54MHz转发器传送速率可达68Mb/s,可用于多套节目的复用。DVB-S标准几乎为所有的卫星广播数字电视系统所采用。我国也选用了DVB-S标准。

DVB-C(ETS 300 429)

为数字有线电视广播系统标准。它具有16、32、64QAM(正交调幅)三种调制方式,工作频率在10GHz以下。采用64QAM时,一个PAL通道的传送码率为41.34Mb/s,可用于多套节目的复用。系统前端可从卫星和地面发射获得信号,在终端需要电缆机顶盒。

DVB-T(ETS 300 744)

为数字地面电视广播系统标准。这是最复杂的DVB传输系统。地面数字电视发射的传输容量,理论上与有线电视系统相当,本地区覆盖

好。采用编码正交频分复用(COFDM)调制方式,在8MHz带宽内能传送4套电视节目,传输质量高;但其接收费用高。

DVB-SMATV(ETS 300 473)

为数字卫星共用天线电视(SMATV)广播系统标准。它是在DVB-S和DVB-C基础上制定的。

DVB-MS(ETS 300 748)

为高于10GHz的数字广播MMDS分配系统标准。

它基于DVB-S,使携带大量节目的微波信号直接入户。用DVB-S接收机配上一个MMDS频率变换器,就可接收DVB-MS信号。

DVB-MC(ETS 300 749)

为低于10GHz的数字广播MMDS分配系统标准。

它基于DVB-C,使携带大量节目的微波信号直接入户。用DVB-C接收机配上一个MMDS频率变换器,就可接收DVB-MC信号。

(3) ISDB标准

ISDB(综合业务数字广播)是新型的多媒体广播业务,它系统地综合了各项数字内容,每一项内容可以包括从LDTV到HDTV的多节目视频、多节目音频、图形、文本等。如今大部分的数字内容均被编码到MPEG-2传输流格式并被广泛传输。由于ISDB包含了不同的业

务,其传输系统必然要涵盖各种业务不同的需求,例如HDTV需要一个大的传输容量,而数据业务需要极高的业务可靠性,诸如条件接入的键控传输,软件下载等。为了集成这些业务需求不同的信号,要求传输系统提供一系列可供选择的调制和误码保护方案,并且能够灵活组合以满足所集成业务的每一需求,特别是工作在11~12GHz卫星广播业务(BSS)频段、又处于高雨衰区国家的卫星ISDB系统的需求。ISDB标准首先是日本提出和使用,这个标准比前面的两个标准复杂,但用途更广,和更有前途。

数字电视三种标准的比较

DVB

DVB-T DVB-C

MPEG2

DVB-S

MPEG2

视频编码方式

音频编码方式

复用方式

调用方式

ATSC ISDB

MPEG2 MPEG2 MPEG2

AC-3 MPEG2 MPEG2

MPEG2

QAM

-

MPEG2

MPEG2

QPSK

-

MPEG2

MPEG2

QPSK

27M

MPEG2 MPEG2

8VSB COFDM

8M 带宽(Hz) 6M

欧洲DVB-T

DVB-T标准采用的大量导频信号插入和保护间隔技术使得系统具有较强的多径反射适应能力,在密集的楼群中也能良好接收,除能够移动接收外,还可建立单频网,适合于信号有屏蔽的山区。另外,欧洲系统还对载波数目、保护间隔长度和调制星座数目等参数进行组合,形成了多种传输模式供使用者选择。但欧洲标准也存在缺陷:①频带损失严重;②即使防止了大量导频信号,对信道估计仍是不足;③在交织深度、抗脉冲噪声干扰及信道编码等方面的性能存在明显不足;④覆盖面较小。

美国ATSC

美国于1996年12月24日决定采用以HDTV为基础的ATSC作为美国国家数字电视标准。美国联邦通信委员会(FCC)决定用9年时间完成模拟电视向数字电视的历史性过渡。

ATSC标准具备噪声门限低(接近于14.9dB的理论值)、传输容量大(6MHz带宽传输19.3Mbps)、传输远、覆盖范围广和接收方案易实现等主要技术优势。但是也存在一系列问题,最主要的是不能有效对

付强多径和快速变化的动态多径,造成某些环境中固定接收不稳定以及不支持移动接收。

日本ISDB-T标准

日本于1996年开始启动自主的数字电视标准研发项目,在欧洲COFDM技术的基础上,增加具有自主知识产权的技术,形成ISDB-T地面数字广播传输标准,于1995年7月在日本电气通信技术审议会上通过。2001年,该标准正式被ITU接受为世界第3个数字电视传输国际标准。

频谱分段传输与强化移动接收是日本ISDB-T标准的两个主要特点,是对地面数字电视体系众多参数及相关性能进行客观分析优化组合的结果,但是此标准是日本根据本国具体情况及产业发展战略进行权衡取舍的。在实现系统特定功能的同时也为之付出相应的代价,如频谱分段传输对系统频率分集性能与净载荷率的影响,采取以频谱分段为基础实现不同误码保护率分层传输对系统复杂度的影响,在系统内层采用延时长达数百毫秒交织环节对系统及业务同步响应的影响等。

目前,世界各国都根据本国的具体情况,慎重地选择地面数字电视标准。从世界范围看,除了美国外,还有加拿大、阿根廷、韩国等国家

采用美国的ATSC标准。而欧洲所有国家和澳大利亚、新加坡、印度等国则选用了欧洲联盟的DVB-T标准。

数字电视可以提供给我们更多的频道和更高质量的图像,无论是采用标准清晰度电视(SDTV)或者是高清晰度电视(HDTV)。高清晰度电视(HDTV)将向家庭传送影院质量的图像和高保真的环绕声。这将把电视变成”家庭影院”。HDTV将向我们的眼睛呈现5倍于SDTV的信息量。广播工作者可以选择播放HDTV节目或者是SDTV节目。我们今天所用的标准模拟电视频道,将供广播工作者进行选择:传送一路HDTV节目或者挨在一起的几路SDTV节目。在不久的将来,广播工作者将能够在极大地改进图像和声音质量,与极大地增加节目选择之间进行决策。

观看者将变成使用者

数字技术和多种数字媒体的融合,将在我们所理解的现今”电视”的那种传统的一对多的通讯模式之外提供更多的选择。先进的数字技术的运用将提供许多新的服务:多对一,多对多,和一对一的通信。结合交互式的反回通道(例如通过带接口的移动电话),数字信息接收者将提供给用户多种增强服务,从简单的交互式问答显示到无线英特网连接,以及电视和互联网的混合资源服务。你能在电视上做的任何事情你将能够在你的个人电脑上做,反之亦然。

移动着的电视(和其他数字电视设备)

模拟电视不能被移动电视接收机接收。而数字电视将可以使汽

车、公共汽车、火车上安装的电视机、甚至手持电视接收机接收到水晶般清晰透亮的电视节目。不仅如此,新的增强的和交互式的服务(包括高速英特网连接)也能够发送到移动接收机。例如,用随身携带的GSM车载电话,以及一台内插智能卡的DVB-T地面DTV接收机,你将能够以2-14Mb/s的速率浏览因特网,比28.8K的调制解调器快一千倍。

未来已经开始

电视已经大部分数字化了,可是观众感觉不到。技术上逐渐的变化已经伴随着电视节目进入千家万户。革命已经完成,数字技术是最终的胜利者。今天我们用来生产电视节目的大多数设备是数字的;在演播室、在站点之间分配信号,也都是数字化的。虽然我们在家中仍然接收模拟信号,就其质量和稳定性来说,很明显,这些节目内容不可能没有数字化的生产和分配技术的参与。当你通过有线电视、卫星或地面广播观看电视节目的时候,你是坐在传输链的终端,除了这最后一站之外,全部的传输都是在数字领域进行的。例如在新闻广播中,现场记者用数字卫星传送设备上行其报道回馈至节目中心;素材通过数字化接收、解码并且与演播厅中的动态节目一起进行数字化编辑;再被数字化的分配到世界各地的专业接收者;最后被转换成模拟电视信号并发送给你。现在这最后一步正在进入数字时代。

将数字视频、音频和多媒体数据信号编码为MPEG-2视频、音频及多媒体信号,经过传输复用电路复用为信源输出信号。可分别馈送

至DVB-S/C/T信道。

DVB-S用于卫星信道。卫星信道的特点是:可用频带宽、功率受限、干扰大、信噪比低。所以要求采用可靠性高的信号调制方式、强的信号纠错能力,对带宽要求不是特别高。因此DVB-S采用前向纠错(FEC)(包括Viterbi编码、交织、RS编码及加扰等电路), 正交移相键控(QPSK)调制的信道处理,然后馈给卫星链路。接收时进行相反的处理。

DVB-C用于有线信道。有线信道的特点是:信噪比高、频带资源窄、存在回波和非线性失真。这些特点要求DVB-C采用带宽窄、频带利用率高、抗干扰能力较强的调制方式。同时,由于信道信噪比高,误码率较低,纠错能力要求不很高。因此,DVB-C的信道部分采用RS码和卷积码交织技术,正交幅度调制(QAM)。

DVB-T用于地面广播信道。地面广播的特点是:地形复杂、存在时变衰落和存在多径干扰、信噪比较低。因此DVB-T采用前向纠错(FEC)(包括内码交织、内码Viterbi编码、外码交织、外码RS编码)和能有效消除多径干扰的正交频分复用技术(COFDM)和格雷码映射4/16/64QAM调制等进行信道处理。然后在原来用于模拟的6MHZ、7MHZ和8MHZ的频带内发送数字电视节目。DVB-T发送的比特率是可变的。例如:在6MHZ频带可在3.7~23.8Mbit/s比特率之间进

行选择; 在8MHZ频带可在4.9~31.7Mbit/s比特率之间进行选择。以适应不同的接收环境、如移动接收应适当降低发送的码率。

ATSC如何工作?

ATSC与DVB-T在信源处理和信道处理上除了音频采用杜比AC-3、发射机调制采用8-VSB(8电平残留边带调制)之外,其他大致相同。ATSC的DTV向原模拟NTSC的6MHZ无线信道传送19.39MHZ的固定码率数字信号。

ATSC规定有18种不同的视频格式以供选择。如:480p/30(480逐行扫描/30赫兹)、720p/60(720逐行扫描/60赫兹)、1080I(1080隔行扫描),等等。

DVB-T的优缺点

在基于大量小功率、工作在同一频道的众多发射机,每一个均覆盖一个较小的区域的这样一种单频网络来说,DVB是一种最佳选择。这种概念类似于GSM蜂窝覆盖图。每个发射机通过卫星传送参考信号进行同步。在COFDM调制系统中,有2000至8000个带有保护间隔的载波信号以及误码校正处理,用以提供多径选择性来选择可接收到的几个信号中最强的信号。采用COFDM也提供了良好的移动接收性能。

这种优良的抗多径能力会有一些代价:其载/噪比低于8-VBS,并且限制了信号的有效传输距离;COFDM也对来自于电机,如真空吸尘器和电扇的脉冲干扰较敏感;另外数量几千的载波导致较高的峰/均值比,并且需要较高功率的发射机;保护间隔降低了频谱效率并明显减少带宽的比特/赫兹率。

ATSC的优缺点

ATSC开发的8-VSB标准期望覆盖美国以及世界其他地区现有发射机所覆盖的广大面积。ATSC 8-VSB具有二个好处:一是广播工作者希望用少于COFDM的发射功率复盖现在的NTSC覆盖区。二是ATSC标准明显地减少了脉冲干扰。另外在美国很关注RF信号(射频信号)的密度,最大的频谱效率是有强制性限制的。另外,8-VSB信号可将与原模拟NTSC信号的同频和邻频干扰减至最小。

这些优点所付出的代价是:8-VBS不能抵抗多径干扰,并且在城市高楼地区将会有些影响;8-VBS标准不支持移动接收。

我国采用那种数字电视标准?

目前我国尚未认定采用何种数字电视标准。但是ATSC已经在深圳进行试播,DVB-T在北京进行试播。在建国50周年国庆阅兵式上,中央电视台对两种制式的高清晰系统也都进行了试用。同时,国家广电总局广科院也提出了与ATSC、DVB-T不同的所谓混合调制系统,在一个8MHZ带宽内可以同时实现HDTV固定接收和多媒体移动接收。该系统也在建国50周年大庆期间使用QAM调制成功地实现了HDTV广播,实现移动接收的试验正在进行中。有理由相信数字电视广播已经离我们很近很近了。

DVB-H是为通过地面数字广播网络向手持终端提供多媒体业务所制订的传输标准

DVB-H系统依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手持终端能够稳定地接收广播电视信号

DVB-H可以保证移动终端在移动环境和微功耗条件下接收数字电视节目,从而很好地配合3G网络的应用

数字电视地面广播标准DVB-T于1997年发布。标准的初衷并不面向移动接收,然而,在新加坡和德国试运营中证明DVB-T在高码率传输移动环境中表现非常好(见图1)。但是由于功耗比较大,不适合靠电池供电的移动终端通过地面数字电视广播网络接收数字电视节目。为此,需要在DVB-T的基础上引入新的技术,形成新的适合于移动终端接收地面广播数字电视节目的传输标准。

2002年前后开始研究的DVB-H(早期为DVB-X)标准全称为手持数字视频广播,是DVB(欧洲数字电视广播标准化团体,1993年成立,

由来自35个国家的300多家企业组成)组织为通过地面数字广播网络向便携/手持终端提供多媒体业务所制订的传输标准。DVB-H标准被认为是DVB-T标准的扩展应用。但是和DVB-T相比,DVB-H终端具有更低的功耗,移动接收和抗干扰性能更为优越,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收数字电视信号,而不占用移动通信网络中宝贵的频带资源。实际上,DVB-H标准就是依托目前DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等便携设备能够稳定地接收广播电视信号的标准。

1 对DVB-H标准的商业需求

1.1 广播电视公司的商业需求

近年来广播电视的普及率越来越高,但是这些业务大都是单向的,不能满足广大用户日益增长的个性化多媒体业务要求,为此有必要引入交互式多媒体业务。目前,虽然用户主要通过电视机来接收每天的电视节目,但电视节目的移动接收也开始有市场,因此广播公司需要采取合适的方式来实现电视节目的移动接收。

使用DVB-T进行下行链路广播以及地面回传信道数字视频广播(DVB-RCT)作为反馈回路实现交互式多媒体业务不失为一种好的解决方案,可以很好地实现固定接收,通过选择合适的系统参数,它也适合于移动接收。但是,消费者更倾向于在他们日常使用的3G终端上观看数字电视节目,因此上述方案不能使广播公司吸引大量的消费者。

消费者要求广播公司提供更多的业务,广播公司需要选择合适的传输方式来实现消费者要求的业务,例如电视广播,以及给移动用户提供个性化的多媒体业务,后者在广播网络中很难实现,但是移动通信系统可以满足后者,这就促进了广播网与蜂窝网的融合。

1.2 移动通信运营商的商业需求

3G可以提供多种多样的交互式多媒体业务,运营商需要确保这些业务能够为他们带来收益。Internet使许多消费者习惯获得免费的资源,因此需要创新业务来鼓励消费者使用付费内容。业务的及时性是非常重要的,3G能给用户提供无论何时何地的快速接入。

从2G角度看,3G的容量似乎非常大,但是从个性化多媒体业务角度看,3G网络[1, 2]很快就会变得拥挤不堪。例如,一个3G基站有能力同时给10个用户传输100 kb/s的视频流,但是相同的带宽可以给100个用户传递话音业务。如果3G基站总是有多余的资源,那么传递视频流不会影响3G网络整体的性能,但是实际情况并非如此。例如,3G用户使用的一种新视频业务,该业务可以使他们接收他们喜欢的足球队比赛进球的精彩回放。然而,如果有100万个用户购买同一球队的进球瞬间即时回放业务,情况就大不相同了。假设100 kb/s的视频流长100 s,并在1 000 s内通过10 000个基站进行传递,这样每一个基站必须在16~17分钟内一直以1 Mb/s的速度进行传递,在这段时间内用户需求将耗尽3G网络的全部资源。同样的视

频片断可以通过广播网络传输,只使用该同等频带宽度网络1%的资源就可以为这些移动用户服务,因此是一种更为经济的解决方案。

上面的对比在很多情况下并不极端,它说明了行业发展的需求:广播网络和蜂窝网络的融合。融合后的网络可以提供对称的或非对称的多媒体业务,从而有效利用已有的频谱资源。

2 DVB-H标准

DVB-H标准是建立在DVB和DVB-T两个标准之上的标准。

一个DVB-H系统前端由DVB-H封装器和DVB-H调制器构成,DVB-H封装器负责将IP数据封装成MPEG-2系统传输流(TS),DVB-H调制器负责信道编码和调制;系统终端由DVB-H解调器和DVB-H终端构成,DVB-H解调器负责信道解调、解码,DVB-H终端负责相关业务显示、处理。

(1)系统要求

由于移动终端采用电池供电,为提高电池的使用时间,终端应能够周期地关掉一部分接收电路以节省功耗。

对于漫游的用户,当用户进入新区域后应仍能非常顺利地接收DVB-H业务。

对于室内、室外、步行、乘车等不同的接收方式,传输系统应能保证在各种移动速率下顺利接收DVB-H业务。

在充斥大量脉冲干扰的环境中,传输系统应能采取有效的措施减少该类干扰带来的影响。

DVB-H作为手持终端的通用业务规范,系统应能提供足够的灵活性以满足不同传输带宽和信道带宽应用。

(2)协议层次划分

网络层不在DVB-H标准范围内,标准只实现数据链路层和物理层。

数据链路层采用时间分片技术,用于降低手持终端的平均功耗,便于进行平稳、无缝的业务交换。采用多协议封装(MPE)前向纠错技术,可以提高移动使用中的信噪比(C/N)门限和多普勒性能,同时也能增强抗脉冲干扰的能力。

物理层在DVB-T的基础上进行补充,增加了4K传输模式和深度符号交织等内容,除原有DVB-T的技术特点外,在传输参数信令(TPS)比特中增加了DVB-H信令,用于提高业务发展速度。蜂窝标识在TPS中指示,用于支持移动接收时的快速信号扫描和频率交换。增加4K模式可以适应移动接收特性和单频网蜂窝的大小,提高网络设计、规划的灵活性。2K和4K模式进行深度符号交织,可以进一步提高在移动环境和冲击噪声环境下系统的鲁棒性。

3 关键技术

DVB-H技术是DVB和DVB-T两种技术的融合,但是如果仅仅

依靠上述两种技术是不能完全解决DVB-H所面临的问题的。例如,虽然DVB-T已经被证明在固定、移动、便携接收等方面具有非常出众的性能,但是对于手持设备而言还需要进行进一步的改进,如功耗、蜂窝移动下的性能、网络设计等方面。为此DVB-H增加了新的技术模块,它们主要包括:

(1)时间分片

时间分片技术采用突发方式传送数据,每个突发时间片传送一个业务,在业务传送时间片内该业务将单独占有全部数据带宽,并指出下一个相同业务时间片产生的时刻。这样手持终端能够在指定的时刻接收选定的业务,在业务空闲时间做节能处理,从而降低总的平均功耗。当然,这期间前端发射机是一直工作的,在相同业务的两个时间片之间将会传送其他业务数据,DVB-H信号就是由许多这样的时间片组成的。从接收机的角度而言,接收到的业务数据并非是如传统恒定速率的连续方式,数据以离散的方式间隔到达,因此称之为突发传送。如果解码终端要求数据速率较低但必须是恒定码率,接收机可以对接收到的突发数据首先进行缓冲,然后生成速率不变的数据流。突发带宽一般为固定带宽的10倍左右。突发带宽在固定带宽两倍的情况下功耗就可以节省50%,因此如果带宽为10倍,可以节省90%。

(2)多协议封装-前向纠错

DVB-H标准在数据链路层为IP数据报增加了里德·所罗门(RS)纠错编码,作为MPE的前向纠错编码,校验信息将在指定的前向纠

错(FEC)段中传送,我们称之为多协议封装-前向纠错(MPE-FEC)。MPE-FEC的目标是提高移动信道中的C/N、多普勒性能以及抗脉冲干扰能力。

实验证明即使在非常糟糕的接收环境中,适当地使用MPE-FEC仍可以准确无误地恢复出IP数据。MPE-FEC的数据开销分配非常灵活,在其他传输参数不变的情况下,如果校验开销提高到25%,则MPE-FEC能够使手持终端达到和使用天线分集接收时相同的C/N。DVB-H采用基于IP的数据广播方式。

(3)4K模式和深度符号交织

DVB-H标准在DVB-T原有的2K和8K模式下增加了4K模式,通过协调移动接收性能和单频网规模进一步提高网络设计的灵活性。同时,为进一步提高移动时2K和4K模式的抗脉冲干扰性能,DVB-H标准特为两者引入了深度符号交织技术。在DVB-T系统中,2K模式可比8K模式提供更好的移动接收性能,但是2K模式的符号周期和保护间隔非常短,使得2K模式仅仅适用于小型单频网。新增加的4K模式符号具有较长的周期和保护间隔,能够建造中型单频网,网络设计者能够更好地进行网络优化,提高频谱效率。虽然这种优化不如8K模式的效率高,但是4K模式比8K模式的符号周期短,能够更频繁地进行信道估计,提供一个比8K更好的移动性能。总之,4K模式的性能介于2K和8K模式之间,为覆盖范围、频谱效率和移动接收性能的权衡提供一个额外的选项。

(4)传输参数信令

DVB-H的传输参数信令(TPS)能够为系统供一个鲁棒性好、容易访问的信令机制,能使接收机更快地发现DVB-H业务信号。TPS是一个具有良好鲁棒性的信号,即使在低C/N的条件下,解调器仍能快速将其锁定。DVB-H系统使用两个新的TPS比特来标识时间片和判断可选的MPE-FEC是否存在,另外用DVB-T中已存在的一些共享比特表示4K模式、符号交织深度和蜂窝标识。

4 DVB-H标准的发展趋势

DVB-H将对广播和通信领域产生重大影响。DVB-H业务2005年可以投入使用,预计到2007年手机电视用户将达到1亿,而到2009年这个数字将增长到3亿。DVB-H继承于DVB-T,在DVB-T网络上只要做很小的修改就可以发送符合DVB-H标准的数据流。对采用DVB-T的国家(约有50多个国家,主要集中在欧洲)来说,推广DVB-H的代价相对较低,但是对于采用其他地面数字电视传输标准的国家,这个问题就需要做进一步的探讨。在美国,地面数字电视传输标准ATSC采用8-VSB技术,移动性较差,需要引入新的技术或标准来推广数字电视,目前已有公司采用DVB-H技术布网;在日本,考虑到功耗、移动性等因素,DVB-H甚至有取代日本本土ISDB-T标准的趋势。

DVB-H标准主要是为数字电视广播做准备,因此视频压缩技术是其中极其重要的技术,广播中传统的视频压缩标准,如MPEG-2,

显然不能满足DVB-H的需求。DVB组织的DVB-H成员考查了多种视频压缩格式,其中最为看重的是H.264(即MPEG-4的第10部分),见文献[3,4],目前问题主要集中于H.264的知识产权上;另一个压缩格式是微软的Win Media9,它的性能正在逐步提高。但是过多的选择可能会使移动视频陷于混乱的局面,显然用户不希望面对这些彼此不兼容的平台,预计DVB组织很快将给出最后的答案。在中国,能否在最终确定的数字电视地面传输标准上做微小的改动,推出适合手机等移动便携设备收看数字电视的标准,值得关注。目前在手机等移动便携设备上收看数字电视的实现方案有两种:基于移动通信系统、基于数字地面广播。中国联通和中国移动目前推出的手机电视业务属于前者,实际上是一种移动网络上的流媒体业务。比较而言,后者的优势在于频谱资源丰富,对用户数量敏感度低,视频流传输速度及质量与带宽无关,而前者在这些方面明显处于弱势;后者对突发及应急事件承受能力强,而前者则会争夺资源,一旦用户饱和就不能传送。

DVB-H可以保证移动终端在移动环境和微功耗条件下接收数字电视节目,可以很好地和3G网络配合使用。3G网络除完成它自身的功能外,还充当DVB-H网络的反向控制信道,传输诸如视频点播、电视投票、电视浏览、交互式游戏等业务信令,提供多种个性化的多媒体业务,从而实现两种网络的融合。

数字电视相关技术及应用前景

前 言

数字HDTV是继黑白模拟电视、彩色模拟电视之后的第三代电视,其图象清晰度在水平和垂直方向比现行电视提高一倍以上,象素和信息量比现行电视增加约5倍。采用30英寸以上的16:9宽高比的大屏幕显示器观看,图象细腻逼真,在视觉效果上达到或接近35mm宽银幕电影的水平,并配以多路环绕立体声音响,有很强的临场感。

数字高清晰度电视集成了近年来高速发展的超大规模集成电路、高分辨率大屏幕显示器件、高密度数字记录、计算机多媒体技术、数字通讯与传输技术、数字压缩与解压缩技术、激光技术、数模转换技术等方面的最新成就,使电视生产技术更趋向于数字化、集成化、模块化,是电视技术领域内由模拟技术全面转向数字技术的一场革命。数字高清晰度电视的产业化将带动我国微电子制造业、电信业、电视系统、

计算机软硬件、影视业等行业的发展,从而有力地拉动电子信息及相关产业的腾飞。

一、各类电视有关概念的对比

1.模拟传输与数字传输

数字(Digital)在英语中原本是手指脚趾(Digit)这一名词的形容词形式,表示的"数值"或"离散值"等含意,例如:0,1,……。模拟(Analog)这个词的意思是指相似物或类似物,有"连续的数值"的含意。

由上述词源可知,在传输方式上,模拟传输是把信息作为"连续值"处理;数字传输是把信息作为"数值"处理。即:在振幅调制和频率调制这样的模拟传输方式中,是让载波的振幅和频率等参数与所有发送信息成比例的变化,以此来实现信息的传输;而在数字传输方式中,通常是采用载波,但也会用脉冲串取代载波,并根据脉冲的有无来实现信息的传输。所以在传输中,数字信号比模拟信号抗干扰能力强。

2.模拟电视与数字电视

数字高清晰度电视作为一种全数字电视,实现了电视节目摄、录、播、发、输、收整个系统的数字化,是对现有电视广播系统的整体变革。具体来讲,数字高清晰度电视采用数字摄像机、数字录像机等数字设备完成节目的制作和编排,电视台发射传输和电视接收机接收到的载波信号均为数字载波信号,电视接收机内部则全部采用数字信号处理电路。数字电视与模拟电视的最大区别在于:数字电视载波传输的为数字信号,模拟电视载波传输的为模拟信号。因此,数字电视与传统模拟电视系统和近年来市场上出现的载波仍然传输模拟信号、仅在电

视接收机内部信号处理电路上作部分数字化处理的数字化彩电相比有了质的变化。

描述

模拟电视 数字电视

采用模拟信号传输电视图象、伴音、采用数字信号传输电视图象、伴音、附加功能等信号 附加功能等信号

信源编解码 因为信号数据量不大,所以不存在电视信号数字化后,其信号的数据传信息编码压缩问题 输率很高,可达1Gbit/s,因而必须具有良好的数据编码压缩技术,这是数字电视首要技术难点

复用 无复用器,视频、音频信号分别传将编码后的视频、音频、辅助数据信输 号分别打包后复合成单路串行的比特流,这使数字电视具备了可扩展性、分级性、交互性、与网络互通性的基础

信道编解码调制解调

图象信号按行、场排列,并具有行、因为有压缩及复用,因而传送时的信场同步信号、前后均衡脉冲等,并号不再有场 、行标志及概念。通过对视频信号有补偿处理。调制方式纠错、均衡来提高信号抗干扰能力,一般采用调频或调幅

调制采用QAM、COFDM等新方法。而且同一种调制方法随着技术的改进,传输效率会得到大幅提高,每套节目所占的带宽会越来越小

特点 信号数据量少,技术成熟,价格便信号不易在传输中失真,清晰度高。宜 占用频带窄,例如PAL信道可播放四套标准格式数字电视。数字电视信号可方便地在数字网络中传输,与计算机具有良好接口,或许数字电视今后象计算机一样具有插板结构、可进行系统升级。

3.数字化电视与数字电视

所谓数字化电视就是在现有模拟彩色电视机体制下,充分利用目前数字图象处理和微电子技术的成果,对模拟的彩色电视信号图象进行数字化的处理,以求获得更好的图像重现的效果。从本质上讲,数字化电视仍属于模拟电视的范畴。

数字化电视与数字电视二者之间最大的区别是数字化电视的图象、伴音传输信号仍为模拟信号,数字电视的图象、伴音传输信号是数字信号;二者的共同之处在于在电视接收机的信号处理上都不同程度地采用了数字处理技术。

数字化电视与模拟电视的最大区别是信号处理方法的不同。

图1

显然数字化电视是从模拟电视至数字电视的一种过渡性产品,按一台电视机10年的使用奉命寿命计,在实现全数字电视之前,我国现有的电视至少还要更新一次。与数字电视相比,数字化电视便宜得多;与模拟电视相比,数字化电视有以下优点:(1)采用双倍扫描技术,清除了目前50场/秒扫描带来的大面积闪烁感,对眼睛有益;(2)实现了逐行显示的标准VGA图象,可成为计算机终端显示器;(3)数字降噪技术可减轻画面噪点;(4)数字梳状滤波器使亮色完全分离,消除串扰;(5)易于实现多视窗、画中画、画外画、视窗放大、静止画面等功能。

4.普通电视与高清晰度电视

随着社会的发展,普通电视的显示效果已逐渐不能满足人们的需求,人们追求的目标是增强观看电视的真实感,也就是要使观看者有身临其境的感觉。有关人员研究的结果表明必须增加图象的宽度,使它和人的视觉系统的视场相适应,这就要使图象的总面积增加。可以通过改善普通电视的宽高比和增加屏幕尺寸来实现这个目标,但仅采取这个措施是不行的,这样会使观看者感到图象的分解力下降,并使行的结构明显。要避免这一点,就需采

用有能产生更多扫描线的新的扫描格式,同时在模拟电视情况下,传输带宽就要增加以便容纳更高的水平分辨力和更宽的图象格式。

一般来说,高清晰度电视系统的设计要求是需达到观看者在图象高度的大约3倍距离处能看到或接近看到图象清楚细节的程度,使视力正常的观看者具有看原始景物的感觉,图象质量的视觉效果可达到或接近35mm宽银幕电影的水平。高清晰度电视具有以下鲜明的特点:(1)图象清晰度在水平和垂直方向上均是普通电视的2倍以上。(2)扩大了彩色重显范围,使色彩更加逼真,还原效果好。(3)画面宽高比从普通电视的4:3变为16:9,符合人眼的视觉特性。(4)具有高保真多声道环绕立体声。(5)具有大屏幕显示器。

从高清晰度电视的发展过程来看,高清晰度电视有模拟高清晰度电视及数字高清晰度电视。但目前全数字化是各国电视发展的统一趋势,因而现在一般所说的HDTV应该特指数字高清晰度电视。

5.数字SDTV与数字HDTV

数字电视(Digital TV)包括数字HDTV、数字SDTV和数字LDTV三种。三者区别主要在于图像质量和信道传输所占带宽的不同。从视觉效果来看,数字 HDTV(1000线以上)为高清晰度电视(High Definition Television)的简称,图象质量可达到或接近35mm宽银幕电影的水平;SDTV(500-600线)即标准清晰度电视,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV(200-300线)即普通清晰度电视,主要是对应现有VCD的分辨率量级。因为电视全数字化是今后的趋势,所以目前提HDTV以及SDTV、LDTV如无特别说明,均指全数字体制。

采用MPEG-1标准的VCD将逐渐被采用MPEG-2标准的DVD所替代,因而LDTV将被逐渐淘汰。SDTV与HDTV&9;均符合MPEG-2标准。虽然数字高清晰度电视是世界电视发展的趋势,但对于我国来说,在HDTV普及之前,至少还有10年以上的过渡期,这为

SDTV的应用提供了条件。数字SDTV的接受将主要通过普通电视上增加机顶盒的方式来实现,这将使用户充分利用现已购买的普通模拟电视的资源。

数字SDTV与普通模拟电视的图象显示行数一样,那么为什么还用机顶盒来接收SDTV呢?原因是数字信号的抗干扰能力强,标准格式(SDTV)的数字电视机提供的影像、声音质量均超过现有电视机的水平。用户对目前的模拟电视显示效果不满意,一个重要的原因不是显示器分辨率不够,而是模拟信号抗干扰能力差,造成了雪花、噪声、重影、闪烁等不良后果。应用数字SDTV可以最大限度地发挥现有电视的显示效果。此外,虽然数字SDTV与普通模拟电视的图象显示行数一样,但可以带来多样性的服务,如交互式电视教育、视频点播等,为"三机合一"、"三网融合"提供了技术上的可能性。

概括起来说,模拟电视是目前常用电视,数字化电视及数字SDTV是过渡性产品,数字HDTV是今后的发展方向。

二、数字电视相关技术简介

1.数字电视广播流程及实现手段

数字电视广播,其信号流程包括制作(编辑)、信号处理、广播(传输)和接收(显示)几个过程,如图2所示

图2

目前用于数字节目制作的手段主要有:数字摄像机和数字照像相机、计算机、数字编辑机、数字字幕机;用于数字信号处理的手段有:数字信号处理技术(DSP)、压缩、解压、缩放等技术;用于传输的手段有:地面广播传输、有线电视(或光缆)传输、卫星广播(DSS)

及宽带综合业务网(ISDN)、DVD等;用于接受显示的手段有:阴极射线管显示器(CRT)、液晶显示器、等离子体显示器、投影显示(包括前投、背投)等。

2.数字电视关键技术

以上所述的各种手段中包括了数字电视系统中各种主要的技术,全数字高清淅度电视对各种技术要求更高。原国家科委所组织的HDTV总体组在攻关过程中涉及九个单位,包括七个专项课题。这七个专项课题虽然不完全包括数字电视广播流程中的所有技术,但涉及了所有关键技术。我国于1998年9月在北京试验的系统样机框图如图3

图3

在这七个专项课题中信源编解码、复用、信道编解码及调制解调是HDTV的技术核心。3.数字电视的信源编解码技术

信源编解码技术包括视频压缩编解码技术及音频压缩编解码技术。在我国的HDTV功能样机研制中,视频压缩编解码技术由上海交大、天津大学、电子科学研究院共同完成;音频压缩编解码技术由电子部三所完成。

3.1视频编解码技术是&9;HDTV的技术难点

数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中 ,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。

视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。视频编码计算时主要有以下客观依据:(1)图像时间的相关性。视频信号由连续图像组成,相邻图像有很多相关性,找出这些相关性就可减少信息量。(2)图像空间的相关性。例如图像中有一大块单一颜色,那么不必把所有像素存贮。(3)人眼的视觉特性。人眼对原始图像各处失真敏感度不同,对不敏感的无关紧要的信息给予较大的失真处理,即使这些信息全部丢失了,人眼也可能觉察不到;相反,对人眼比较敏感的信息,则尽可能减少其失真。(4)事件间的统计特性。事件发生的概率越小,则其熵值越大,表示信息量越大,需分配较长的码字;反之,发生的概率越大,则其熵值越小,只需分配较短的码字。

3.2音频编解码技术

与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。

音频信号的压缩编码主要利用了人耳的听觉特性。(1)听觉的掩蔽效应。在人的听觉上,一个声音的存在掩蔽了另一个声音的存在,掩蔽效应是一个较为复杂的心理和生理现象,包括人耳的频域掩蔽效应和时域掩蔽效应。(2)人耳对声音的方向特性。对于2KHZ以上的高频声音信号,人耳很难判断其方向性,因而立体声广播的高频部分不必重复存贮。3.3信源编解码的相关标准

国际上对数字图像编码曾制订了三种标准,主要用于电视会议的H.261,主要用于静止图像的JPMG标准,主要用于连续图像的MPEG标准。

在HDTV视频压缩编解码标准方面,美国、欧洲、日本设有分歧,都采用了MPEG-2标准。MPEG(Moving Picture Expert Group)意思是"运动图像专家组",压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。

在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比公司(Dolby)的AC-3方案,MPEG-2为备用方案。

对于我国来说,今后信源编解码标准也会与美国、欧洲、日本一样采用MPEG-2标准。3.4 MPEG的相关应用

MPEG-1已经广泛地用于VCD和CD-ROM等光盘产品中。MPEG-2不仅已被国际上公认为HDTV信源压缩编码的标准,而且在许多方面得到了实际的应用,例如DVD就是应用了MPEG-2标准。在国外MPEG-2解码器已做成芯片,而目前我国HDTV关键芯片仍需进口,这将制约我国HDTV的进一步发展及产业化。

4.数字电视的复用系统

数字电视的复用系统是HDTV的关键部分之一。从发送端信息的流向来看,它将视频、音频、辅助数据等编码器送来的数据比特流,经处理复合成单路串行的比特流,送给信道编码及调制。接受端与此过程正好相反,如图所示。我国的HDTV功能样机,复用器部分由原广电部广播科学研究院研制开发。

4.1数据的打包功能提供了网络通信的接口

模拟电视系统不存在复用器。在数字电视中,复用器把音频、视频、辅助数据的码流通过一个打包器打包(这是通俗的说法,其实是数据分组),然后再复合成单路。目前网络通信的数据都是按一定格式打包传输的。HDTV数据的打包将使其具备了可扩展性、分级性、

交互性的基础。

4.2数字电视的有条件接受

付费电视是现在和将来电视发展的一个方向。复用器可对打包的节目信息进行加扰,使其随机化,接收机具有密钥才能解扰。

4.3复用器的相关标准

在HDTV复用传输标准方面,美国、欧洲、日本也没有分歧,都采用了MPEG-2标准。美国已有了MPEG-2解复用的专用芯片。我国恐怕也会采用MPEG-2作为复用传输的标准。

HDTV数据包长度是188个字节,正好是ATM信元的整数倍。今后以光纤为传输介质,以ATM为信息传输模式的宽带综合业务数字网极有可能成为未来"信息高速公路"的主体设施。可用4个ATM信元来完整地传送一个HDTV传送包,因而可达到HDTV与ATM的方便接口。

5.数字电视的信道编解码及调制解调

数字电视信道编解码及调制解调的目的是通过纠错编码、网格编码、均衡等技术提高信号的抗干扰能力,通过调制把传输信号放在载波或脉冲串上,为发射做好准备。我们目前所说的各国数字电视的制式,标准不能统一,主要是指各国在该方面的不同,具体包括纠错、均衡等技术的不同,带宽的不同,尤其是调制方式的不同。

5.1数字传输的常用调制方式

正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。

键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。

残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。

编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。

5.2美国数字电视的标准

美国地面电视广播迄今仍占其电视业务的一半以上,因此,美国在发展高清晰度电视时首先考虑的是如何通过地面广播网进行传播,并提出了以数字高清晰度电视为基础的标准-ATSC。美国HDTV地面广播频道的带宽为6MHZ,调制采用8VSB。预计美国的卫星广播电视会采用QPSK调制,电缆电视会采用QAM或VSB调制。我国的HDTV样机由浙江大学承担了8VSB的信道编解码及调制解调部分的研制工作。

5.3欧洲数字电视的标准

从1995年起,欧洲陆续发布了数字电视地面广播(DVB-T)、数字电视卫星广播(DVB-S)、数字电视有线广播(DVB-C)的标准。欧洲数字电视首先考虑的是卫星信道,采用QPSK调制。欧洲地面广播数字电视采用COFDM调制,8M带宽。欧洲电缆数字电视采用QAM调制。我国的HDTV样机,原电子部飞虹公司承担了COFDM制式的信道编解码及调制解调部分的研制工作。

5.4日本数字电视的标准

日本数字电视首先考虑的是卫星信道,采用QPSK调制。并在1999年发布了数字电视的标准--ISDB。

各国数字电视标准对比

1

1

美国标准ATSC

地面 卫星 有线

欧洲标准DVB

地面 卫星有线日本标准ISDB

地面

分段卫星有线QPSKQAM调8VSB/16VSB QPSK QAM 2k/8kCOFDMQPSKQAM

制方式

视频编码方式

音频编码方式

复用方式

三、数字电视前景分析

MPEG-2 MPEG-2

AC-3 MPEG-2

MPEG-2 MPEG-2

COFDM

MPEG-2

MPEG-2

MPEG-2

1. 政府应该在数字电视推广中给予巨大支持

国外公司意识到数字高清晰度电视技术复杂度高,产业规模大,竞争风险大,在操作层面上采取了战略合作的方式。如美国早期的"大联盟",英国的"数字电视集团"等。这些集团在完成联合研究开发的同时,说服政府和广播者对其支持,同时协调相关产业(计算机和通信等)共同发展的关系。总之,可认为国际上发达国家的产业内部已形成保护其发展的基本规则,使发达国家的电视产业可以从容应对数字高清晰度电视这场革命性的产业变革。

我国的主管部门已认识到数字化进程中我们技术准备的不足。但由于数字电视不仅技术复杂度高,而且推动产业发展的相关因素多,仅靠企业自主开发有困难。企业普遍认为政府应有效地协调资源,将企业与科研单位组织起来,开发自主知识产权,以推动产业发展。2.数字SDTV、数模兼容电视机将首先走向市场

据有关资料统计,目前国内电视机用户已达3.4亿台,保守的估计,如果我国以20年时间完成向数字高清晰度电视的过渡,替换市场将形成平均年销售约1500万台的市场规模,可见市场十分庞大。电视接收机数字化过程中,对于我国来说主要问题为数字电视市场最初的主导产品是什么。

高清晰度数字/模拟兼容电视机的市场目前已启动。目前我国数字电视标准没有制定,电视台也没有发射数字电视信号,因而现在用户不可能购买数字高清晰度电视机。但数字高清晰度电视是未来的发展方向,这一点无可质疑。对于用户来说,如果现在购买电视机,肯定要考虑几年后能不能用,目前市场上销售的模拟电视机肯定不能接收数字高清晰度电视节目。为充分考虑用户今后的利益,牡丹、TCL、康佳等目前推出了高清晰度数字/模拟兼容电视机,该型电视机可接收目前的模拟电视信号,并采用了数字处理技术,使电视信号更加细腻逼真;而且该型电视机保留了HDTV的信号接口,今后当数字电视信号发

发布评论

评论列表 (0)

  1. 暂无评论