最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

2018年电大数学思想与方法考试题目全参考 (5)

IT圈 admin 35浏览 0评论

2024年2月19日发(作者:常秀慧)

专业好文档

内部文件,版权追溯

内部文件,版权追溯

内部文件,版权追溯

数学思想与方法课程综合辅导资料

一、单项选择题

1.算法的有效性是指( C )。P.122

A.如果使用该算法从它的初始数据出发,能够估计问题的解答范围

B.如果使用该算法从它的初始数据出发,能够引出该问题的另一种求解方案

C.如果使用该算法从它的初始数据出发,能够得到这一问题的正确解

D.如果使用该算法从它的初始数据出发,能够大致猜想出问题的答案

2.所谓数形结合方法,就是在研究数学问题时,(A )的一种思想方法。P156

A.由数思形、见形思数、数形结合考虑问题

B.由数学公式解决图形问题

C.由已知图形联想数学公式解决数学问题

D.运用代数与几何解决问题

3.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以( D )为典范。P1

A.阿拉伯的《论圆周》

B.印度的《太阳的知识》

C.希腊的《理想国》

D.中国的《九章算术》

4.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为( B )的趋势。P46

A.数学的各个分支相互独立并行发展

B.数学的各个分支相互渗透和相互结合

C.数学的各个分支呈现包容

D.数学的各个分支呈现互斥

5.学生理解或掌握数学思想方法的过程一般有三个主要阶段:( B )。P197

A.了解阶段、掌握阶段、运用阶段

B.潜意识阶段、明朗化阶段、深刻理解阶段

C.感觉阶段、体会阶段、领悟阶段

D.同化阶段、迁移阶段、掌握阶段

6.在数学中建立公理体系最早的是几何学,而这方面的代表著作是(B )。P1

A.阿拉伯的《论圆周》

B.古希腊欧几里得的《几何原本》

C.希腊的《理想国》

D.中国的《九章算术》

7.随机现象的特点是(A )。P23

A.在一定条件下,可能发生某种结果,也可能不发生某种结果

B.在一定条件下,发生必然结果

C.在一定条件下,不可能发生某种特定的结果

D.在一定条件下,发生某种结果的概率微乎其微

8.演绎法与( D )被认为是理性思维中两种最重要的推理方法。P67

A.推理法

B.模型法

C.猜想法

D.归纳法

9.在化归过程中应遵循的原则是( A )。P105

A.简单化原则、熟悉化原则、和谐化原则

B.重复化原则、熟悉化原则、明朗化原则

C.简单化原则、熟悉化原则、重复化原则

D.熟悉化原则、和谐化原则、明朗化原则

10.(C )是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。P191

A.理论方法

B.实验方法

C.数学思想方法

D.计算方法

11.所谓类比,是指( B )。P75

A.由一类事物推测与另一类事物的相似的一种推理方法

B.由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种

专业好文档

推理方法

C.根据某种事物的属性知道另一种事物的属性的一种方法

D.两类事物具有可比性的一种推理方法

12.猜想具有两个显著特点:( D )。P73

A.推测性与准确性

B.科学性与精准性

C.准确性与必然性

D.科学性与推测性

13.所谓数学模型方法是( A )。P132

A.利用数学模型解决问题的一般数学方法

B.利用数学原理解决问题的一般数学方法

C.利用数学实验解决问题的一般数学方法

D.利用数学工具解决问题的一般数学方法

14.数学模型具有( C )特性。P131

A.抽象性、随机性和演绎性、预测性

B.抽象性、准确性和必然性、预测性

C.抽象性、准确性和演绎性、预测性

D.抽象性、准确性和演绎性、偶然性

15.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对

个别事物所作的观察陈述为基础,上升为普遍的认识——( A )的认识。P64

A.由对个体特性的认识上升为对个体所属的种的特性

B.由个体特性的认识上升为集体特性

C.由集体特性上升为个体特性

D.由属的特性上升为种的特性

16.三段论是演绎推理的主要形式,它由(D )三部分组成。P94

A.大结论、小结论和推理

B.小前提、小结论和推理

C.大前提、小结论和推理

D.大前提、小前提和结论

17.传统数学教学只注重(B )的传授, 而忽略对知识发生过程中( )的挖掘。P183

A.具体化数学知识,数学理论方法

B.形式化数学知识,数学思想方法

C.数学解题强化,数学思想方法

D.数学系统结构知识,数学思想方法

18.特殊化方法是指在研究问题中,( B )的思想方法。P164

A.运用特殊方法解决问题

B.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

C.从对象的一个给定范围出发,进而考虑某个包含于该范围的较小范围

D.从对象的一个给定区间出发,进而考虑某个包含于该区间的较小区间

19.分类方法的原则是( D )。P151

A.按种类逐步划分

B.按作用逐步划分

C.按性质逐步划分

D.不重复、无遗漏、标准同一、按层次逐步划分

20.数学模型可以分为三类:( C )。P131

A.人口模型、交通模型、生态模型

B.规划模型、生产模型、环境模型

C.概念型、方法型、结构型

D.初等模型、几何模型、图论模型

21.数学的第一次危机是由于出现了( C )而造成的。P82

A.无理数(或3)

pB.整数比q不可约

C.无理数(或2)

D.有理数无法表示正方形边长

22.算法大致可以分为( A )两大类。P128

A.多项式算法和指数型算法

B.对数型算法和指数型算法

专业好文档

C.三角函数型算法和指数型算法

D.单向式算法和多项式算法

23.反驳反例是用( D )否定( )的一种思维形式。P81

A.偶然 必然

B.随机 确定

C.常量 变量

D.特殊 一般

24.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是( B )。P78

A.猜测

类比 联想

B.联想 类比 猜测

C.类比 联想 猜测

D.类比 猜测 联想

25.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳 猜测 特例

B.猜测 特例 归纳

C.特例 猜测 归纳

D.特例 归纳 猜测

26.传统数学教学只注重( A )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.形式化

B.科学化

C.系统化

D.模型化

27.所谓统一性,就是( C )之间的协调。P46

A.整体与整体

B.部分与部分

C.部分与部分、部分与整体

D.个别与集体

28.中国《九章算术》( A )的算法体系和古希腊《几何原本》( )的体系在数学历史发展进程中争奇斗妍、交相辉映。P1

A.以算为主 逻辑演绎

B.演绎为主 推理证明

C.模型计算为主 几何作画为主

D.模型计算 几何证明

29.所谓数学模型方法是( B )。P132

A.利用数学实验解决问题的一般数学方法

B.利用数学模型解决问题的一般数学方法

C.利用数学理论解决问题的一般数学方法

D.利用几何图形解决问题的一般数学方法

30.公理化方法就是从( D )出发,按照一定的规定定义出其它所有的概念,推导出其它一切命题的一种演绎方法。P95

A.一般定义和公理

B.特定定义和概念

C.特殊概念和公理

D.初始概念和公理

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——( B )的认识。P64

A.由对个体特性的认识抽象为对种的特性

B.由对个体特性的认识上升为对个体所属的种的特性

C.由对个体特性的认识上升为对个体所属的属的特性

D.由对个体特性的认识抽象为对个体所属的种的特性

32.算法大致可以分为( A )两大类。P128

A.多项式算法和指数型算法

B.单项式算法和对数型算法

C.单项式算法和指数型算法

D.多项式算法和对数型算法

33.反驳反例是用( D )否定( )的一种思维形式。P81

A.一般 特殊

B.实例 特例

C.特殊 特例

D.特殊 一般

专业好文档

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(B )。P78

A.类比联想

猜测

B.联想类比猜测

C.联想猜测类比

D.猜测类比联想

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳特例猜测

B.特例归纳猜测

C.特例猜测归纳

D.猜测归纳特例

36.传统数学教学只注重( D )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.理论化

B.实践化

C.模式化

D.形式化

37.所谓统一性,就是( C )之间的协调。P46

A.部分与部分、整体与整体

B.形式与内容

C.部分与部分、部分与整体

D.理论与实践

38.数学的第二次危机是17世纪伴随牛顿和莱布尼兹创立( A )而产生的。P83

A.微积分

B.解析几何

C.数学悖论

D.无理数2

39.我国《数学课程标准》(实验稿)的总体目标指出,数学知识包括( B )和( )。P183

A.数学知识 数学思想

B.数学事实 数学活动经验

C.数学理论 数学实践

D.数学模型 数学活动经验

40.所谓特殊化是指在研究问题时,( D )的思想方法。P164

A.从对象的一个给定集合出发,进而考虑某个包含该集合的较大集合

B.从对象的一个给定范围出发,进而考虑该范围中某个较小的区间

C.从对象的一个给定数集出发,进而考虑某个包含于该数集的较小子数集

D.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

41.所谓数形结合方法,就是在研究数学问题时,( C )的一种思想方法。P156

A.由形思数、见数思质、数形质结合考虑问题

B.由数据、图形结合考虑问题

C.由数思形、见形思数、数形结合考虑问题

D.由数思形、见形思数、数形分离考虑问题

42.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于( A ),以《九章算术》为典范。P1

A.计算和实际应用

B.模仿和度量

C.推理和证明

D.计算和证明

43.不完全归纳法是根据( D ),作出关于该类事物的一般性结论的推理方法。P68

A.对某类事物的整体的分析

B.对某类事物单个对象的分析

C.对某类事物中的特定对象的分析

D.对某类事物中的部分对象的分析

44.公理化的三条逻辑上的要求是( D )。P37

A.依赖性、矛盾性、无备性

B.独立性、矛盾性、完备性

C.依赖性、无矛盾性、完备性

D.独立性、无矛盾性、完备性

专业好文档

45.《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家( B )注释的版本。P6

A.张衡

B.刘徽

C.祖冲之

D.贾宪

46.《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个( C )、5个( )。P2

A.方程 定义

B.推理 公理

C.公式 公理

D.公式 定义

47.数学思想方法教学主要有( B )三个阶段。P198

A.单次孕育、初步掌握、综合应用

B.多次孕育、初步理解、简单应用

C.多次孕育、深入理解、综合应用

D.单次孕育、深入理解、简单应用

48.化隐为显原则是数学思想方法教学原则之一,它的含义就是把隐藏在数学知识背后的( A )显示出来,使之明朗化,以达到教学目的。P199

A.数学思想方法

B.数学规律

C.数学定义

D.数学公式

49.在数学学科中人们常常把研究确定性现象数量规律的那些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示( ),它的这种局限性迫使数学家们建立一种专门分析( A )的数学工具。这个数学工具就是( )。P22

A.随机现象 随机现象 概率理论和数理统计

B.必然现象 必然现象 代数理论

C.变量规律 变量规律 数学分析

D.分形几何 分形几何 拓扑理论

50. 小学生的思维特点是( D )。P197

A.感性思维

B.理性思维

C.逻辑思维

D.具体形象思维

二、填空题

1.所谓数形结合方法,就是在研究数学问题时,(由数思形,见形思数,数形结合考虑问题)的一种思想方法。

2.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。

3.不完全归纳法是根据(对某类事物中的部分对象的分析),作出关于该类事物的一般性结论的推理方法。

4.公理化的三条逻辑上的要求是(独立性、无矛盾性、完备性)。

5.《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家(刘徽)注释的版本。

6.《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个(公设)、5个(公理)。

7.数学思想方法教学主要有(多次孕育、初步理解、简单应用)三个阶段。

8.`化隐为显原则是数学思想方法教学原则之一,它的含义就是把隐藏在数学知识背后的(数学思想方法)显示出来,使之明朗化,以达到教学目的。

9.在数学学科中人们常常把研究确定性现象数量规律的那些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示(随机现象),它的这种局限性迫使数学家们建立一种专门分析(随机现象)的数学工具。这个数学工具就是(概率理论和数理统计)。

10. 小学生的思维特点是(具体形象思维)。

11.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。12.演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

13.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

专业好文档

14.分类方法具有三个要素:(被划分的对象、划分后所得的类的概念、划分的标准)。

15.数学研究的对象可以分为两类:一类是(研究数量关系的),另一类是(研究空间形式的)。

16.所谓社会科学数学化就是指(数学向社会科学渗透),也就是运用(数学方法)来揭示社会现象的一般规律。

17.在古代的(游戏和赌博)活动中就有概率思想的雏形,但是作为一门学科则产生于17世纪中期前后,它的起源与一个所谓的点数问题有关。

18.在数学中建立公理体系最早的是(几何学),而这方面的代表著作是古希腊学者欧几里得的(《几何原本》)。

19.《九章算术》是世界上最早系统地叙述(分数)运算的著作,它关于(负数)的论述也是世界上最早的。

20.数学知识与数学思想是数学教学的两条主线,(数学知识)是一条明线,它被写在教材中;(数学思想)则是一条暗线,需要教师挖掘、提炼并贯穿在教学过程中。

21.学生理解或掌握数学思想方法的过程有如下三个主要阶段(潜意识阶段、明朗化阶段、深刻理解阶段)。

22.面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者(找出反例说明此猜想为假),并且进一步修正或否定此猜想。

23.变量数学产生的数学基础是(解析几何),标志是(微积分)。

24.化归方法是将(待解决的问题)转化为已知问题。

25.公理方法是从尽可能少的初始概念和公理出发,应用严格的(逻辑推理),使一门数学构建成为演绎系统的一种方法

26.数学的第一次危机是由于出现了(不可公度性)而造成的。

27.数学猜想具有两个明显的特点:(科学性)与(推测性)。

28.所谓社会科学数学化就是指数学向(社会科学)的渗透,运用数学方法来揭示(社会现象)的一般规律。

29.分类必须遵循的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

30.深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的多种因果关系的分析)而得到的类比。

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

32.算法大致可以分为(多项式算法和指数型算法)两大类。

33.反驳反例是用(一个反例)否定(猜想)的一种思维形式。

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(联想-类比-猜测)。

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是(猜测-归纳-特例)。

36.传统数学教学只注重(形式化的)的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

37.所谓统一性,就是(部分与部分、部分与整体)之间的协调。

38.中国《九章算术》(以算为主)的算法体系和古希腊《几何原本》(逻辑演绎)的体系在数学历史发展进程中争奇斗妍、交相辉映。

39.所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

40.所谓特殊化是指在研究问题时,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

41.算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解)。

42.所谓数形结合方法,就是在研究数学问题时,(由数思形、见形思数、数形结合考虑问题)的一种思想方法。

43.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(中国《九章算术》)为典范。

44.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

45.学生理解或掌握数学思想方法的过程一般有三个主要阶段:(潜意识阶段、明朗化阶段、深刻理解阶段)。

46.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的(《几何原本》)。

47.随机现象的特点是(在一定条件下,可能发生某种结果,也可能不发生某种结果)。

48.演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

专业好文档

49.在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。

50.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

51.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

52.传统数学教学只注重(形式化的数学知识)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。

53.特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

54.分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

55.数学模型可以分为三类:( 概念型、方法型、结构型)。

56.学生理解或掌握数学思想方法的过程有如下三个主要阶段(潜意识阶段、明朗化阶段、深刻理解阶段)。

57.强抽象就是指,通过(把一些新的特征加入到某一概念中)而形成新概念的抽象过程。

58.菱形概念的抽象过程就是把一个新的特征:(一组邻边相等),加入到平行四边形概念中去,使平行四边形概念得到了强化。

58.分类必须遵循的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

59.面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者(找出反例说明此猜想为假),并且进一步修正或否定此猜想。

60.《几何原本》所开创的(公理化方法)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

61.变量数学产生的数学基础是(解析几何),标志是(微积分)。

62.(数学基础知识于数学思想方法)是数学教学的两条主线。

63.深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的各种因果关系的分析 )而得到的类比。

64.一个概括过程包括(比较、区分、扩张、分析等几个主要环节)。

65.所谓类比,是指(由一类事物所具有的某种属性可以推测与其类似的事物也具有这种属性的一种推理方法);常称这种方法为类比法,也称类比推理。

66.猜想具有两个显著特点:(一是具有一定的科学性,二是具有一定的推测性)。

67.所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

68.数学模型具有(抽象性、准确性和演绎性、预测性)特性。

69.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

70.三段论是演绎推理的主要形式。三段论由(大前提、小前提、结论)三部分组成。

71.化归方法是指,(数学家们把待解决的问题通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法)。

72.在计算机时代,(计算方法 )已成为与理论方法、实验方法并列的第三种科学方法。

73.算法具有下列特点:(有限性、确定性、有效性)。

74.化归方法的三个要素是:(化归对象、化归目标、化归途径)。

75.根据学生掌握数学思想方法的过程有潜意识、明朗化、深刻理解三个阶段,可相应地将小学数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。

76.一个概括过程包括(比较、区分、扩张、分析等几个主要环节)等几个主要环节。

77.古代数学大致可以分为两种不同的类型:一种是(崇尚逻辑推理),以《几何原本》为代表;一种是(长于计算和实际应用),以《九种算术》为典范。

78.《九章算术》思想方法的特点主要有(开放的归纳体系、算法化的内容、模型化的方法)。

79.初等代数的特点是(用字母符号来表示各种数,研究的对象主要是代数式的计算和方程的求解)。

三、判断题

1.提出一个问题的猜想是解决这个问题的终结。 ( × )

2.一个数学理论体系内的每一个命题都必须给出证明。 ( × )

3.数学中的许多问题都无法归结为寻找具体算法的问题。 ( × )

4.计算是随着计算机的发明而被人们广泛应用的方法。 ( × )

5.反例在否定一个命题时它并不具有特殊的威力。 ( × )

6.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。

专业好文档

(√ ) ( × )

7.分类可使知识条理化、系统化。 21.计算机是数学的创造物,又是数学的创造者。 ( √)

( √ ) 22.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。 (× )

8.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 23.一个数学理论体系内的每一个命题都必须给出证明。 ( ×)

( √ ) 24.贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化9.对同一数学对象,若选取不同的标准,可以得到不同的分类。 思想。 (√ )

( √ )

10.完全归纳法实质上属于演绎推理的范畴。

( √ )

11.数学模型方法是近代才产生的。

( × )

12.在小学数学教学中,本教材所涉及到的数学思想方法并不多见。

( × )

13.所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想。

( √ )

14.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 ( √ )

15.对同一数学对象,若选取不同的标准,可以得到不同的分类。

( √ )

16.数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。

( × )

17.数学基础知识和数学思想方法是数学教学的两条主线。

( √ )

18.新颁发的《数学课程标准》中的特点之一“再创造”体现了我国数学课程改革与发展的新的理念。

( √ )

19.法国的布尔巴基学派利用数学结构实现了数学的统一。

( √ )

20.由类比法推得的结论必然正确。

25.提出一个问题的猜想是解决这个问题的终结。 (×)

26.数学模型方法在生物学、经济学、军事学等领域没应用。

(× )

27.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。

(√ )

28.如果某一类问题存在算法,并且构造出这个算法,就一定能求出该问题的精确解。(× )

29.分类可使知识条理化、系统化。

( √ )

30.在建立数学模型的过程中,不必经过数学抽象这一环节。

( × )

31.《九章算术》不包括代数、几何内容。

( × )

32.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 ( √ )

33.对同一数学对象,若选取不同的标准,可以得到不同的分类。

( √ )

34.特殊化是研究共性中的个性的一种方法。

( × )

35.数学模型方法应用面很窄。

( × )

36.数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。

( × )

37.由类比法推得的结论必然正确。

专业好文档

( × ) 52.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分38.有时特殊情况能与一般情况等价。 放大后,其结构与原先的一样。 (√)

(√ ) 53.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科39.演绎的根本特点就是当它的前提为真时,结论必然为真。 学测试成绩名列前茅。 (×)

(√ ) 54.我国《数学课程标准》指出,数学知识就是“数与形以及演绎的知识”。

40.抽象得到的新概念与表述原来的对象概念之间不一定有种属关系。 (√)

( ×)

41.完全归纳法实质上属于演绎推理的范畴。

( √)

42.古希腊的柏拉图曾在他的学校门口张榜声明:不懂几何的人不得入内。这是因为他的学校里所学习的课程要用到很多几何知识。

(× )

43.完全归纳法的一般推理形式是:

设S=A1,A2,A3,An,,由于A1、A2、 An具有性质P,因此推断集合S中的每一个对象都具有性质P。

( ×)

44.《九章算术》是世界上最早系统地叙述分数运算的著作,它关于负数的论述也是世界上最早的。

( √)

45.算术反映的是物体集合之间的函数关系。

( × )

46.《几何原本》是欧几里得独立创作的。 ( × )

47.《九章算术》系统地总结了先秦和东汉初年我国的数学成就。 ( √)

48.丢番图在其著作《算术》中用了许多符号,它标志着文字代数开始向简写代数转变,丢番图的《算术》是数学史上的里程碑。 (√ )

49.解析几何的产生主要归功于笛卡儿和费尔马。 ( √)

50.英国的牛顿和德国的莱布尼兹分别以几何学和物理学为背景用无穷小量方法建立了微积分。 (√ )

51.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。 (×)

55.在数学基础知识与数学思想方法是数学教学的两条主线,而且是两条明线。

(×)

56.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。 (√)

57.数学公理化方法在其他学科也能起到作用,所以它是万能的。 (×)

58.数学模型具有预测性、准确性和演绎性,但不包括抽象性。 (×)

59.猜想具有两个显著的特点:一定的科学性和一定的推测性。 (√)

60.表层类比和深层类比其涵义是一样的。 (×)

61.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法解决了其无解。(√)

62.分类方法具有两要素:母项与子项。 (×)

63.算法具有无限性、不确定性与有效性。 (×)

64.理论方法、实验方法和计算方法并列为三种科学方法。 (√)

65.最早使用数学模型方法的当数中国古人。 (√)

66.化归方法是一种发现问题的方法。 (×)

67.类比猜想的主要步骤是:猜测联想类比。 (×)

68.尽管中西方对数学的贡献不同,但在数学思想方面是一致的。 ( ×)

69.不可公度性的发现引发了第二次数学危机。 (×)

70.中学生只需理解数学思想方法就能运用自如了,不需经历多次孕育阶段。(×)

四、简答题

1.第一次数学危机最终如何解决了? p83(p245)

答:为了克服无理数悖论引发的危机,古希腊数学家发展了几何学中的比例论,它等价于无理数理论。当然,从理论上彻底解决这一危机还是靠现代实数理论的建立。在实数理论中,无理数可以定义为有理数的极限。第一次数学危机的结果是使数学逐渐走上了演绎科学的道路,为数学的公理化奠定了基础。

专业好文档

2.何谓化归方法?它遵循哪三个原则?p102-105

答:所谓“化归”,可以理解为转化和归结的意思。化归方法是指数学家们把待解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。

它主要遵循:1、简单化原则;2、熟悉化原则;3、和谐化原则。

3.什么是公理方法和公理体系?p95-96

答:公理方法就是从初始概念和公理出发,按照一定的规定(逻辑规则)定义出其他所有的概念,推导出其他一切命题的一种演绎方法。由初始概念、公理、定义、逻辑规则、定理等构成的演绎体系叫做公理体系。公理方法是构成公理体系的方法,公理体系是由公理方法得到的数学理论体系。

4.什么是类比猜想?并举一个例子说明。p77

答:人类运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想。例如,分式与分数非常相似,只不过是用字母代替代数而已。因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。

5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。p200

答:数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。学生对每种数学思想方法的认识都是在反复理解和运用中形成的,是从个别到一般,从具体到抽象,从感性到理性,从低级到高级地沿着螺旋式方向上升的。如,学生理解数形结合方法可从小学的画示意图找数量关系着手孕育;学习数轴时,要求学生会借助数轴来表示相反数、绝对值、比较有理数的大小。

6.简述《几何原本》思想方法特点。p3

答:答:(1)封闭的演绎体系: 因为在《几何原本》中,除了推导时所需要的逻辑规则外, 每个定理的证明所采用的论据均是公设、公理或前面已经证明过 的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上 对概念下定义的要求,原则上不再依赖其它东西。

(2)抽象化的内容 :它所探讨的是概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。

(3)公理化的方法。

7.什么是算法的有限性特点?试举一个不符合算法有限性特点的例子。p121

答:一个算法必须在有限步内终止。例如,十进制小数的除法的算法。若取数4.5和3作为初始数据,计算结果为1.5.

但对于初始数据20和3,计算过程为:过程为

6.6666……

3| 20

18

20

18

20

18

无论怎样延续这个过程都不能结束,同时也不会出现中断。可见,十进小数除法对于20和3这组数不符合算法的有限性这个特点。

8.我国数学教育存在哪些问题?试举例子说明。p178-181

答:我国数学教育存在的问题主要有:

第一,数学教学重结果,轻过程;重解题训练,轻智力、情感开发;不重视创新能力培养,虽然学生考试分数高,但是学习能力低下。

第二,重模仿,轻探索,学习缺少主动性,缺乏判断力和独立思考能力。例如,有道著名的测试题:“有一条船上,有75头牛,32头羊,问船长几岁?”学生把75和32两个数相加,得到107,认为这不会是船长的年龄,相乘、相除又不合适,选择相减得出43岁。美国著名数学教育家认为“这是我们把学生越教越笨的典型例子。”

第三,学生课业负担过重。

9.简述公理化方法发展。p96-100

答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。第一个具体的公理体系就是欧几里得的《几何原本》。非欧几何是抽象的公理体系的典型代表。希尔伯特的《几何基础》开创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。

10.简述概括与抽象的关系。p65

答:概括方法与抽象方法是不同的。抽象是舍弃事物的一些属性而收括固定出其

专业好文档

固有的另一些属性的思维过程,抽象得到的新概念与表述原来的对象的概念之间不一定有种属关系。概括是在思维中由认识个别事物的本质属性,发展到认识具有这种本质属性的一切事物,从而形成关于这类事物的普遍概念。

尽管有差别,但是又互相联系、密不可分。抽象是概括的基础,没有抽象就不能认识任何事物的本质属性,就无法概括。概括也是抽象思维过程中所必需的一个环节。

11.简述培养数学猜想能力的途径。p88-93

答:引导学生面对问题,认真观察和思考,通过归纳或者类比提出猜想,演绎证明猜想为真,或者寻找反例说明猜想为假,有助于激发学生的创新精神。数学猜想能力培养途径:用猜想学习新知识;用猜想探究数学规律;用猜想帮助解题。

12.微积分产生可以归结为哪四类情况?p19

答:1、已知物体移动的距离为时间的函数,求物体瞬时速度和加速度;反过来,已知物体的加速度为时间的函数,求速度和距离;

2、求曲线切线的斜率和方程;

3、求函数的最大值和最小值;

4、求曲线的长度,曲边梯形的面积,曲面围成的物体的重心。

13.常量数学应用的局限性是什么?p16

答:初等数学都是以不变的数量(即常量)和固定的图形为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象。可是对于那些运动变化的事物和现象,它们显然无能为力。

14.为什么说《几何原本》是一个封闭的演绎体系?p3

答:因为在《几何原本》中,除了推导时所需要的逻辑规则外, 每个定理的证明所采用的论据均是公设、公理或前面已经证明过 的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。因此《几何原 本》是一个封闭的演绎体系。另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是 封闭的。所以,《几何原本》是一个封闭的演绎体系。

15.为什么说最早使用数学模型方法的是中国人?p134

答:因为在中国古算书《九章算术》中就已经系统地使用了数学模型。《九章算术》将246个题目归结为九类,即九类不同的数学模型,故名为“九章”。它在每一章中所设置的问题,都是从大量的实际问题中选择具有典型意义的现实原型,然后再通过“术”(即算法)转化为数学模型。其中有些章就是专门讨论某种数学模型的应用,如“勾股”“方程”等。

16.简述表层类比,并用举例说明。p75-76

答:表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。这种类比可靠性较差,结论具有很大的或然性。如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结论上的类比。

17.《几何原本》贯彻哪两条逻辑要求?p97

答:《几何原本》贯穿了两条逻辑要求:第一,公理必须是明显的,因而是无需加以证明的,其是否真实应受推出结果的检验,但它仍是不加证明而采用的命题;初始概念必须是直接可以理解的,因而无需加以定义。第二,由公理证明定理时,必须遵守逻辑规律与逻辑规则;同样,通过初始概念以直接或间接方式对派生概念下定义时,必须遵守下定义的逻辑规则。

18.简述数学抽象的特征。p61

答:数学抽象具有以下特征:

(1)数学抽象具有无物质性;

(2)数学抽象具有层次性;

(3)数学抽象过程要凭借分析或直觉;

(4)数学的抽象不仅有概念抽象还有方法抽象。

19.简述将“化隐为显”列为数学思想方法教学的一条原则的理由。p199

答:由于数学思想方法往往隐含在知识的背后,知识教学虽然蕴含着思想方法,但是如果不是有意识地把数学思想方法作为教学对象,在数学学习时,学生往往只注意到处于表面的数学知识,而注意不到处于深层的思想方法,因此,进行数学思想方法教学时必须以数学知识为载体,把隐藏在知识背后的思想方法显示出来,使之明朗化,才能通过知识教学过程达到思想方法教学之目的。

20.简述特殊化方法在数学教学中的应用。p166-169

答:特殊化方法在数学教学中的应用大致有以下四个方面:

专业好文档

(1)利用特殊值(图形)解选择题;

(2)利用特殊化探求问题结论;

(3)利用特例检验一般结果;

(4)利用特殊化探索解题思路。

21.什么是归纳猜想?并举一个例子说明。p73

答:人们运用归纳法,得出对一类现象的某种一般性认识的一种推测性的判断,即猜想,这种思想方法称为归纳猜想。例如,人们在量度了许多圆的周长和半径后,发现它们的比值总是近似地等于3.14,于是提出了圆周率是3.14的猜想,后来数学家从理论上证明了圆周率的数值为π,果然和3.14很接近。

22. 在实施数学思想方法教学时应注意哪些问题?p205

答:(1)要把数学思想方法的学习纳入教学目标,并在教案中设计好数学思想方法的教学内容和教学过程,这就要求教师具备较高的数学修养,具备数学方法论、数学发展史、数学思想方法的基础知识,更需要教师更新教学观念,不断提高对教学重要性的认识。

(2)重视数学知识发生、发展的过程,认真设计数学思想方法教学的目标;

(3)做好数学思想方法教学的铺垫工作和巩固工作;

(4)不同类型的数学思想方法应有不同的教学要求;

(5)注意不同数学思想方法的综合运用。

23.简述确定性现象、随机现象的特点以及确定性数学的局限性。p22

答:(1)人们常常遇到两类截然不同的现象,一类是决定性 现象,另一类是随机现象。决定性现象的特点是:在一定的条 件下,其结果可以唯一确定。因此决定性现象的条件和结果之 间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果, 也可能不发生某种结果。对于这类现象,由于条件和结果之间不 存在必然性联系。

(2)在数学学科中,人们常常把研究决定性现象数量规律的那些 数学分支称为确定数学。用这些的分支来定量地描述某些决定性 现象的运动和变化过程,从而确定结果。但是由于随机现象条件 和结果之间不存在必然性联系,因此不能用确定数学来加以定量 描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴 涵的规律性。这些是确定数学的局限所在。

24.简述计算机在数学方面的三种新用途。p119.3

答:(1)电子计算机把数学家从繁重的、单调的、重复性的脑力劳动中解放出来,让他们有更多的时间从事更富创造性的抽象思维工作,从而更有利于数学理论的发展;

(2)借助电子计算机的计算,人们可以得到一些新的猜想,并据此进一步作出理论证明;也可以对已有的结论进行验证;还可以用计算机来证明某些理论问题;

(3)电子计算机的发展本身也提出了许多数学理论问题。

25.简述化归方法的和谐化原则p106

答:和谐化是数学内在美的主要内容之一。美与真在数学命题和数学解题中一般是统一的。因此,我们在解题过程中,可根据数学问题的条件或结论以及数、式、形等的结构特征,利用和谐美去思考问题,获得解题信息,从而确立解题的总体思路,达到以美启真的作用。

26.简述代数解题方法的基本思想。p13

答:代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变化求出未知数的值。

27.试对《九章算术》思想方法的一个特点“算法化的内容”加以说明。p8

答:《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。以后遇到其他同类问题,只要按“术”给出的程序去做就一定能求出问题的答案。因此,内容的算法化是《九章算术》思想方法上的特点之一。

28.简述化归方法在数学教学中的应用p110-111

答:化归方法在数学教学中的功能主要有:

(1)利用化归方法学习新知识;

(2)利用化归方法指导解题;

专业好文档

(3)利用化归原则理清知识结构。

29.试用框图表示用特殊化方法解决问题的一般过程。p166

30.变量数学产生的意义是什么?p21

答:(1)变量数学的产生,为自然科学更精确地描述物质世界提供了有效的工具; (2)变量数学的产生,促进数学自身的发展和严密;

(3)变量数学的产生,是辩证法进入了数学。

31.简述类比的含义,数学中常用的类比有哪些?p75-77

答:类比是指一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。常称这样的思维方法为类比法推理,也称类比推理。

类比的类型有:表层类比(形式或结构上的简单类比)、深层类比(方法或模式上的纵向类比)、沟通类比(各分科之间的类比)。

32.简述计算工具的发展。p114-116

答:计算工具的发展大致经历了:古代的计算工具;机械式计算工具;电动式计算机;机电式计算机;电子计算机。

33.简述小学数学加强数学思想方法教学的重要性,具体表现?p185(p307)

答:(1)数学思想方法是知识向能力过渡的桥梁;

(2)人的数学智能依赖于数学思想方法的掌握;

(3)数学思想方法能有效地提高人的思维品质;

(4)数学思想方法能有效地促进人的全面发展。

34.简单说明社会科学数学化的主要原因。p50-51

答:主要原因有:

第一,社会管理需要精确化的定量数据,这是促使社会科学数学化的最根本的因素;

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化;第三,随着数学的进一步发展,它出现了一些适合社会历史现象的新的数学分支;第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

35.模型化的方法、开放性的归纳体系及算法化的内容之间的关系p244

答:模型化的方法与开放性的归纳体系及算法化的内容之间是相互适应并相互促进的。各个数学模型间虽然有一定联系,但它们更具有相对独立性。一个数学模型的建立与其他数学模型之间并不存在逻辑依赖关系,正因为如此,所以可以根据需要随时从社会实践中提炼出新的数学模型。而一定的算法必与一定的数学模型相匹配。另一方面,由于运用模型化的方法研究数学,新的数学模型只有寻找现实原型、立足于现实问题的研究,不可能产生封闭式的演绎体系。

36.算术与代数的解题方法基本思想有何区别?p12-13

答:算数解题方法的基本思想是:首先围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出用已知数据表示所求数量的算式,然后通过四则运算求得算式的结果。这种方法的关键之处是列算式,但面临较为复杂的数量关系的实际问题时,列算式方法较笨拙,也难以解决问题,因此代数产生。

而代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变化求出未知数的值。

37.为什么说数学模型方法是一种迂回式化归?p292

专业好文档

答:因为运用书香模型方法解决问题时,不是直接求出实际问题的解,因为这样做往往是行不通的或者花费昂贵。所以常常先将实际问题化归为一个合适的数学模型,然后通过求数学模型的解间接求出原实际问题的解,走的是一条迂回的道路,因此,我们说数学模型方法是一种迂回式化归。

38.为什么数形结合方法在数学中有着非常广泛的应用?p300(p156)

答:数学研究的是现实世界的数量关系和空间形式,而现实世界本身是同时兼备数与形两种属性的,既不存在有数无形的客观对象,也不存在有形无数的客观对象。因此,在数学发展的进程中,数和形常常结合在一起,在内容上相互联系,在方法上相互渗透,在一定条件下互相转化。充分运用数形结合方法解决数学问题,对于沟通代数、三角、几何各分支之间的联系,提高分析问题、解决问题的能力具有重要作用。

五、论述题

1.论述《几何原本》和《九章算术》思想方法的特点。p3-5 p7-9

答:《几何原本》思想方法上的特点:(1)封闭的演绎体系。 《几何原本》就是一个最早的标准的演绎体系:由少数不定义的概念,如点、线、平面等等,和不证明的命题——公理与公设——出发,在需要的地方,定义出相应的概念,按着一定的逻辑规则,演绎出所有其他命题来。在《几何原本》的演绎体系中,公理是最一般的命题,它们是一系列演绎推理的前提,这个体系的所有其他命题,都是从公理(通过适当的定义)推导出来的。除了推导所需要的逻辑规则外,《几何原本》的由一系列公理、定义、定理等构成的数学理论体系,原则上不必依赖于其他东西。 (2)抽象化的内容。《几何原本》以及以它为代表的古希腊数学著述,都是论述一般的、抽象的数学概念和命题的,它们探讨的只是概念和命题的各种逻辑关系,由一些给定了的概念和命题推演出另一些概念和命题。它不考虑产生这些概念和命题的社会背景,也不研究这些数学“模型”所由之产生的那些现实原型。(3)公理化的方法。作为现代数学的一种基本的表述方法和发展方式的公理法就是以欧几里得的《几何原本》开其端的。它采用了前面我们说的比较严格的演绎体系,通常称为公理体系,而建立公理体系的方法就称为公理方法。

《九章算术》思想方法的特点:(1)开放的归纳体系。《九章算术》的每一章都是同一类型的应用问题或者是通过同类数学模型采解决的多种应用问题。通过九章的内容,可以看出它是一个与社会实践密切相联系的“开放”体系,通过这些章中给出的算法,解决了当时社会生产和生活所提出来的各种计算问题。(2)算法化的内容。在每一章内举出若干个实际问题,对每个问题都给出答案,然后给出这一类问题的算法。《九章算术》中称这种算法为“术”,按“术”给出的程序去做就一定能求出问题的答案来。历来数学家对《九章算术》的注、校基本上都是在“术”上作文章,即不断改进算法。算法化的内容是完全适合于开放性的归纳体系的。(3)模型化的方法。方法论的角度来看,《九章算术》广泛地采用了模型化方法。它在每一章中所设置的问题,都是在大量的实际问题中选择具有典型性的现实原型,然后再通过“术”(即算法)转化成数学模型。

2.你认为素质教育应包含哪些方面?数学思想方法对人的素质有什么作用?p185-187

答:(1)素质教育包含:思想道德素质、科学文化素质、心理健康素质和劳动技能素质。

(2)1.数学教育不仅对于提高人的科学文化素质有着重要作用,而且对于提高政治素质和心理健康素质也有着不可忽视的作用。

2.在提高人的素质中发挥重要作用的是在长期数学学习中逐步形成的数学精神和数学思想方法,而不是具体的数学知识。数学思想方法在数学创造和推动人类文化发展中有着巨大的作用。因此,在数学教育中我们应该十分重视数学思想方法的教学。

3.数学素质四要素。(1)知识观念。能用数学的观念和态度去观察、解释和表示事物的数量关系、空间形式和数据信息,以形成良好的数感和量化意识;(2)创造能力。通过解决日常生活和其他学科的问题,发展提出数学模型、了解数学方法、注意数学应用的创造型数学能力,井形成忠诚、坚定、自信的意志品格;(3)思维品质。熟悉数学的抽象概括过程,掌握数学中逻辑推理方法,以形成良好的思维品质和合理的思维习惯;(4)科学语言。作为一种科学的语言,数学也是人际交流不可缺少的工具,数学素质应包括初步运用这种简捷、准确的语言。

3.结合教材的第11、12章,谈谈目前你所在的小学其数学教育教学情况及改革设想。

专业好文档

1、 以教师的教为中心,忽视学生的主体作用。

2、 以传授知识为本位,忽视培养学生的能力。

3、以完成教案为目的,忽视教学方法的改革。

(一)、注重对学生数学学习过程和结果的评价

(二)、恰当评价学生基础知识和基本技能

(三)、重视评价学生发现问题、解决问题的能力

(四)、评价主体和方式要多样化

总之,每种评价方式都有自己的特点,评价时应结合评价内容与学生学习的特点加以选择。这样才能使课堂具有发展性,充满生命力。

4.(1)什么是类比推理?(2)写出类比推理的表示形式。(3)怎样才能增加由类比得出的结论的可靠性?p75

答:(1)类比是指一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。常称这样的思维方法为类比法推理,也称类比推理。

(2)类比推理表现形式:

A具有性质a1,a2,…,an及d;

B具有性质a'1,a'2…,a'n;

因此,B也可能具有性质d'.

其中,a1与a'1,a2与a'2,…an 与a'n,d与d'分别相同或相似。

(3)欲增加由类比作出的结论的可靠性,应尽量满足下列条件:

1、A和B共同(或相似)的属性尽可能多些;

2、这些共同(或相似)的属性应是类比对象A与B的主要属性;

3、这些共同(或相似)的属性应包括类比对象的各个不同方面,并且尽可能是多方面的;

4、可迁移的属性d应该是和a1,a2,…an属于同一类型。

5.结合自己的教学经验,谈谈目前的数学课程改革呈现的特点。p189

答:第一,把“现实数学”作为数学课程的一项内容。《数学课程标准》提供了“现实数学”的“案例”。

第二,把“数学化”作为数学课程的一个目标。学生学习数学化的过程是将学生的现实数学进一步提高、抽象的过程。

第三,把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会。把传统的“听中学”与“看中学”变为主动的、活动的“做中学”和“玩中学”,为学生创造情境。

第四,把“问题解决”作为数学教学的一种模式。“问题解决”的教学模式,即:情境——问题——探索——结论——反思。

第五,把“数学思想方法”作为课程体系的一条主线,提出基本的数学思想方法,如观察法、模型方法等;

第六,把“数学思想方法”作为数学课程的一个方面。《课》强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们获得广泛的数学活动的经验;

第七,把合作交流看成学生学习数学的一种方式,让学生在解决问题的过程中学会与他人合作,并能与他人交流思维的过程和结论;

第八,把“现代信息技术”作为学生学习数学的一种工具。

6.作为数学教师,你认为在小学数学教学中应该如何加强数学思想的渗透?p192-193

答:数学思想方法是联系知识与能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质具有十分重要的作用,在数学教学中,必须重视数学思想方法的教学渗透。

首先,要充分挖掘教材中的数学思想方法。比如,在进行加法结合律的教学中,可进行从特殊到一般的归纳概括,并及时介绍这种基本而又常用的思想方法。

其次,要有目的、有意识、有计划、有步骤地孕育有关数学的思想方法。在进行教学时,一般可以从教学内容中所蕴含的数学思想方法去考虑孕育或解释这些数学思想方法,明确学生在什么层次上把握数学思想方法。然后进行合理的教学设计,从教学目标的明确、问题的提出、情境的创设,到教学方法的选择,整个教学过程都要精心设计安排,做到有目的、有意识地进行数学思想方法的教学。

实践表明,数学思想方法与数学知识是数学学科中两个不可分割的范畴。它们之间相互影响,相互促进。在教学中应抓住契机,适时地挖掘和提炼,促使学生去体验、运用思想方法,建立良好的认知结构和完善的能力结构。

7.简述数学思想方法教学的几个主要阶段。p198-199

答:学生理解数学思想方法要经历潜意识阶段、明朗化阶段、深化理解三个阶段。

专业好文档

数学思想方法教学主要有多次孕育、初步理解、简单应用三个阶段,三个阶段相互依赖、相互促进、不可或缺。对此,可从下列几个方面加以理解:

第一、多次孕育阶段。数学思想方法教学的多次孕育阶段,是根据学生学习数学思想方法存在潜意识阶段而设计的。因为潜意识的作用是缓慢的、渐进的,所以要反复孕育,而且对于复杂的、难度较大的思想方法,孕育的次数也相应多些。如,在教学化归方法时,我们

可以采取: 首先在教“平行四边形面积”时孕育化归方法。要求学生通过把平行四边形化为长方形,再利用长方形的面积公式来推导出平行四边形的面积公式。

在教“三角形面积”时进一步孕育化归方法。要求学生将三角形化为平行四边形,利用平行四边形的面积公式导出三角形的面积公式。

第二、初步理解阶段。数学思想方法教学的初步理解阶段,是根据学生学习数学思想方法存在明朗化阶段而设汁的。当学生对某种数学思想方法的感性认识和经验已经比较丰富了,我们就可以正面地、直接地介绍某种数学思想方法,并要求学生初步掌握该方法解决问题的要领。如,经过前面多次孕育后,在教学:‘加法和乘法交换律’’时,我们引领学生对一些特殊的例子进行观察、归纳、提出猜想(交换律)和验证猜想(交换律),使他们亲历了用归纳猜想方法获取新知识的过程,再让学生初步理解归纳猜想方法就是水到渠成。

第三、简单应用阶段。数学思想方法教学的简单应用阶段,是根据学生学习数学思想方法存在深化理解阶段而设计的。这个阶段主要是为学生应用已经初步形成的思想方法创造条件,力求使学生在解决问题的实践过程中逐步深化对数学思想方法的理解。如,当学生初步理解归纳猜想方法后,引导学生猜想减法和除法是否有交换律,要求学生自己进行归纳猜想和验证猜想,从而使学生加深了对归纳猜想方法的理解和认识。

专业好文档

Michel Platini, president of European football's governing body, has also ordered an immediate investigation into the referee's actions.

CSKA said they were "surprised and disappointed" by Toure's complaint. In a statement the Russian side added: "We found no racist insults

from fans of CSKA."

Baumgartner the disappointing news: Mission aborted.

The supersonic descent could happen as early as Sunda.

Winger Tuivasa-Sheck,

who scored two tries in the Kiwis' 20-18 semi-final win over England, has

been passed fit after a lower-leg injury, while Slater has been named at

full-back but is still recovering from a knee injury aggravated against

USA.

Both sides boast 100% records heading into the encounter but Australia

have not conceded a try since Josh Charnley's effort in their first pool

match against England on the opening day.

Aussie winger Jarryd Hayne is the competition's top try scorer with nine,

closely followed by Tuivasa-Sheck with eight.

But it is recently named Rugby League International Federation player of

the year Sonny Bill Williams who has attracted the most interest in the

tournament so far.

The Kiwi - with a tournament high 17 offloads - has the chance of

becoming the first player to win the World Cup in both rugby league and

rugby union after triumphing with the All Blacks in 2011.

"I'd give every award back in a heartbeat just to get across the line this

weekend," said (lack of) air up there

Watch mCayman Islands-based Webb, the head of Fifa's anti-racism

taskforce, is in London for the Football Association's 150th anniversary

celebrations and will attend City's Premier League match at Chelsea on

Sunday.

"I am going to be at the match tomorrow and I have asked to meet Yaya

Toure," he told BBC Sport.

"For me it's about how he felt and I would like to speak to him first to find

out what his experience was."

Uefa has opened disciplinary proceedings against CSKA for the "racist behaviour of their fans" during City's 2-1 win.

The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm -- winds less than 2 mph, with no

precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the

troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than

the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the

tropopause),e can expect a lot of turbulence.

The balloon will slowly drift to the edge of space at 120,000 feet (

Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.

They blew it in 2008 when they got caught cold in the final and they will not make the same mistake against the Kiwis in Manchester.

Five years ago they cruised through to the final and so far history has repeated itself here - the last try they conceded was scored by England's Josh

Charnley in the opening game of the tournament.

That could be classed as a weakness, a team under-cooked - but I have been impressed by the Kangaroos' focus in their games since then.

They have been concentrating on the sort of stuff that wins you tough, even contests - strong defence, especially on their own goal-line, completing sets

and a good kick-chase. They've been great at all the unglamorous stuff that often goes unnoticed in the stands but not by your team-mates.

It is as though their entire tournament has been preparation for the final.

In Johnathan Thurston, Cooper Cronk, Cameron Smith and either Billy Slater or Greg Inglis at full-back they have a spine that is unmatched in rugby

league. They have played in so many high-pressure games - a priceless asset going into Saturday.

The Kiwis are a lot less experienced but winning a dramatic match like their semi-final against England will do wonders for their confidence.

专业好文档

They defeated Australia in the Four Nations final in 2010 and the last World Cup, and know they can rise to the big

occasion.

专业好文档

2024年2月19日发(作者:常秀慧)

专业好文档

内部文件,版权追溯

内部文件,版权追溯

内部文件,版权追溯

数学思想与方法课程综合辅导资料

一、单项选择题

1.算法的有效性是指( C )。P.122

A.如果使用该算法从它的初始数据出发,能够估计问题的解答范围

B.如果使用该算法从它的初始数据出发,能够引出该问题的另一种求解方案

C.如果使用该算法从它的初始数据出发,能够得到这一问题的正确解

D.如果使用该算法从它的初始数据出发,能够大致猜想出问题的答案

2.所谓数形结合方法,就是在研究数学问题时,(A )的一种思想方法。P156

A.由数思形、见形思数、数形结合考虑问题

B.由数学公式解决图形问题

C.由已知图形联想数学公式解决数学问题

D.运用代数与几何解决问题

3.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以( D )为典范。P1

A.阿拉伯的《论圆周》

B.印度的《太阳的知识》

C.希腊的《理想国》

D.中国的《九章算术》

4.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为( B )的趋势。P46

A.数学的各个分支相互独立并行发展

B.数学的各个分支相互渗透和相互结合

C.数学的各个分支呈现包容

D.数学的各个分支呈现互斥

5.学生理解或掌握数学思想方法的过程一般有三个主要阶段:( B )。P197

A.了解阶段、掌握阶段、运用阶段

B.潜意识阶段、明朗化阶段、深刻理解阶段

C.感觉阶段、体会阶段、领悟阶段

D.同化阶段、迁移阶段、掌握阶段

6.在数学中建立公理体系最早的是几何学,而这方面的代表著作是(B )。P1

A.阿拉伯的《论圆周》

B.古希腊欧几里得的《几何原本》

C.希腊的《理想国》

D.中国的《九章算术》

7.随机现象的特点是(A )。P23

A.在一定条件下,可能发生某种结果,也可能不发生某种结果

B.在一定条件下,发生必然结果

C.在一定条件下,不可能发生某种特定的结果

D.在一定条件下,发生某种结果的概率微乎其微

8.演绎法与( D )被认为是理性思维中两种最重要的推理方法。P67

A.推理法

B.模型法

C.猜想法

D.归纳法

9.在化归过程中应遵循的原则是( A )。P105

A.简单化原则、熟悉化原则、和谐化原则

B.重复化原则、熟悉化原则、明朗化原则

C.简单化原则、熟悉化原则、重复化原则

D.熟悉化原则、和谐化原则、明朗化原则

10.(C )是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。P191

A.理论方法

B.实验方法

C.数学思想方法

D.计算方法

11.所谓类比,是指( B )。P75

A.由一类事物推测与另一类事物的相似的一种推理方法

B.由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种

专业好文档

推理方法

C.根据某种事物的属性知道另一种事物的属性的一种方法

D.两类事物具有可比性的一种推理方法

12.猜想具有两个显著特点:( D )。P73

A.推测性与准确性

B.科学性与精准性

C.准确性与必然性

D.科学性与推测性

13.所谓数学模型方法是( A )。P132

A.利用数学模型解决问题的一般数学方法

B.利用数学原理解决问题的一般数学方法

C.利用数学实验解决问题的一般数学方法

D.利用数学工具解决问题的一般数学方法

14.数学模型具有( C )特性。P131

A.抽象性、随机性和演绎性、预测性

B.抽象性、准确性和必然性、预测性

C.抽象性、准确性和演绎性、预测性

D.抽象性、准确性和演绎性、偶然性

15.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对

个别事物所作的观察陈述为基础,上升为普遍的认识——( A )的认识。P64

A.由对个体特性的认识上升为对个体所属的种的特性

B.由个体特性的认识上升为集体特性

C.由集体特性上升为个体特性

D.由属的特性上升为种的特性

16.三段论是演绎推理的主要形式,它由(D )三部分组成。P94

A.大结论、小结论和推理

B.小前提、小结论和推理

C.大前提、小结论和推理

D.大前提、小前提和结论

17.传统数学教学只注重(B )的传授, 而忽略对知识发生过程中( )的挖掘。P183

A.具体化数学知识,数学理论方法

B.形式化数学知识,数学思想方法

C.数学解题强化,数学思想方法

D.数学系统结构知识,数学思想方法

18.特殊化方法是指在研究问题中,( B )的思想方法。P164

A.运用特殊方法解决问题

B.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

C.从对象的一个给定范围出发,进而考虑某个包含于该范围的较小范围

D.从对象的一个给定区间出发,进而考虑某个包含于该区间的较小区间

19.分类方法的原则是( D )。P151

A.按种类逐步划分

B.按作用逐步划分

C.按性质逐步划分

D.不重复、无遗漏、标准同一、按层次逐步划分

20.数学模型可以分为三类:( C )。P131

A.人口模型、交通模型、生态模型

B.规划模型、生产模型、环境模型

C.概念型、方法型、结构型

D.初等模型、几何模型、图论模型

21.数学的第一次危机是由于出现了( C )而造成的。P82

A.无理数(或3)

pB.整数比q不可约

C.无理数(或2)

D.有理数无法表示正方形边长

22.算法大致可以分为( A )两大类。P128

A.多项式算法和指数型算法

B.对数型算法和指数型算法

专业好文档

C.三角函数型算法和指数型算法

D.单向式算法和多项式算法

23.反驳反例是用( D )否定( )的一种思维形式。P81

A.偶然 必然

B.随机 确定

C.常量 变量

D.特殊 一般

24.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是( B )。P78

A.猜测

类比 联想

B.联想 类比 猜测

C.类比 联想 猜测

D.类比 猜测 联想

25.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳 猜测 特例

B.猜测 特例 归纳

C.特例 猜测 归纳

D.特例 归纳 猜测

26.传统数学教学只注重( A )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.形式化

B.科学化

C.系统化

D.模型化

27.所谓统一性,就是( C )之间的协调。P46

A.整体与整体

B.部分与部分

C.部分与部分、部分与整体

D.个别与集体

28.中国《九章算术》( A )的算法体系和古希腊《几何原本》( )的体系在数学历史发展进程中争奇斗妍、交相辉映。P1

A.以算为主 逻辑演绎

B.演绎为主 推理证明

C.模型计算为主 几何作画为主

D.模型计算 几何证明

29.所谓数学模型方法是( B )。P132

A.利用数学实验解决问题的一般数学方法

B.利用数学模型解决问题的一般数学方法

C.利用数学理论解决问题的一般数学方法

D.利用几何图形解决问题的一般数学方法

30.公理化方法就是从( D )出发,按照一定的规定定义出其它所有的概念,推导出其它一切命题的一种演绎方法。P95

A.一般定义和公理

B.特定定义和概念

C.特殊概念和公理

D.初始概念和公理

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——( B )的认识。P64

A.由对个体特性的认识抽象为对种的特性

B.由对个体特性的认识上升为对个体所属的种的特性

C.由对个体特性的认识上升为对个体所属的属的特性

D.由对个体特性的认识抽象为对个体所属的种的特性

32.算法大致可以分为( A )两大类。P128

A.多项式算法和指数型算法

B.单项式算法和对数型算法

C.单项式算法和指数型算法

D.多项式算法和对数型算法

33.反驳反例是用( D )否定( )的一种思维形式。P81

A.一般 特殊

B.实例 特例

C.特殊 特例

D.特殊 一般

专业好文档

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(B )。P78

A.类比联想

猜测

B.联想类比猜测

C.联想猜测类比

D.猜测类比联想

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳特例猜测

B.特例归纳猜测

C.特例猜测归纳

D.猜测归纳特例

36.传统数学教学只注重( D )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.理论化

B.实践化

C.模式化

D.形式化

37.所谓统一性,就是( C )之间的协调。P46

A.部分与部分、整体与整体

B.形式与内容

C.部分与部分、部分与整体

D.理论与实践

38.数学的第二次危机是17世纪伴随牛顿和莱布尼兹创立( A )而产生的。P83

A.微积分

B.解析几何

C.数学悖论

D.无理数2

39.我国《数学课程标准》(实验稿)的总体目标指出,数学知识包括( B )和( )。P183

A.数学知识 数学思想

B.数学事实 数学活动经验

C.数学理论 数学实践

D.数学模型 数学活动经验

40.所谓特殊化是指在研究问题时,( D )的思想方法。P164

A.从对象的一个给定集合出发,进而考虑某个包含该集合的较大集合

B.从对象的一个给定范围出发,进而考虑该范围中某个较小的区间

C.从对象的一个给定数集出发,进而考虑某个包含于该数集的较小子数集

D.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

41.所谓数形结合方法,就是在研究数学问题时,( C )的一种思想方法。P156

A.由形思数、见数思质、数形质结合考虑问题

B.由数据、图形结合考虑问题

C.由数思形、见形思数、数形结合考虑问题

D.由数思形、见形思数、数形分离考虑问题

42.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于( A ),以《九章算术》为典范。P1

A.计算和实际应用

B.模仿和度量

C.推理和证明

D.计算和证明

43.不完全归纳法是根据( D ),作出关于该类事物的一般性结论的推理方法。P68

A.对某类事物的整体的分析

B.对某类事物单个对象的分析

C.对某类事物中的特定对象的分析

D.对某类事物中的部分对象的分析

44.公理化的三条逻辑上的要求是( D )。P37

A.依赖性、矛盾性、无备性

B.独立性、矛盾性、完备性

C.依赖性、无矛盾性、完备性

D.独立性、无矛盾性、完备性

专业好文档

45.《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家( B )注释的版本。P6

A.张衡

B.刘徽

C.祖冲之

D.贾宪

46.《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个( C )、5个( )。P2

A.方程 定义

B.推理 公理

C.公式 公理

D.公式 定义

47.数学思想方法教学主要有( B )三个阶段。P198

A.单次孕育、初步掌握、综合应用

B.多次孕育、初步理解、简单应用

C.多次孕育、深入理解、综合应用

D.单次孕育、深入理解、简单应用

48.化隐为显原则是数学思想方法教学原则之一,它的含义就是把隐藏在数学知识背后的( A )显示出来,使之明朗化,以达到教学目的。P199

A.数学思想方法

B.数学规律

C.数学定义

D.数学公式

49.在数学学科中人们常常把研究确定性现象数量规律的那些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示( ),它的这种局限性迫使数学家们建立一种专门分析( A )的数学工具。这个数学工具就是( )。P22

A.随机现象 随机现象 概率理论和数理统计

B.必然现象 必然现象 代数理论

C.变量规律 变量规律 数学分析

D.分形几何 分形几何 拓扑理论

50. 小学生的思维特点是( D )。P197

A.感性思维

B.理性思维

C.逻辑思维

D.具体形象思维

二、填空题

1.所谓数形结合方法,就是在研究数学问题时,(由数思形,见形思数,数形结合考虑问题)的一种思想方法。

2.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。

3.不完全归纳法是根据(对某类事物中的部分对象的分析),作出关于该类事物的一般性结论的推理方法。

4.公理化的三条逻辑上的要求是(独立性、无矛盾性、完备性)。

5.《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家(刘徽)注释的版本。

6.《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个(公设)、5个(公理)。

7.数学思想方法教学主要有(多次孕育、初步理解、简单应用)三个阶段。

8.`化隐为显原则是数学思想方法教学原则之一,它的含义就是把隐藏在数学知识背后的(数学思想方法)显示出来,使之明朗化,以达到教学目的。

9.在数学学科中人们常常把研究确定性现象数量规律的那些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示(随机现象),它的这种局限性迫使数学家们建立一种专门分析(随机现象)的数学工具。这个数学工具就是(概率理论和数理统计)。

10. 小学生的思维特点是(具体形象思维)。

11.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。12.演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

13.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

专业好文档

14.分类方法具有三个要素:(被划分的对象、划分后所得的类的概念、划分的标准)。

15.数学研究的对象可以分为两类:一类是(研究数量关系的),另一类是(研究空间形式的)。

16.所谓社会科学数学化就是指(数学向社会科学渗透),也就是运用(数学方法)来揭示社会现象的一般规律。

17.在古代的(游戏和赌博)活动中就有概率思想的雏形,但是作为一门学科则产生于17世纪中期前后,它的起源与一个所谓的点数问题有关。

18.在数学中建立公理体系最早的是(几何学),而这方面的代表著作是古希腊学者欧几里得的(《几何原本》)。

19.《九章算术》是世界上最早系统地叙述(分数)运算的著作,它关于(负数)的论述也是世界上最早的。

20.数学知识与数学思想是数学教学的两条主线,(数学知识)是一条明线,它被写在教材中;(数学思想)则是一条暗线,需要教师挖掘、提炼并贯穿在教学过程中。

21.学生理解或掌握数学思想方法的过程有如下三个主要阶段(潜意识阶段、明朗化阶段、深刻理解阶段)。

22.面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者(找出反例说明此猜想为假),并且进一步修正或否定此猜想。

23.变量数学产生的数学基础是(解析几何),标志是(微积分)。

24.化归方法是将(待解决的问题)转化为已知问题。

25.公理方法是从尽可能少的初始概念和公理出发,应用严格的(逻辑推理),使一门数学构建成为演绎系统的一种方法

26.数学的第一次危机是由于出现了(不可公度性)而造成的。

27.数学猜想具有两个明显的特点:(科学性)与(推测性)。

28.所谓社会科学数学化就是指数学向(社会科学)的渗透,运用数学方法来揭示(社会现象)的一般规律。

29.分类必须遵循的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

30.深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的多种因果关系的分析)而得到的类比。

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

32.算法大致可以分为(多项式算法和指数型算法)两大类。

33.反驳反例是用(一个反例)否定(猜想)的一种思维形式。

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(联想-类比-猜测)。

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是(猜测-归纳-特例)。

36.传统数学教学只注重(形式化的)的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

37.所谓统一性,就是(部分与部分、部分与整体)之间的协调。

38.中国《九章算术》(以算为主)的算法体系和古希腊《几何原本》(逻辑演绎)的体系在数学历史发展进程中争奇斗妍、交相辉映。

39.所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

40.所谓特殊化是指在研究问题时,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

41.算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解)。

42.所谓数形结合方法,就是在研究数学问题时,(由数思形、见形思数、数形结合考虑问题)的一种思想方法。

43.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(中国《九章算术》)为典范。

44.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

45.学生理解或掌握数学思想方法的过程一般有三个主要阶段:(潜意识阶段、明朗化阶段、深刻理解阶段)。

46.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的(《几何原本》)。

47.随机现象的特点是(在一定条件下,可能发生某种结果,也可能不发生某种结果)。

48.演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

专业好文档

49.在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。

50.(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

51.三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

52.传统数学教学只注重(形式化的数学知识)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。

53.特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

54.分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

55.数学模型可以分为三类:( 概念型、方法型、结构型)。

56.学生理解或掌握数学思想方法的过程有如下三个主要阶段(潜意识阶段、明朗化阶段、深刻理解阶段)。

57.强抽象就是指,通过(把一些新的特征加入到某一概念中)而形成新概念的抽象过程。

58.菱形概念的抽象过程就是把一个新的特征:(一组邻边相等),加入到平行四边形概念中去,使平行四边形概念得到了强化。

58.分类必须遵循的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

59.面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手:演绎证明此猜想为真;或者(找出反例说明此猜想为假),并且进一步修正或否定此猜想。

60.《几何原本》所开创的(公理化方法)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

61.变量数学产生的数学基础是(解析几何),标志是(微积分)。

62.(数学基础知识于数学思想方法)是数学教学的两条主线。

63.深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的各种因果关系的分析 )而得到的类比。

64.一个概括过程包括(比较、区分、扩张、分析等几个主要环节)。

65.所谓类比,是指(由一类事物所具有的某种属性可以推测与其类似的事物也具有这种属性的一种推理方法);常称这种方法为类比法,也称类比推理。

66.猜想具有两个显著特点:(一是具有一定的科学性,二是具有一定的推测性)。

67.所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

68.数学模型具有(抽象性、准确性和演绎性、预测性)特性。

69.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

70.三段论是演绎推理的主要形式。三段论由(大前提、小前提、结论)三部分组成。

71.化归方法是指,(数学家们把待解决的问题通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法)。

72.在计算机时代,(计算方法 )已成为与理论方法、实验方法并列的第三种科学方法。

73.算法具有下列特点:(有限性、确定性、有效性)。

74.化归方法的三个要素是:(化归对象、化归目标、化归途径)。

75.根据学生掌握数学思想方法的过程有潜意识、明朗化、深刻理解三个阶段,可相应地将小学数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。

76.一个概括过程包括(比较、区分、扩张、分析等几个主要环节)等几个主要环节。

77.古代数学大致可以分为两种不同的类型:一种是(崇尚逻辑推理),以《几何原本》为代表;一种是(长于计算和实际应用),以《九种算术》为典范。

78.《九章算术》思想方法的特点主要有(开放的归纳体系、算法化的内容、模型化的方法)。

79.初等代数的特点是(用字母符号来表示各种数,研究的对象主要是代数式的计算和方程的求解)。

三、判断题

1.提出一个问题的猜想是解决这个问题的终结。 ( × )

2.一个数学理论体系内的每一个命题都必须给出证明。 ( × )

3.数学中的许多问题都无法归结为寻找具体算法的问题。 ( × )

4.计算是随着计算机的发明而被人们广泛应用的方法。 ( × )

5.反例在否定一个命题时它并不具有特殊的威力。 ( × )

6.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。

专业好文档

(√ ) ( × )

7.分类可使知识条理化、系统化。 21.计算机是数学的创造物,又是数学的创造者。 ( √)

( √ ) 22.抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。 (× )

8.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 23.一个数学理论体系内的每一个命题都必须给出证明。 ( ×)

( √ ) 24.贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化9.对同一数学对象,若选取不同的标准,可以得到不同的分类。 思想。 (√ )

( √ )

10.完全归纳法实质上属于演绎推理的范畴。

( √ )

11.数学模型方法是近代才产生的。

( × )

12.在小学数学教学中,本教材所涉及到的数学思想方法并不多见。

( × )

13.所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想。

( √ )

14.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 ( √ )

15.对同一数学对象,若选取不同的标准,可以得到不同的分类。

( √ )

16.数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。

( × )

17.数学基础知识和数学思想方法是数学教学的两条主线。

( √ )

18.新颁发的《数学课程标准》中的特点之一“再创造”体现了我国数学课程改革与发展的新的理念。

( √ )

19.法国的布尔巴基学派利用数学结构实现了数学的统一。

( √ )

20.由类比法推得的结论必然正确。

25.提出一个问题的猜想是解决这个问题的终结。 (×)

26.数学模型方法在生物学、经济学、军事学等领域没应用。

(× )

27.在解决数学问题时,往往需要综合运用多种数学思想方法才能取得效果。

(√ )

28.如果某一类问题存在算法,并且构造出这个算法,就一定能求出该问题的精确解。(× )

29.分类可使知识条理化、系统化。

( √ )

30.在建立数学模型的过程中,不必经过数学抽象这一环节。

( × )

31.《九章算术》不包括代数、几何内容。

( × )

32.既没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识。 ( √ )

33.对同一数学对象,若选取不同的标准,可以得到不同的分类。

( √ )

34.特殊化是研究共性中的个性的一种方法。

( × )

35.数学模型方法应用面很窄。

( × )

36.数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。

( × )

37.由类比法推得的结论必然正确。

专业好文档

( × ) 52.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分38.有时特殊情况能与一般情况等价。 放大后,其结构与原先的一样。 (√)

(√ ) 53.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科39.演绎的根本特点就是当它的前提为真时,结论必然为真。 学测试成绩名列前茅。 (×)

(√ ) 54.我国《数学课程标准》指出,数学知识就是“数与形以及演绎的知识”。

40.抽象得到的新概念与表述原来的对象概念之间不一定有种属关系。 (√)

( ×)

41.完全归纳法实质上属于演绎推理的范畴。

( √)

42.古希腊的柏拉图曾在他的学校门口张榜声明:不懂几何的人不得入内。这是因为他的学校里所学习的课程要用到很多几何知识。

(× )

43.完全归纳法的一般推理形式是:

设S=A1,A2,A3,An,,由于A1、A2、 An具有性质P,因此推断集合S中的每一个对象都具有性质P。

( ×)

44.《九章算术》是世界上最早系统地叙述分数运算的著作,它关于负数的论述也是世界上最早的。

( √)

45.算术反映的是物体集合之间的函数关系。

( × )

46.《几何原本》是欧几里得独立创作的。 ( × )

47.《九章算术》系统地总结了先秦和东汉初年我国的数学成就。 ( √)

48.丢番图在其著作《算术》中用了许多符号,它标志着文字代数开始向简写代数转变,丢番图的《算术》是数学史上的里程碑。 (√ )

49.解析几何的产生主要归功于笛卡儿和费尔马。 ( √)

50.英国的牛顿和德国的莱布尼兹分别以几何学和物理学为背景用无穷小量方法建立了微积分。 (√ )

51.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。 (×)

55.在数学基础知识与数学思想方法是数学教学的两条主线,而且是两条明线。

(×)

56.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。 (√)

57.数学公理化方法在其他学科也能起到作用,所以它是万能的。 (×)

58.数学模型具有预测性、准确性和演绎性,但不包括抽象性。 (×)

59.猜想具有两个显著的特点:一定的科学性和一定的推测性。 (√)

60.表层类比和深层类比其涵义是一样的。 (×)

61.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法解决了其无解。(√)

62.分类方法具有两要素:母项与子项。 (×)

63.算法具有无限性、不确定性与有效性。 (×)

64.理论方法、实验方法和计算方法并列为三种科学方法。 (√)

65.最早使用数学模型方法的当数中国古人。 (√)

66.化归方法是一种发现问题的方法。 (×)

67.类比猜想的主要步骤是:猜测联想类比。 (×)

68.尽管中西方对数学的贡献不同,但在数学思想方面是一致的。 ( ×)

69.不可公度性的发现引发了第二次数学危机。 (×)

70.中学生只需理解数学思想方法就能运用自如了,不需经历多次孕育阶段。(×)

四、简答题

1.第一次数学危机最终如何解决了? p83(p245)

答:为了克服无理数悖论引发的危机,古希腊数学家发展了几何学中的比例论,它等价于无理数理论。当然,从理论上彻底解决这一危机还是靠现代实数理论的建立。在实数理论中,无理数可以定义为有理数的极限。第一次数学危机的结果是使数学逐渐走上了演绎科学的道路,为数学的公理化奠定了基础。

专业好文档

2.何谓化归方法?它遵循哪三个原则?p102-105

答:所谓“化归”,可以理解为转化和归结的意思。化归方法是指数学家们把待解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。

它主要遵循:1、简单化原则;2、熟悉化原则;3、和谐化原则。

3.什么是公理方法和公理体系?p95-96

答:公理方法就是从初始概念和公理出发,按照一定的规定(逻辑规则)定义出其他所有的概念,推导出其他一切命题的一种演绎方法。由初始概念、公理、定义、逻辑规则、定理等构成的演绎体系叫做公理体系。公理方法是构成公理体系的方法,公理体系是由公理方法得到的数学理论体系。

4.什么是类比猜想?并举一个例子说明。p77

答:人类运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想。例如,分式与分数非常相似,只不过是用字母代替代数而已。因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。

5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。p200

答:数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。学生对每种数学思想方法的认识都是在反复理解和运用中形成的,是从个别到一般,从具体到抽象,从感性到理性,从低级到高级地沿着螺旋式方向上升的。如,学生理解数形结合方法可从小学的画示意图找数量关系着手孕育;学习数轴时,要求学生会借助数轴来表示相反数、绝对值、比较有理数的大小。

6.简述《几何原本》思想方法特点。p3

答:答:(1)封闭的演绎体系: 因为在《几何原本》中,除了推导时所需要的逻辑规则外, 每个定理的证明所采用的论据均是公设、公理或前面已经证明过 的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上 对概念下定义的要求,原则上不再依赖其它东西。

(2)抽象化的内容 :它所探讨的是概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。

(3)公理化的方法。

7.什么是算法的有限性特点?试举一个不符合算法有限性特点的例子。p121

答:一个算法必须在有限步内终止。例如,十进制小数的除法的算法。若取数4.5和3作为初始数据,计算结果为1.5.

但对于初始数据20和3,计算过程为:过程为

6.6666……

3| 20

18

20

18

20

18

无论怎样延续这个过程都不能结束,同时也不会出现中断。可见,十进小数除法对于20和3这组数不符合算法的有限性这个特点。

8.我国数学教育存在哪些问题?试举例子说明。p178-181

答:我国数学教育存在的问题主要有:

第一,数学教学重结果,轻过程;重解题训练,轻智力、情感开发;不重视创新能力培养,虽然学生考试分数高,但是学习能力低下。

第二,重模仿,轻探索,学习缺少主动性,缺乏判断力和独立思考能力。例如,有道著名的测试题:“有一条船上,有75头牛,32头羊,问船长几岁?”学生把75和32两个数相加,得到107,认为这不会是船长的年龄,相乘、相除又不合适,选择相减得出43岁。美国著名数学教育家认为“这是我们把学生越教越笨的典型例子。”

第三,学生课业负担过重。

9.简述公理化方法发展。p96-100

答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。第一个具体的公理体系就是欧几里得的《几何原本》。非欧几何是抽象的公理体系的典型代表。希尔伯特的《几何基础》开创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。

10.简述概括与抽象的关系。p65

答:概括方法与抽象方法是不同的。抽象是舍弃事物的一些属性而收括固定出其

专业好文档

固有的另一些属性的思维过程,抽象得到的新概念与表述原来的对象的概念之间不一定有种属关系。概括是在思维中由认识个别事物的本质属性,发展到认识具有这种本质属性的一切事物,从而形成关于这类事物的普遍概念。

尽管有差别,但是又互相联系、密不可分。抽象是概括的基础,没有抽象就不能认识任何事物的本质属性,就无法概括。概括也是抽象思维过程中所必需的一个环节。

11.简述培养数学猜想能力的途径。p88-93

答:引导学生面对问题,认真观察和思考,通过归纳或者类比提出猜想,演绎证明猜想为真,或者寻找反例说明猜想为假,有助于激发学生的创新精神。数学猜想能力培养途径:用猜想学习新知识;用猜想探究数学规律;用猜想帮助解题。

12.微积分产生可以归结为哪四类情况?p19

答:1、已知物体移动的距离为时间的函数,求物体瞬时速度和加速度;反过来,已知物体的加速度为时间的函数,求速度和距离;

2、求曲线切线的斜率和方程;

3、求函数的最大值和最小值;

4、求曲线的长度,曲边梯形的面积,曲面围成的物体的重心。

13.常量数学应用的局限性是什么?p16

答:初等数学都是以不变的数量(即常量)和固定的图形为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象。可是对于那些运动变化的事物和现象,它们显然无能为力。

14.为什么说《几何原本》是一个封闭的演绎体系?p3

答:因为在《几何原本》中,除了推导时所需要的逻辑规则外, 每个定理的证明所采用的论据均是公设、公理或前面已经证明过 的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。因此《几何原 本》是一个封闭的演绎体系。另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是 封闭的。所以,《几何原本》是一个封闭的演绎体系。

15.为什么说最早使用数学模型方法的是中国人?p134

答:因为在中国古算书《九章算术》中就已经系统地使用了数学模型。《九章算术》将246个题目归结为九类,即九类不同的数学模型,故名为“九章”。它在每一章中所设置的问题,都是从大量的实际问题中选择具有典型意义的现实原型,然后再通过“术”(即算法)转化为数学模型。其中有些章就是专门讨论某种数学模型的应用,如“勾股”“方程”等。

16.简述表层类比,并用举例说明。p75-76

答:表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。这种类比可靠性较差,结论具有很大的或然性。如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结论上的类比。

17.《几何原本》贯彻哪两条逻辑要求?p97

答:《几何原本》贯穿了两条逻辑要求:第一,公理必须是明显的,因而是无需加以证明的,其是否真实应受推出结果的检验,但它仍是不加证明而采用的命题;初始概念必须是直接可以理解的,因而无需加以定义。第二,由公理证明定理时,必须遵守逻辑规律与逻辑规则;同样,通过初始概念以直接或间接方式对派生概念下定义时,必须遵守下定义的逻辑规则。

18.简述数学抽象的特征。p61

答:数学抽象具有以下特征:

(1)数学抽象具有无物质性;

(2)数学抽象具有层次性;

(3)数学抽象过程要凭借分析或直觉;

(4)数学的抽象不仅有概念抽象还有方法抽象。

19.简述将“化隐为显”列为数学思想方法教学的一条原则的理由。p199

答:由于数学思想方法往往隐含在知识的背后,知识教学虽然蕴含着思想方法,但是如果不是有意识地把数学思想方法作为教学对象,在数学学习时,学生往往只注意到处于表面的数学知识,而注意不到处于深层的思想方法,因此,进行数学思想方法教学时必须以数学知识为载体,把隐藏在知识背后的思想方法显示出来,使之明朗化,才能通过知识教学过程达到思想方法教学之目的。

20.简述特殊化方法在数学教学中的应用。p166-169

答:特殊化方法在数学教学中的应用大致有以下四个方面:

专业好文档

(1)利用特殊值(图形)解选择题;

(2)利用特殊化探求问题结论;

(3)利用特例检验一般结果;

(4)利用特殊化探索解题思路。

21.什么是归纳猜想?并举一个例子说明。p73

答:人们运用归纳法,得出对一类现象的某种一般性认识的一种推测性的判断,即猜想,这种思想方法称为归纳猜想。例如,人们在量度了许多圆的周长和半径后,发现它们的比值总是近似地等于3.14,于是提出了圆周率是3.14的猜想,后来数学家从理论上证明了圆周率的数值为π,果然和3.14很接近。

22. 在实施数学思想方法教学时应注意哪些问题?p205

答:(1)要把数学思想方法的学习纳入教学目标,并在教案中设计好数学思想方法的教学内容和教学过程,这就要求教师具备较高的数学修养,具备数学方法论、数学发展史、数学思想方法的基础知识,更需要教师更新教学观念,不断提高对教学重要性的认识。

(2)重视数学知识发生、发展的过程,认真设计数学思想方法教学的目标;

(3)做好数学思想方法教学的铺垫工作和巩固工作;

(4)不同类型的数学思想方法应有不同的教学要求;

(5)注意不同数学思想方法的综合运用。

23.简述确定性现象、随机现象的特点以及确定性数学的局限性。p22

答:(1)人们常常遇到两类截然不同的现象,一类是决定性 现象,另一类是随机现象。决定性现象的特点是:在一定的条 件下,其结果可以唯一确定。因此决定性现象的条件和结果之 间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果, 也可能不发生某种结果。对于这类现象,由于条件和结果之间不 存在必然性联系。

(2)在数学学科中,人们常常把研究决定性现象数量规律的那些 数学分支称为确定数学。用这些的分支来定量地描述某些决定性 现象的运动和变化过程,从而确定结果。但是由于随机现象条件 和结果之间不存在必然性联系,因此不能用确定数学来加以定量 描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴 涵的规律性。这些是确定数学的局限所在。

24.简述计算机在数学方面的三种新用途。p119.3

答:(1)电子计算机把数学家从繁重的、单调的、重复性的脑力劳动中解放出来,让他们有更多的时间从事更富创造性的抽象思维工作,从而更有利于数学理论的发展;

(2)借助电子计算机的计算,人们可以得到一些新的猜想,并据此进一步作出理论证明;也可以对已有的结论进行验证;还可以用计算机来证明某些理论问题;

(3)电子计算机的发展本身也提出了许多数学理论问题。

25.简述化归方法的和谐化原则p106

答:和谐化是数学内在美的主要内容之一。美与真在数学命题和数学解题中一般是统一的。因此,我们在解题过程中,可根据数学问题的条件或结论以及数、式、形等的结构特征,利用和谐美去思考问题,获得解题信息,从而确立解题的总体思路,达到以美启真的作用。

26.简述代数解题方法的基本思想。p13

答:代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变化求出未知数的值。

27.试对《九章算术》思想方法的一个特点“算法化的内容”加以说明。p8

答:《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。以后遇到其他同类问题,只要按“术”给出的程序去做就一定能求出问题的答案。因此,内容的算法化是《九章算术》思想方法上的特点之一。

28.简述化归方法在数学教学中的应用p110-111

答:化归方法在数学教学中的功能主要有:

(1)利用化归方法学习新知识;

(2)利用化归方法指导解题;

专业好文档

(3)利用化归原则理清知识结构。

29.试用框图表示用特殊化方法解决问题的一般过程。p166

30.变量数学产生的意义是什么?p21

答:(1)变量数学的产生,为自然科学更精确地描述物质世界提供了有效的工具; (2)变量数学的产生,促进数学自身的发展和严密;

(3)变量数学的产生,是辩证法进入了数学。

31.简述类比的含义,数学中常用的类比有哪些?p75-77

答:类比是指一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。常称这样的思维方法为类比法推理,也称类比推理。

类比的类型有:表层类比(形式或结构上的简单类比)、深层类比(方法或模式上的纵向类比)、沟通类比(各分科之间的类比)。

32.简述计算工具的发展。p114-116

答:计算工具的发展大致经历了:古代的计算工具;机械式计算工具;电动式计算机;机电式计算机;电子计算机。

33.简述小学数学加强数学思想方法教学的重要性,具体表现?p185(p307)

答:(1)数学思想方法是知识向能力过渡的桥梁;

(2)人的数学智能依赖于数学思想方法的掌握;

(3)数学思想方法能有效地提高人的思维品质;

(4)数学思想方法能有效地促进人的全面发展。

34.简单说明社会科学数学化的主要原因。p50-51

答:主要原因有:

第一,社会管理需要精确化的定量数据,这是促使社会科学数学化的最根本的因素;

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化;第三,随着数学的进一步发展,它出现了一些适合社会历史现象的新的数学分支;第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

35.模型化的方法、开放性的归纳体系及算法化的内容之间的关系p244

答:模型化的方法与开放性的归纳体系及算法化的内容之间是相互适应并相互促进的。各个数学模型间虽然有一定联系,但它们更具有相对独立性。一个数学模型的建立与其他数学模型之间并不存在逻辑依赖关系,正因为如此,所以可以根据需要随时从社会实践中提炼出新的数学模型。而一定的算法必与一定的数学模型相匹配。另一方面,由于运用模型化的方法研究数学,新的数学模型只有寻找现实原型、立足于现实问题的研究,不可能产生封闭式的演绎体系。

36.算术与代数的解题方法基本思想有何区别?p12-13

答:算数解题方法的基本思想是:首先围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出用已知数据表示所求数量的算式,然后通过四则运算求得算式的结果。这种方法的关键之处是列算式,但面临较为复杂的数量关系的实际问题时,列算式方法较笨拙,也难以解决问题,因此代数产生。

而代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变化求出未知数的值。

37.为什么说数学模型方法是一种迂回式化归?p292

专业好文档

答:因为运用书香模型方法解决问题时,不是直接求出实际问题的解,因为这样做往往是行不通的或者花费昂贵。所以常常先将实际问题化归为一个合适的数学模型,然后通过求数学模型的解间接求出原实际问题的解,走的是一条迂回的道路,因此,我们说数学模型方法是一种迂回式化归。

38.为什么数形结合方法在数学中有着非常广泛的应用?p300(p156)

答:数学研究的是现实世界的数量关系和空间形式,而现实世界本身是同时兼备数与形两种属性的,既不存在有数无形的客观对象,也不存在有形无数的客观对象。因此,在数学发展的进程中,数和形常常结合在一起,在内容上相互联系,在方法上相互渗透,在一定条件下互相转化。充分运用数形结合方法解决数学问题,对于沟通代数、三角、几何各分支之间的联系,提高分析问题、解决问题的能力具有重要作用。

五、论述题

1.论述《几何原本》和《九章算术》思想方法的特点。p3-5 p7-9

答:《几何原本》思想方法上的特点:(1)封闭的演绎体系。 《几何原本》就是一个最早的标准的演绎体系:由少数不定义的概念,如点、线、平面等等,和不证明的命题——公理与公设——出发,在需要的地方,定义出相应的概念,按着一定的逻辑规则,演绎出所有其他命题来。在《几何原本》的演绎体系中,公理是最一般的命题,它们是一系列演绎推理的前提,这个体系的所有其他命题,都是从公理(通过适当的定义)推导出来的。除了推导所需要的逻辑规则外,《几何原本》的由一系列公理、定义、定理等构成的数学理论体系,原则上不必依赖于其他东西。 (2)抽象化的内容。《几何原本》以及以它为代表的古希腊数学著述,都是论述一般的、抽象的数学概念和命题的,它们探讨的只是概念和命题的各种逻辑关系,由一些给定了的概念和命题推演出另一些概念和命题。它不考虑产生这些概念和命题的社会背景,也不研究这些数学“模型”所由之产生的那些现实原型。(3)公理化的方法。作为现代数学的一种基本的表述方法和发展方式的公理法就是以欧几里得的《几何原本》开其端的。它采用了前面我们说的比较严格的演绎体系,通常称为公理体系,而建立公理体系的方法就称为公理方法。

《九章算术》思想方法的特点:(1)开放的归纳体系。《九章算术》的每一章都是同一类型的应用问题或者是通过同类数学模型采解决的多种应用问题。通过九章的内容,可以看出它是一个与社会实践密切相联系的“开放”体系,通过这些章中给出的算法,解决了当时社会生产和生活所提出来的各种计算问题。(2)算法化的内容。在每一章内举出若干个实际问题,对每个问题都给出答案,然后给出这一类问题的算法。《九章算术》中称这种算法为“术”,按“术”给出的程序去做就一定能求出问题的答案来。历来数学家对《九章算术》的注、校基本上都是在“术”上作文章,即不断改进算法。算法化的内容是完全适合于开放性的归纳体系的。(3)模型化的方法。方法论的角度来看,《九章算术》广泛地采用了模型化方法。它在每一章中所设置的问题,都是在大量的实际问题中选择具有典型性的现实原型,然后再通过“术”(即算法)转化成数学模型。

2.你认为素质教育应包含哪些方面?数学思想方法对人的素质有什么作用?p185-187

答:(1)素质教育包含:思想道德素质、科学文化素质、心理健康素质和劳动技能素质。

(2)1.数学教育不仅对于提高人的科学文化素质有着重要作用,而且对于提高政治素质和心理健康素质也有着不可忽视的作用。

2.在提高人的素质中发挥重要作用的是在长期数学学习中逐步形成的数学精神和数学思想方法,而不是具体的数学知识。数学思想方法在数学创造和推动人类文化发展中有着巨大的作用。因此,在数学教育中我们应该十分重视数学思想方法的教学。

3.数学素质四要素。(1)知识观念。能用数学的观念和态度去观察、解释和表示事物的数量关系、空间形式和数据信息,以形成良好的数感和量化意识;(2)创造能力。通过解决日常生活和其他学科的问题,发展提出数学模型、了解数学方法、注意数学应用的创造型数学能力,井形成忠诚、坚定、自信的意志品格;(3)思维品质。熟悉数学的抽象概括过程,掌握数学中逻辑推理方法,以形成良好的思维品质和合理的思维习惯;(4)科学语言。作为一种科学的语言,数学也是人际交流不可缺少的工具,数学素质应包括初步运用这种简捷、准确的语言。

3.结合教材的第11、12章,谈谈目前你所在的小学其数学教育教学情况及改革设想。

专业好文档

1、 以教师的教为中心,忽视学生的主体作用。

2、 以传授知识为本位,忽视培养学生的能力。

3、以完成教案为目的,忽视教学方法的改革。

(一)、注重对学生数学学习过程和结果的评价

(二)、恰当评价学生基础知识和基本技能

(三)、重视评价学生发现问题、解决问题的能力

(四)、评价主体和方式要多样化

总之,每种评价方式都有自己的特点,评价时应结合评价内容与学生学习的特点加以选择。这样才能使课堂具有发展性,充满生命力。

4.(1)什么是类比推理?(2)写出类比推理的表示形式。(3)怎样才能增加由类比得出的结论的可靠性?p75

答:(1)类比是指一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。常称这样的思维方法为类比法推理,也称类比推理。

(2)类比推理表现形式:

A具有性质a1,a2,…,an及d;

B具有性质a'1,a'2…,a'n;

因此,B也可能具有性质d'.

其中,a1与a'1,a2与a'2,…an 与a'n,d与d'分别相同或相似。

(3)欲增加由类比作出的结论的可靠性,应尽量满足下列条件:

1、A和B共同(或相似)的属性尽可能多些;

2、这些共同(或相似)的属性应是类比对象A与B的主要属性;

3、这些共同(或相似)的属性应包括类比对象的各个不同方面,并且尽可能是多方面的;

4、可迁移的属性d应该是和a1,a2,…an属于同一类型。

5.结合自己的教学经验,谈谈目前的数学课程改革呈现的特点。p189

答:第一,把“现实数学”作为数学课程的一项内容。《数学课程标准》提供了“现实数学”的“案例”。

第二,把“数学化”作为数学课程的一个目标。学生学习数学化的过程是将学生的现实数学进一步提高、抽象的过程。

第三,把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会。把传统的“听中学”与“看中学”变为主动的、活动的“做中学”和“玩中学”,为学生创造情境。

第四,把“问题解决”作为数学教学的一种模式。“问题解决”的教学模式,即:情境——问题——探索——结论——反思。

第五,把“数学思想方法”作为课程体系的一条主线,提出基本的数学思想方法,如观察法、模型方法等;

第六,把“数学思想方法”作为数学课程的一个方面。《课》强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们获得广泛的数学活动的经验;

第七,把合作交流看成学生学习数学的一种方式,让学生在解决问题的过程中学会与他人合作,并能与他人交流思维的过程和结论;

第八,把“现代信息技术”作为学生学习数学的一种工具。

6.作为数学教师,你认为在小学数学教学中应该如何加强数学思想的渗透?p192-193

答:数学思想方法是联系知识与能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质具有十分重要的作用,在数学教学中,必须重视数学思想方法的教学渗透。

首先,要充分挖掘教材中的数学思想方法。比如,在进行加法结合律的教学中,可进行从特殊到一般的归纳概括,并及时介绍这种基本而又常用的思想方法。

其次,要有目的、有意识、有计划、有步骤地孕育有关数学的思想方法。在进行教学时,一般可以从教学内容中所蕴含的数学思想方法去考虑孕育或解释这些数学思想方法,明确学生在什么层次上把握数学思想方法。然后进行合理的教学设计,从教学目标的明确、问题的提出、情境的创设,到教学方法的选择,整个教学过程都要精心设计安排,做到有目的、有意识地进行数学思想方法的教学。

实践表明,数学思想方法与数学知识是数学学科中两个不可分割的范畴。它们之间相互影响,相互促进。在教学中应抓住契机,适时地挖掘和提炼,促使学生去体验、运用思想方法,建立良好的认知结构和完善的能力结构。

7.简述数学思想方法教学的几个主要阶段。p198-199

答:学生理解数学思想方法要经历潜意识阶段、明朗化阶段、深化理解三个阶段。

专业好文档

数学思想方法教学主要有多次孕育、初步理解、简单应用三个阶段,三个阶段相互依赖、相互促进、不可或缺。对此,可从下列几个方面加以理解:

第一、多次孕育阶段。数学思想方法教学的多次孕育阶段,是根据学生学习数学思想方法存在潜意识阶段而设计的。因为潜意识的作用是缓慢的、渐进的,所以要反复孕育,而且对于复杂的、难度较大的思想方法,孕育的次数也相应多些。如,在教学化归方法时,我们

可以采取: 首先在教“平行四边形面积”时孕育化归方法。要求学生通过把平行四边形化为长方形,再利用长方形的面积公式来推导出平行四边形的面积公式。

在教“三角形面积”时进一步孕育化归方法。要求学生将三角形化为平行四边形,利用平行四边形的面积公式导出三角形的面积公式。

第二、初步理解阶段。数学思想方法教学的初步理解阶段,是根据学生学习数学思想方法存在明朗化阶段而设汁的。当学生对某种数学思想方法的感性认识和经验已经比较丰富了,我们就可以正面地、直接地介绍某种数学思想方法,并要求学生初步掌握该方法解决问题的要领。如,经过前面多次孕育后,在教学:‘加法和乘法交换律’’时,我们引领学生对一些特殊的例子进行观察、归纳、提出猜想(交换律)和验证猜想(交换律),使他们亲历了用归纳猜想方法获取新知识的过程,再让学生初步理解归纳猜想方法就是水到渠成。

第三、简单应用阶段。数学思想方法教学的简单应用阶段,是根据学生学习数学思想方法存在深化理解阶段而设计的。这个阶段主要是为学生应用已经初步形成的思想方法创造条件,力求使学生在解决问题的实践过程中逐步深化对数学思想方法的理解。如,当学生初步理解归纳猜想方法后,引导学生猜想减法和除法是否有交换律,要求学生自己进行归纳猜想和验证猜想,从而使学生加深了对归纳猜想方法的理解和认识。

专业好文档

Michel Platini, president of European football's governing body, has also ordered an immediate investigation into the referee's actions.

CSKA said they were "surprised and disappointed" by Toure's complaint. In a statement the Russian side added: "We found no racist insults

from fans of CSKA."

Baumgartner the disappointing news: Mission aborted.

The supersonic descent could happen as early as Sunda.

Winger Tuivasa-Sheck,

who scored two tries in the Kiwis' 20-18 semi-final win over England, has

been passed fit after a lower-leg injury, while Slater has been named at

full-back but is still recovering from a knee injury aggravated against

USA.

Both sides boast 100% records heading into the encounter but Australia

have not conceded a try since Josh Charnley's effort in their first pool

match against England on the opening day.

Aussie winger Jarryd Hayne is the competition's top try scorer with nine,

closely followed by Tuivasa-Sheck with eight.

But it is recently named Rugby League International Federation player of

the year Sonny Bill Williams who has attracted the most interest in the

tournament so far.

The Kiwi - with a tournament high 17 offloads - has the chance of

becoming the first player to win the World Cup in both rugby league and

rugby union after triumphing with the All Blacks in 2011.

"I'd give every award back in a heartbeat just to get across the line this

weekend," said (lack of) air up there

Watch mCayman Islands-based Webb, the head of Fifa's anti-racism

taskforce, is in London for the Football Association's 150th anniversary

celebrations and will attend City's Premier League match at Chelsea on

Sunday.

"I am going to be at the match tomorrow and I have asked to meet Yaya

Toure," he told BBC Sport.

"For me it's about how he felt and I would like to speak to him first to find

out what his experience was."

Uefa has opened disciplinary proceedings against CSKA for the "racist behaviour of their fans" during City's 2-1 win.

The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm -- winds less than 2 mph, with no

precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the

troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than

the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the

tropopause),e can expect a lot of turbulence.

The balloon will slowly drift to the edge of space at 120,000 feet (

Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.

They blew it in 2008 when they got caught cold in the final and they will not make the same mistake against the Kiwis in Manchester.

Five years ago they cruised through to the final and so far history has repeated itself here - the last try they conceded was scored by England's Josh

Charnley in the opening game of the tournament.

That could be classed as a weakness, a team under-cooked - but I have been impressed by the Kangaroos' focus in their games since then.

They have been concentrating on the sort of stuff that wins you tough, even contests - strong defence, especially on their own goal-line, completing sets

and a good kick-chase. They've been great at all the unglamorous stuff that often goes unnoticed in the stands but not by your team-mates.

It is as though their entire tournament has been preparation for the final.

In Johnathan Thurston, Cooper Cronk, Cameron Smith and either Billy Slater or Greg Inglis at full-back they have a spine that is unmatched in rugby

league. They have played in so many high-pressure games - a priceless asset going into Saturday.

The Kiwis are a lot less experienced but winning a dramatic match like their semi-final against England will do wonders for their confidence.

专业好文档

They defeated Australia in the Four Nations final in 2010 and the last World Cup, and know they can rise to the big

occasion.

专业好文档

发布评论

评论列表 (0)

  1. 暂无评论