最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

arm地址空间分配与启动时地址的映射

IT圈 admin 35浏览 0评论

2024年2月22日发(作者:捷秋)

s3c2440地址空间的分配

s3c2440启动过程详解

一:地址空间的分配

1:s3c2440是32位的,所以可以寻址4GB空间,内存(SDRAM)和端口(特殊寄存器),还有ROM都映射到同一个4G空间里.

2:开发板上一般都用SDRAM做内存flash(nor、nand)来当做ROM。其中nand flash没有地址线,一次至少要读一页(512B).其他两个有地址线

3:norflash不用来运行代码,只用来存储代码,NORflash,SDRAM可以直接运行代码)

4:s3c2440总共有8个内存banks

6个内存bank可以当作ROM或者SRAM来使用

留下的2个bank除了当作ROM 或者SRAM,还可以用SDRAM(各种内存的读写方式不一样)

7个bank的起始地址是固定的

还有一个灵活的bank的内存地址,并且bank大小也可以改变

5:s3c2440支持两种启动模式:NAND和非NAND(这里是nor flash)。

具体采用的方式取决于OM0、OM1两个引脚

OM[1:0所决定的启动方式

OM[1:0]=00时,处理器从NAND Flash启动

OM[1:0]=01时,处理器从16位宽度的ROM启动

OM[1:0]=10时,处理器从32位宽度的ROM启动。

OM[1:0]=11时,处理器从Test Mode启动。

当从NAND启动时

cpu会自动从NAND flash中读取前4KB的数据放置在片内SRAM里(s3c2440是soc),同时把这段片内SRAM映射到nGCS0片选的空间(即0x00000000)。cpu是从0x00000000开始执行,也就是NAND flash里的前4KB内容。因为NAND FLASH连地址线都没有,不能直接把NAND映射到0x00000000,只好使用片内SRAM做一个载体。通过这个载体把nandflash中大代码复制到RAM(一般是SDRAM)中去执行

当从非NAND flash启动时

nor flash被映射到0x00000000地址(就是nGCS0,这里就不需要片内SRAM来辅助了,所以片内SRAM的起始地址还是0x40000000). 然后cpu从0x00000000开始执行(也就是在Norfalsh中执行)。

总结:

Arm的启动都是从0地址开始,所不同的是地址的映射不一样。在arm开电的时候,要想让arm知道以某种方式(地址映射方式)运行,不可能通过你写的某段程序控制,因为这时候你的程序还没启动,这时候arm会通过引脚的电平来判断。

1当引脚OM0跟OM1有一个是高电平时,这时地址0会映射到外部nGCS0片选的空间,也就是Norflash,程序就会从Norflash中启动,arm直接取Norflash中的指令运行。

2当OM0跟OM1都为低电平,则0地址内部bootbuf(一段4k的SRAM)开始。系统上电,arm会自动把NANDflash中的前4K内容考到bootbuf(也就是0地址),然后从0地址运行。

这时NANDFlash中的前4K就是启动代码(他的功能就是初始化硬件然后在把NANDFlash中的代码复制到RAM中,再把相应的指针指向该运行的地方)

为什么会有这两种启动方式,关键还是两种flash的不同特点造成,NOR FLASH容量小,速度快,稳定性好,输入地址,然后给出读写信号即可从数据口得到数据,适合做程序存储器。NAND FLASH 总容量大,但是读写都需要复杂的时序,更适合做数据存储器。这种不同就造成了NORflash可以直接连接到arm的总线并且可以运行程序,而NANDflash必须搬移到内存(SDRAM)中运行。

在实际的开发中,一般可以把bootloader烧入到Norflash,程序运行可以通过串口交互,进行一定的操作,比如下载,调试。这样就很可以很方便的调试你的一些代码。Norflash中的Bootloader还可以烧录内核到Norflash等等功能。

转:sdram,nand flash,nor flash,地址分配

前三篇文章里,我分析了S3C2440与SDRAM,NOR FLASH,NAND FLASH的连线。在S3C2440开发板这个系统中,这三种存储芯片的地址是如何分配的呢?

首先看下图:

这是S3C2440的存储器地址分配图,SDARM只能接在BANK6或BANK7.从分析SDRAM接线的文章里的SDRAM接线图可以看到,SDRAM接的是ngcs6,也就是接在BANK6,因为选择的SDRAM是2片32Mbyte,总容量是64Mbyte,所以SDRAM的地址范围是

0x3000 0000 --- 0x33ff ffff。

S3C2440的OM0,OM1脚决定系统启动模式:

TQ2440开发板的NOR FLASH是16bit数据位宽,选择从NOR FLASH启动,所以OM0接VDD,OM1接VSS,从分析NOR FLASH接线的文章里的接线图可以看到,NOR FLASH接的是ngcs0,也就是接在BANK0.因为选择的NOR FLASH是2Mbyte,所以NOR FLASH的地址范围是0x0000 0000 --- 0x001f ffff。上电时,程序会从Norflash中启动,ARM直接取Norflash中的指令运行。

最后来看NAND FLASH,NAND FLASH以页为单位读写,要先命令,再给地址,才能读到NAND的数据。NAND FLASH是接在NAND FLASH控制器上而不是系统总线上,所以没有在8个BANK中分配地址。如果S3C2440被配置成从Nand Flash启动, S3C2440的Nand Flash控制器有一个特殊的功能,在S3C2440上电后,Nand Flash控制器会自动的把Nand Flash上的前4K数据搬移到4K内部SRAM中,系统会从起始地址是0x0000 0000的内部SRAM启动。程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到SDRAM中运行。

由于Nand Flash控制器从Nand Flash中搬移到内部RAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2440的核心配置以及把启动代码(U-BOOT)剩余部分搬到RAM中运行,至于将2440当做单片机玩裸跑程序的时候,就不要做这样的事情,当代码小于4K的时候,只要下到nand flash中就会被搬运到内部RAM中执行了。

不管是从NOR FLASH启动还是从NAND FLASH启动,ARM都是从0x0000 0000地址开始执行的。

s3c2440存储控制器和地址以及启动的理解

s3c2440存储控制器和地址以及启动的理解 收藏

1.首先应该先了解Flash ROM的种类

NOR FLASH地址线和数据线分开,来了地址和控制信号,数据就出来。

NAND Flash地址线和数据线在一起,需要用程序来控制,才能出数据。

通俗的说,只给地址不行,要先命令,再给地址,才能读到NAND的数据,在一个总线完成的。

结论是:ARM无法从NAND直接启动。除非装载完程序,才能使用NAND Flash.

Flash的命令、地址、数据都通过I/O口发送,管脚复用,这样做做的好处是,可以明显减少NAND FLASH的管脚数目,将来如果设计者想将NAND FLASH更换为更高密度、更大容量的,也不必改动电路板。在S3C2440中NANDFLASH的控制依靠NAND FLASH控制器。不能够执行程序,本人总结其原因如下 :

a. NAND FLASH本身是连接到了控制器上而不是系统总线上。CPU启动后是要取指令执行的,如果是SROM、NOR FLASH 等之类的,CPU 发个地址就可以取得指令并执行,NAND FLASH不行,因为NAND FLASH 是管脚复用,它有自己的一套时序,这样CPU无法取得可以执行的代码,也就不能初始化系统了。

b. NAND FLASH是顺序存取设备,不能够被随机访问,程序就不能够分支或跳转,这样你如何去设计程序。

3.在2440中为什么可以配置成从Nand Flash中启动程序?

如果S3C2440被配置成从Nand Flash启动, S3C2440的Nand Flash控制器有一个特殊的功能,在S3C2440上电后,Nand Flash控制器会自动的把Nand Flash上的前4K数据搬移到4K内部SRAM中,(此内部RAM被称为Steppingstone)并把0x00000000设置内部RAM的起始地址,CPU从内部RAM的0x00000000位置开始启动。这个过程不需要程序干涉。程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到SDRAM中运行(NF地址不是线性的,程序不能直接运行,必须拷贝到线性RAM中?)。

g S3C2440支持Nor Flash和Nand Flash启动,在TQ2440上可以通过跳线设置启动方式。主要由OM[1:0]这两位来决定从何处启动。具体含义如下:

OM[1:0]所决定的启动方式

OM[1:0]=00时,处理器从NAND Flash启动

OM[1:0]=01时,处理器从16位宽度的ROM启动

OM[1:0]=10时,处理器从32位宽度的ROM启动。

OM[1:0]=11时,处理器从Test Mode启动。

Arm的启动都是从0地址开始,所不同的是地址的映射不一样。在arm开电的时候,要想让arm知道以某种方式(地址映射方式)运行,不可能通过你写的某段程序控制,因为这时候你的程序还没启动,这时候arm会通过引脚的电平来判断。

a.当引脚OM0跟OM1有一个是高电平时,这时地址0会映射到外部nGCS0片选的空间(Bank0),也就是Norflash,程序就会从Norflash中启动,arm直接取Norflash中的指令运行,不需要将Norflash中的内容拷贝到SDRAM中来。

b.当OM0跟OM1都为低电平,则0地址内部bootbuf(一段4k的SRAM)开始。系统上电,arm会自动把NANDflash中的前4K内容拷贝到bootbuf(也就是0地址),然后从0地址运行。

这时NANDFlash中的前4K就是启动代码(他的功能就是初始化硬件然后在把NANDFlash中的代码复制到RAM中,再把相应的指针指向该运行的地方)

5.启动代码应该做什么?

由于Nand Flash控制器从Nand Flash中搬移到内部RAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2440的核心配置以及把启动代码(U-BOOT)剩余部分搬到RAM中运行,至于将2440当做单片机玩裸跑程序的时候,就不要做这样的事情,当代码小于4K的时候,只要下到nand flash中就会被搬运到内部RAM中执行了。

bootloader在某种意义上来说即是一个启动代码,种类有很多(vivi uboot 等),但是功能上无非就是完成一些初始化。bootloader是芯片复位后进入操作系统之前执行的一段代码,完成由硬件启动到操作系统启动的过渡,为运行操作系统提供基本的运行环境,如初始化CPU、堆栈、初始化存储器系统等,其功能类似于PC机的BIOS.

在实际的开发中,一般可以把bootloader烧入到Norflash,程序运行可以通过串口交互,进行一定的操作,比如下载,调试。这样就很可以很方便的调试你的一些代码。Norflash中的Bootloader还可以烧录内核到Norflash等等功能。

6.存储控制器的作用

在2440中分了8个bank,每个bank的基地址由nCGSx来选择,每个bank都接外设之后,就可以通过存储控制器来进行地址上的选择了。每个bank与外设的连接方式不一样,主要看外设是每次进行多少位的数据传输,如果是8位,这样CPU的地址线A0就可以直接接外设的A0,如果是16位,那么CPU的A1就该接到外设的A0,一次类推往后移位,具体原因见错位原因。nor flash接在bank0,数据线为16位。存储控制器的特性如下:

1. 大小端设置;

2. 地址空间:每个bank为128MB (总共1GB);

3. 除了bank0其余所有banks的数据位宽是可编程的(8/16/32-bit);(bank0是16/32位)

4. 总共8个memory banks,其中6个bank是接ROM,SRAM等,其余2个bank是接ROM,SRAM,SDRAM等;

5. 7个memory bank的起始地址是固定的;(发现size也是固定的,128MB)

6. 1个memory bank的起始地址和大小是可灵活可变的;

7. 所有banks的访问周期数是可编程的;

8. 支持片外等待信号以扩充总线周期;

9. SDRAM在Power down模式下支持自动刷新

s3c2440对nandflash的操作(一)

ARM9之TQ2440 2010-08-28 11:41:18 阅读110 评论1 字号:大中小 订阅

nandflash在对大容量的数据存储中发挥着重要的作用。相对于norflash,它具有一些优势,但它的一个劣势是很容易产生坏块,因此在使用nandflash时,往往要利用校验算法发现坏块并标注出来,以便以后不再使用该坏块。nandflash没有地址或数据总线,如果是8位nandflash,那么它只有8个IO口,这8个IO口用于传输命令、地址和数据。nandflash主要以page(页)为单位进行读写,以block(块)为单位进行擦除。每一页中又分为main区和spare区,main区用于正常数据的存储,spare区用于存储一些附加信息,如块好坏的标记、块的逻辑地址、页内数据的ECC校验和等。

三星公司是最主要的nandflash供应商,因此在它所开发的各类处理器中,实现对nandflash的支持就不足为奇了。s3c2440不仅具有nandflash的接口,而且还可以利用某些机制实现直接从nandflash启动并运行程序。本文只介绍如何对nandflash实现读、写、擦除等基本操作,不涉及nandflash启动程序的问题。

在这里,我们使用的nandflash为K9F2G08U0A,它是8位的nandflash。不同型号的nandflash的操作会有所不同,但硬件引脚基本相同,这给产品的开发带来了便利。因为不同型号的PCB板是一样的,只要更新一下软件就可以使用不同容量大小的nandflash。

K9F2G08U0A的一页为(2K+64)字节(加号前面的2K表示的是main区容量,加号后面的64表示的是spare区容量),它的一块为64页,而整个设备包括了2048个块。这样算下来一共有2112M位容量,如果只算main区容量则有256M字节(即256M×8位)。要实现用8个IO口来要访问这么大的容量,K9F2G08U0A规定了用5个周期来实现。第一个周期访问的地址为A0~A7;第二个周期访问的地址为A8~A11,它作用在IO0~IO3上,而此时IO4~IO7必须为低电平;第三个周期访问的地址为A12~A19;第四个周期访问的地址为A20~A27;第五个周期访问的地址为A28,它作用在IO0上,而此时IO1~IO7必须为低电平。前两个周期传输的是列地址,后三个周期传输的是行地址。通过分析可知,列地址是用于寻址页内空间,行地址用于寻址页,如果要直接访问块,则需要从地址A18开始。

由于所有的命令、地址和数据全部从8位IO口传输,所以nandflash定义了一个命令集来完成各种操作。有的操作只需要一个命令(即一个周期)即可,而有的操作则需要两个命令(即两个周期)来实现。下面的宏定义为K9F2G08U0A的常用命令:

#define CMD_READ1 0x00 //页读命令周期1

#define CMD_READ2 0x30 //页读命令周期2

#define CMD_READID 0x90 //读ID命令

#define CMD_WRITE1 0x80 //页写命令周期1

#define CMD_WRITE2 0x10 //页写命令周期2

#define CMD_ERASE1 0x60 //块擦除命令周期1

#define CMD_ERASE2 0xd0 //块擦除命令周期2

#define CMD_STATUS 0x70 //读状态命令

#define CMD_RESET 0xff //复位

#define CMD_RANDOMREAD1 0x05 //随意读命令周期1

#define CMD_RANDOMREAD2 0xE0 //随意读命令周期2

#define CMD_RANDOMWRITE 0x85 //随意写命令

在这里,随意读命令和随意写命令可以实现在一页内任意地址地读写。读状态命令可以实现读取设备内的状态寄存器,通过该命令可以获知写操作或擦除操作是否完成(判断第6位),以及是否成功完成(判断第0位)。

下面介绍s3c2440的nandflash控制器。s3c2440支持8位或16位的每页大小为256字,512字节,1K字和2K字节的nandflash,这些配置是通过系统上电后相应引脚的高低电平来实现的。s3c2440还可以硬件产生ECC校验码,这为准确及时发现nandflash的坏块带来了方便。nandflash控制器的主要寄存器有NFCONF(nandflash配置寄存器),NFCONT(nandflash控制寄存器),NFCMMD

(nandflash命令集寄存器),NFADDR(nandflash地址集寄存器),NFDATA(nandflash数据寄存器),NFMECCD0/1(nandflash的main区ECC寄存器),NFSECCD(nandflash的spare区ECC寄存器),NFSTAT(nandflash操作状态寄存器),NFESTAT0/1(nandflash的ECC状态寄存器),NFMECC0/1(nandflash用于数据的ECC寄存器),以及NFSECC(nandflash用于IO的ECC寄存器)。

NFCMMD,NFADDR和NFDATA分别用于传输命令,地址和数据,为了方便起见,我们可以定义一些宏定义用于完成上述操作:

#define NF_CMD(data) {rNFCMD = (data); } //传输命令

#define NF_ADDR(addr) {rNFADDR = (addr); } //传输地址

#define

NF_RDDATA() (rNFDATA) //读32位数据

#define NF_RDDATA8() (rNFDATA8) //读8位数据

#define NF_WRDATA(data) {rNFDATA = (data); } //写32位数据

#define NF_WRDATA8(data) {rNFDATA8 = (data); } //写8位数据

其中rNFDATA8的定义为(*(volatile unsigned char

*)0x4E000010) //0x4E000010此地址是NFDATA寄存器的地址

NFCONF主要用到了TACLS、TWRPH0、TWRPH1,这三个变量用于配置nandflash的时序。s3c2440的数据手册没有详细说明这三个变量的具体含义,但通过它所给出的时序图,我们可以看出,TACLS为CLE/ALE有效到nWE有效之间的持续时间,TWRPH0为nWE的有效持续时间,TWRPH1为nWE无效到CLE/ALE无效之间的持续时间,这些时间都是以HCLK为单位的(本文程序中的HCLK=100MHz)。通过查阅K9F2G08U0A的数据手册,我们可以找到并计算该nandflash与s3c2440相对应的时序:K9F2G08U0A中的tWP与TWRPH0相对应,

tCLH与TWRPH1相对应,(tCLS-tWP)与TACLS相对应。K9F2G08U0A给出的都是最小时间,s3c2440只要满足它的最小时间即可,因此TACLS、TWRPH0、TWRPH1这三个变量取值大一些会更保险。在这里,这三个值分别取1,2和0。NFCONF的第0位表示的是外接的nandflash是8位IO还是16位IO,这里当然要选择8位的IO。NFCONT寄存器是另一个需要事先初始化的寄存器。它的第13位和第12位用于锁定配置,第8位到第10位用于nandflash的中断,第4位到第6位用于ECC的配置,第1位用于nandflash芯片的选取,第0位用于nandflash控制器的使能。另外,为了初始化nandflash,还需要配置GPACON寄存器,使它的第17位到第22位与nandflash芯片的控制引脚相对应。下面的程序实现了初始化nandflash控制器:

void NF_Init ( void )

{

rGPACON = (rGPACON &~(0x3f<<17)) | (0x3f<<17); //配置芯片引脚

//TACLS=1、TWRPH0=2、TWRPH1=0,8位IO

rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);

//非锁定,屏蔽nandflash中断,初始化ECC及锁定main区和spare区ECC,使能nandflash片选及控制器

rNFCONT =

(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);

}

为了更好地应用ECC和使能nandflash片选,我们还需要一些宏定义:

#define NF_nFCE_L() {rNFCONT &= ~(1<<1); }

#define

NF_CE_L() NF_nFCE_L()

//打开nandflash片选

#define NF_nFCE_H() {rNFCONT |= (1<<1); }

#define

NF_CE_H() NF_nFCE_H()

//关闭nandflash片选

#define NF_RSTECC() {rNFCONT |=

(1<<4); } //复位ECC

#define NF_MECC_UnLock() {rNFCONT &= ~(1<<5); } //解锁main区ECC

#define NF_MECC_Lock() {rNFCONT |=

(1<<5); } //锁定main区ECC

#define NF_SECC_UnLock() {rNFCONT &=

~(1<<6); } //解锁spare区ECC

#define NF_SECC_Lock() {rNFCONT |=

(1<<6); } //锁定spare区ECC

NFSTAT是另一个比较重要的寄存器,它的第0位可以用于判断nandflash是否在忙,第2位用于检测RnB引脚信号:

#define

NF_WAITRB() {while(!(rNFSTAT&(1<<0)));} //等待nandflash不忙

#define NF_CLEAR_RB() {rNFSTAT |=

(1<<2); } //清除RnB信号

#define

NF_DETECT_RB() {while(!(rNFSTAT&(1<<2)));} //等待RnB信号变高,即不忙

下面就详细介绍K9F2G08U0A的基本操作,包括复位,读ID,页读、写数据,随意读、写数据,块擦除等。

复位操作最简单,只需写入复位命令即可:

static void rNF_Reset()

{

NF_CE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清除RnB信号

NF_CMD(CMD_RESET); //写入复位命令

NF_DETECT_RB(); //等待RnB信号变高,即不忙

NF_CE_H(); //关闭nandflash片选

}

读取K9F2G08U0A芯片ID操作首先需要写入读ID命令,然后再写入0x00地址,就可以读取到一共五个周期的芯片ID,第一个周期为厂商ID,第二个周期为设备ID,第三个周期至第五个周期包括了一些具体的该芯片信息,这里就不多介绍:

static char rNF_ReadID()

{

char pMID;

char pDID;

char cyc3, cyc4, cyc5;

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READID); //读ID命令

NF_ADDR(0x0); //写0x00地址

//读五个周期的ID

pMID = NF_RDDATA8(); //厂商ID:0xEC

pDID = NF_RDDATA8(); //设备ID:0xDA

cyc3 = NF_RDDATA8(); //0x10

cyc4 = NF_RDDATA8(); //0x95

cyc5 = NF_RDDATA8(); //0x44

NF_nFCE_H(); //关闭nandflash片选

return (pDID);

}

下面介绍读操作,读操作是以页为单位进行的。如果在读取数据的过程中不进行ECC校验判断,则读操作比较简单,在写入读命令的两个周期之间写入要读取的页地址,然后读取数据即可。如果为了更准确地读取数据,则在读取完数据之后还要进行ECC校验判断,以确定所读取的数据是否正确。

在上文中我们已经介绍过,nandflash的每一页有两区:main区和spare区,main区用于存储正常的数据,spare区用于存储其他附加信息,其中就包括ECC校验码。当我们在写入数据的时候,我们就计算这一页数据的ECC校验码,然后把校验码存储到spare区的特定位置中,在下次读取这一页数据的时候,同样我们也计算ECC校验码,然后与spare区中的ECC校验码比较,如果一致则说明读取的数据正确,如果不一致则不正确。ECC的算法较为复杂,好在s3c2440能够硬件产生ECC校验码,这样就省去了不少的麻烦事。s3c2440即可以产生main区的ECC校验码,也可以产生spare区的ECC校验码。因为K9F2G08U0A是8位IO口,因此s3c2440共产生4个字节的main区ECC码和2个字节的spare区ECC码。在这里我们规定,在每一页的spare区的第0个地址到第3个地址存储main区ECC,第4个地址和第5个地址存储spare区ECC。产生ECC校验码的过程为:在读取或写入哪个区的数据之前,先解锁该区的ECC,以便产生该区的ECC。在读取或写入完数据之后,再锁定该区的ECC,这样系统就会把产生的ECC码保存

到相应的寄存器中。main区的ECC保存到NFMECC0/1中(因为K9F2G08U0A是8位IO口,因此这里只用到了NFMECC0),spare区的ECC保存到NFSECC中。对于读操作来说,我们还要继续读取spare区的相应地址内容,已得到上次写操作时所存储的main区和spare区的ECC,并把这些数据分别放入NFMECCD0/1和NFSECCD的相应位置中。最后我们就可以通过读取NFESTAT0/1(因为K9F2G08U0A是8位IO口,因此这里只用到了NFESTAT0)中的低4位来判断读取的数据是否正确,其中第0位和第1位为main区指示错误,第2位和第3位为spare区指示错误。

下面就给出一段具体的页读操作程序:

U8 rNF_ReadPage(U32 page_number)

{

U32 i, mecc0, secc;

NF_RSTECC(); //复位ECC

NF_MECC_UnLock(); //解锁main区ECC

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READ1); //页读命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_READ2); //页读命令周期2

NF_DETECT_RB(); //等待RnB信号变高,即不忙

//读取一页数据内容

for (i = 0; i < 2048; i++)

{

buffer[i] = NF_RDDATA8();

}

NF_MECC_Lock(); //锁定main区ECC值

NF_SECC_UnLock(); //解锁spare区ECC

mecc0=NF_RDDATA(); //读spare区的前4个地址内容,即第2048~2051地址,这4个字节为main区的ECC

//把读取到的main区的ECC校验码放入NFMECCD0/1的相应位置内

rNFMECCD0=((mecc0&0xff00)<<8)|(mecc0&0xff);

rNFMECCD1=((mecc0&0xff000000)>>8)|((mecc0&0xff0000)>>16);

NF_SECC_Lock(); //锁定spare区的ECC值

secc=NF_RDDATA(); //继续读spare区的4个地址内容,即第2052~2055地址,其中前2个字节为spare区的ECC值

//把读取到的spare区的ECC校验码放入NFSECCD的相应位置内

rNFSECCD=((secc&0xff00)<<8)|(secc&0xff);

NF_nFCE_H(); //关闭nandflash片选

//判断所读取到的数据是否正确

if ((rNFESTAT0&0xf) == 0x0)

return 0x66; //正确

else

return 0x44; //错误

}

关于nandflash的基本操作就讲解到这里,当然nandflash还有一些其他复杂的操作,如逻辑地址与物理地址的转换,坏块的替代等,这些内容本文就不再介绍了

s3c2440对nandflash的操作(二)

这段程序是把某一页的内容读取到全局变量数组buffer中。该程序的输入参数直接就为K9F2G08U0A的第几页,例如我们要读取第128064页中的内容,可以调用该程序为:rNF_ReadPage(128064);。由于第128064页是第2001块中的第0页(128064=2001×64+0),所以为了更清楚地表示页与块之间的关系,也可以写为:rNF_ReadPage(2001*64);。

页写操作的大致流程为:在两个写命令周期之间分别写入页地址和数据,当然如果为了保证下次读取该数据时的正确性,还需要把main区的ECC值和spare区的ECC值写入到该页的spare区内。然后我们还需要读取状态寄存器,以判断这次写操作是否正确。下面就给出一段具体的页写操作程序,其中输入参数也是要写入数据到第几页:

U8 rNF_WritePage(U32 page_number)

{

U32 i, mecc0, secc;

U8 stat, temp;

temp = rNF_IsBadBlock(page_number>>6); //判断该块是否为坏块

if(temp == 0x33)

return 0x42; //是坏块,返回

NF_RSTECC(); //复位ECC

NF_MECC_UnLock(); //解锁main区的ECC

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_WRITE1); //页写命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

//写入一页数据

for (i = 0; i < 2048; i++)

{

NF_WRDATA8((char)(i+6));

}

NF_MECC_Lock(); //锁定main区的ECC值

mecc0=rNFMECC0; //读取main区的ECC校验码

//把ECC校验码由字型转换为字节型,并保存到全局变量数组ECCBuf中

ECCBuf[0]=(U8)(mecc0&0xff);

ECCBuf[1]=(U8)((mecc0>>8) & 0xff);

ECCBuf[2]=(U8)((mecc0>>16) & 0xff);

ECCBuf[3]=(U8)((mecc0>>24) & 0xff);

NF_SECC_UnLock(); //解锁spare区的ECC

//把main区的ECC值写入到spare区的前4个字节地址内,即第2048~2051地址

for(i=0;i<4;i++)

{

NF_WRDATA8(ECCBuf[i]);

}

NF_SECC_Lock(); //锁定spare区的ECC值

secc=rNFSECC; //读取spare区的ECC校验码

//把ECC校验码保存到全局变量数组ECCBuf中

ECCBuf[4]=(U8)(secc&0xff);

ECCBuf[5]=(U8)((secc>>8) & 0xff);

//把spare区的ECC值继续写入到spare区的第2052~2053地址内

for(i=4;i<6;i++)

{

NF_WRDATA8(ECCBuf[i]);

}

NF_CMD(CMD_WRITE2); //页写命令周期2

delay(1000); //延时一段时间,以等待写操作完成

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则写操作正确,否则错误

if (stat & 0x1)

{

temp = rNF_MarkBadBlock(page_number>>6); //标注该页所在的块为坏块

if (temp == 0x21)

return 0x43 //标注坏块失败

else

return 0x44; //写操作失败

}

else

return 0x66; //写操作成功

}

该段程序先判断该页所在的坏是否为坏块,如果是则退出。在最后写操作失败后,还要标注该页所在的块为坏块,其中所用到的函数rNF_IsBadBlock和rNF_MarkBadBlock,我们在后面介绍。我们再总结一下该程序所返回数值的含义,0x42:表示该页所在的块为坏块;0x43:表示写操作失败,并且在标注该页所在

的块为坏块时也失败;0x44:表示写操作失败,但是标注坏块成功;0x66:写操作成功。

擦除是以块为单位进行的,因此在写地址周期是,只需写三个行周期,并且要从A18开始写起。与写操作一样,在擦除结束前还要判断是否擦除操作成功,另外同样也存在需要判断是否为坏块以及要标注坏块的问题。下面就给出一段具体的块擦除操作程序:

U8 rNF_EraseBlock(U32 block_number)

{

char stat, temp;

temp = rNF_IsBadBlock(block_number); //判断该块是否为坏块

if(temp == 0x33)

return 0x42; //是坏块,返回

NF_nFCE_L(); //打开片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_ERASE1); //擦除命令周期1

//写入3个地址周期,从A18开始写起

NF_ADDR((block_number << 6) & 0xff); //行地址A18~A19

NF_ADDR((block_number >> 2) & 0xff); //行地址A20~A27

NF_ADDR((block_number >> 10) & 0xff); //行地址A28

NF_CMD(CMD_ERASE2); //擦除命令周期2

delay(1000); //延时一段时间

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则擦除操作正确,否则错误

if (stat & 0x1)

{

temp = rNF_MarkBadBlock(page_number>>6); //标注该块为坏块

if (temp == 0x21)

return 0x43 //标注坏块失败

else

return 0x44; //擦除操作失败

}

else

return 0x66; //擦除操作成功

}

该程序的输入参数为K9F2G08U0A的第几块,例如我们要擦除第2001块,则调用该函数为:rNF_EraseBlock(2001)。

K9F2G08U0A除了提供了页读和页写功能外,还提供了页内地址随意读、写功能。页读和页写是从页的首地址开始读、写,而随意读、写实现了在一页范围内任意地址的读、写。随意读操作是在页读操作后输入随意读命令和页内列地址,这样就可以读取到列地址所指定地址的数据。随意写操作是在页写操作的第二个页写命令周期前,输入随意写命令和页内列地址,以及要写入的数据,这样就可以把数据写入到列地址所指定的地址内。下面两段程序实现了随意读和随意写功能,其中随意读程序的输入参数分别为页地址和页内地址,输出参数为所读取到的数据,随意写程序的输入参数分别为页地址,页内地址,以及要写入的数据。

U8 rNF_RamdomRead(U32 page_number, U32 add)

{

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READ1); //页读命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_READ2); //页读命令周期2

NF_DETECT_RB(); //等待RnB信号变高,即不忙

NF_CMD(CMD_RANDOMREAD1); //随意读命令周期1

//页内地址

NF_ADDR((char)(add&0xff)); //列地址A0~A7

NF_ADDR((char)((add>>8)&0x0f)); //列地址A8~A11

NF_CMD(CMD_RANDOMREAD2); //随意读命令周期2

return NF_RDDATA8(); //读取数据

}

U8 rNF_RamdomWrite(U32 page_number, U32 add, U8 dat)

{

U8 temp,stat;

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_WRITE1); //页写命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_RANDOMWRITE); //随意写命令

//页内地址

NF_ADDR((char)(add&0xff)); //列地址A0~A7

NF_ADDR((char)((add>>8)&0x0f)); //列地址A8~A11

NF_WRDATA8(dat); //写入数据

NF_CMD(CMD_WRITE2); //页写命令周期2

delay(1000); //延时一段时间

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则写操作正确,否则错误

if (stat & 0x1)

return 0x44; //失败

else

return 0x66; //成功

}

下面介绍上文中提到的判断坏块以及标注坏块的那两个程序:rNF_IsBadBlock和rNF_MarkBadBlock。在这里,我们定义在spare区的第6个地址(即每页的第2054地址)用来标注坏块,0x44表示该块为坏块。要判断坏块时,利用随意读命令来读取2054地址的内容是否为0x44,要标注坏块时,利用随意写命令来向2054地址写0x33。下面就给出这两个程序,它们的输入参数都为块地址,也就是即使仅仅一页出现问题,我们也标注整个块为坏块。

U8 rNF_IsBadBlock(U32 block)

{

return rNF_RamdomRead(block*64, 2054);

}

U8 rNF_MarkBadBlock(U32 block)

{

U8 result;

result = rNF_RamdomWrite(block*64, 2054, 0x33);

if(result == 0x44)

return 0x21; //写坏块标注失败

else

return 0x60; //写坏块标注成功

}

由于NAND FLASH是接在NAND FLASH控制器上而不是系统总线上,所以没有在S3C2440A的8个BANK中分配地址空间。如果S3C2440被配置成从Nand Flash启动,在S3C2440上电后,Nand Flash控制器的会自动的把Nand Flash上的前4K数据搬移到内部SRAM中,也就是所谓的”Steppingstone”, 同时把这段片内SRAM映射到nGCS0片选的空间(即0x00000000)。系统会从这个内部SRAM中启动,程序员需要完成的工作,就是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到RAM (一般是SDRAM)中运行。而在Nand Flash方式启动的情况下,系统是”看不到”Nor Flash的,因为Nor Flash也是挂在nGCS0上的,而nGCS0的地址空间已经被占用了。

1. 系统是不能从NAND直接启动的(可以从NOR直接启动),必须把程序读入内存才能运行。把boot loader程序放在flash的前4kb空间,2440启动后会自动把前4kb的boot程序读入内存运行,这个过程是自动完成的。

2. 要烧进flash,地址须设置为0x32000000,这不是SDRAM的地址吗?烧写flash的过程也必须是先把data写进内存,再由内存烧写进flash,所以地址要写成内存的地址。

2024年2月22日发(作者:捷秋)

s3c2440地址空间的分配

s3c2440启动过程详解

一:地址空间的分配

1:s3c2440是32位的,所以可以寻址4GB空间,内存(SDRAM)和端口(特殊寄存器),还有ROM都映射到同一个4G空间里.

2:开发板上一般都用SDRAM做内存flash(nor、nand)来当做ROM。其中nand flash没有地址线,一次至少要读一页(512B).其他两个有地址线

3:norflash不用来运行代码,只用来存储代码,NORflash,SDRAM可以直接运行代码)

4:s3c2440总共有8个内存banks

6个内存bank可以当作ROM或者SRAM来使用

留下的2个bank除了当作ROM 或者SRAM,还可以用SDRAM(各种内存的读写方式不一样)

7个bank的起始地址是固定的

还有一个灵活的bank的内存地址,并且bank大小也可以改变

5:s3c2440支持两种启动模式:NAND和非NAND(这里是nor flash)。

具体采用的方式取决于OM0、OM1两个引脚

OM[1:0所决定的启动方式

OM[1:0]=00时,处理器从NAND Flash启动

OM[1:0]=01时,处理器从16位宽度的ROM启动

OM[1:0]=10时,处理器从32位宽度的ROM启动。

OM[1:0]=11时,处理器从Test Mode启动。

当从NAND启动时

cpu会自动从NAND flash中读取前4KB的数据放置在片内SRAM里(s3c2440是soc),同时把这段片内SRAM映射到nGCS0片选的空间(即0x00000000)。cpu是从0x00000000开始执行,也就是NAND flash里的前4KB内容。因为NAND FLASH连地址线都没有,不能直接把NAND映射到0x00000000,只好使用片内SRAM做一个载体。通过这个载体把nandflash中大代码复制到RAM(一般是SDRAM)中去执行

当从非NAND flash启动时

nor flash被映射到0x00000000地址(就是nGCS0,这里就不需要片内SRAM来辅助了,所以片内SRAM的起始地址还是0x40000000). 然后cpu从0x00000000开始执行(也就是在Norfalsh中执行)。

总结:

Arm的启动都是从0地址开始,所不同的是地址的映射不一样。在arm开电的时候,要想让arm知道以某种方式(地址映射方式)运行,不可能通过你写的某段程序控制,因为这时候你的程序还没启动,这时候arm会通过引脚的电平来判断。

1当引脚OM0跟OM1有一个是高电平时,这时地址0会映射到外部nGCS0片选的空间,也就是Norflash,程序就会从Norflash中启动,arm直接取Norflash中的指令运行。

2当OM0跟OM1都为低电平,则0地址内部bootbuf(一段4k的SRAM)开始。系统上电,arm会自动把NANDflash中的前4K内容考到bootbuf(也就是0地址),然后从0地址运行。

这时NANDFlash中的前4K就是启动代码(他的功能就是初始化硬件然后在把NANDFlash中的代码复制到RAM中,再把相应的指针指向该运行的地方)

为什么会有这两种启动方式,关键还是两种flash的不同特点造成,NOR FLASH容量小,速度快,稳定性好,输入地址,然后给出读写信号即可从数据口得到数据,适合做程序存储器。NAND FLASH 总容量大,但是读写都需要复杂的时序,更适合做数据存储器。这种不同就造成了NORflash可以直接连接到arm的总线并且可以运行程序,而NANDflash必须搬移到内存(SDRAM)中运行。

在实际的开发中,一般可以把bootloader烧入到Norflash,程序运行可以通过串口交互,进行一定的操作,比如下载,调试。这样就很可以很方便的调试你的一些代码。Norflash中的Bootloader还可以烧录内核到Norflash等等功能。

转:sdram,nand flash,nor flash,地址分配

前三篇文章里,我分析了S3C2440与SDRAM,NOR FLASH,NAND FLASH的连线。在S3C2440开发板这个系统中,这三种存储芯片的地址是如何分配的呢?

首先看下图:

这是S3C2440的存储器地址分配图,SDARM只能接在BANK6或BANK7.从分析SDRAM接线的文章里的SDRAM接线图可以看到,SDRAM接的是ngcs6,也就是接在BANK6,因为选择的SDRAM是2片32Mbyte,总容量是64Mbyte,所以SDRAM的地址范围是

0x3000 0000 --- 0x33ff ffff。

S3C2440的OM0,OM1脚决定系统启动模式:

TQ2440开发板的NOR FLASH是16bit数据位宽,选择从NOR FLASH启动,所以OM0接VDD,OM1接VSS,从分析NOR FLASH接线的文章里的接线图可以看到,NOR FLASH接的是ngcs0,也就是接在BANK0.因为选择的NOR FLASH是2Mbyte,所以NOR FLASH的地址范围是0x0000 0000 --- 0x001f ffff。上电时,程序会从Norflash中启动,ARM直接取Norflash中的指令运行。

最后来看NAND FLASH,NAND FLASH以页为单位读写,要先命令,再给地址,才能读到NAND的数据。NAND FLASH是接在NAND FLASH控制器上而不是系统总线上,所以没有在8个BANK中分配地址。如果S3C2440被配置成从Nand Flash启动, S3C2440的Nand Flash控制器有一个特殊的功能,在S3C2440上电后,Nand Flash控制器会自动的把Nand Flash上的前4K数据搬移到4K内部SRAM中,系统会从起始地址是0x0000 0000的内部SRAM启动。程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到SDRAM中运行。

由于Nand Flash控制器从Nand Flash中搬移到内部RAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2440的核心配置以及把启动代码(U-BOOT)剩余部分搬到RAM中运行,至于将2440当做单片机玩裸跑程序的时候,就不要做这样的事情,当代码小于4K的时候,只要下到nand flash中就会被搬运到内部RAM中执行了。

不管是从NOR FLASH启动还是从NAND FLASH启动,ARM都是从0x0000 0000地址开始执行的。

s3c2440存储控制器和地址以及启动的理解

s3c2440存储控制器和地址以及启动的理解 收藏

1.首先应该先了解Flash ROM的种类

NOR FLASH地址线和数据线分开,来了地址和控制信号,数据就出来。

NAND Flash地址线和数据线在一起,需要用程序来控制,才能出数据。

通俗的说,只给地址不行,要先命令,再给地址,才能读到NAND的数据,在一个总线完成的。

结论是:ARM无法从NAND直接启动。除非装载完程序,才能使用NAND Flash.

Flash的命令、地址、数据都通过I/O口发送,管脚复用,这样做做的好处是,可以明显减少NAND FLASH的管脚数目,将来如果设计者想将NAND FLASH更换为更高密度、更大容量的,也不必改动电路板。在S3C2440中NANDFLASH的控制依靠NAND FLASH控制器。不能够执行程序,本人总结其原因如下 :

a. NAND FLASH本身是连接到了控制器上而不是系统总线上。CPU启动后是要取指令执行的,如果是SROM、NOR FLASH 等之类的,CPU 发个地址就可以取得指令并执行,NAND FLASH不行,因为NAND FLASH 是管脚复用,它有自己的一套时序,这样CPU无法取得可以执行的代码,也就不能初始化系统了。

b. NAND FLASH是顺序存取设备,不能够被随机访问,程序就不能够分支或跳转,这样你如何去设计程序。

3.在2440中为什么可以配置成从Nand Flash中启动程序?

如果S3C2440被配置成从Nand Flash启动, S3C2440的Nand Flash控制器有一个特殊的功能,在S3C2440上电后,Nand Flash控制器会自动的把Nand Flash上的前4K数据搬移到4K内部SRAM中,(此内部RAM被称为Steppingstone)并把0x00000000设置内部RAM的起始地址,CPU从内部RAM的0x00000000位置开始启动。这个过程不需要程序干涉。程序员需要完成的工作,是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到SDRAM中运行(NF地址不是线性的,程序不能直接运行,必须拷贝到线性RAM中?)。

g S3C2440支持Nor Flash和Nand Flash启动,在TQ2440上可以通过跳线设置启动方式。主要由OM[1:0]这两位来决定从何处启动。具体含义如下:

OM[1:0]所决定的启动方式

OM[1:0]=00时,处理器从NAND Flash启动

OM[1:0]=01时,处理器从16位宽度的ROM启动

OM[1:0]=10时,处理器从32位宽度的ROM启动。

OM[1:0]=11时,处理器从Test Mode启动。

Arm的启动都是从0地址开始,所不同的是地址的映射不一样。在arm开电的时候,要想让arm知道以某种方式(地址映射方式)运行,不可能通过你写的某段程序控制,因为这时候你的程序还没启动,这时候arm会通过引脚的电平来判断。

a.当引脚OM0跟OM1有一个是高电平时,这时地址0会映射到外部nGCS0片选的空间(Bank0),也就是Norflash,程序就会从Norflash中启动,arm直接取Norflash中的指令运行,不需要将Norflash中的内容拷贝到SDRAM中来。

b.当OM0跟OM1都为低电平,则0地址内部bootbuf(一段4k的SRAM)开始。系统上电,arm会自动把NANDflash中的前4K内容拷贝到bootbuf(也就是0地址),然后从0地址运行。

这时NANDFlash中的前4K就是启动代码(他的功能就是初始化硬件然后在把NANDFlash中的代码复制到RAM中,再把相应的指针指向该运行的地方)

5.启动代码应该做什么?

由于Nand Flash控制器从Nand Flash中搬移到内部RAM的代码是有限的,所以在启动代码的前4K里,我们必须完成S3C2440的核心配置以及把启动代码(U-BOOT)剩余部分搬到RAM中运行,至于将2440当做单片机玩裸跑程序的时候,就不要做这样的事情,当代码小于4K的时候,只要下到nand flash中就会被搬运到内部RAM中执行了。

bootloader在某种意义上来说即是一个启动代码,种类有很多(vivi uboot 等),但是功能上无非就是完成一些初始化。bootloader是芯片复位后进入操作系统之前执行的一段代码,完成由硬件启动到操作系统启动的过渡,为运行操作系统提供基本的运行环境,如初始化CPU、堆栈、初始化存储器系统等,其功能类似于PC机的BIOS.

在实际的开发中,一般可以把bootloader烧入到Norflash,程序运行可以通过串口交互,进行一定的操作,比如下载,调试。这样就很可以很方便的调试你的一些代码。Norflash中的Bootloader还可以烧录内核到Norflash等等功能。

6.存储控制器的作用

在2440中分了8个bank,每个bank的基地址由nCGSx来选择,每个bank都接外设之后,就可以通过存储控制器来进行地址上的选择了。每个bank与外设的连接方式不一样,主要看外设是每次进行多少位的数据传输,如果是8位,这样CPU的地址线A0就可以直接接外设的A0,如果是16位,那么CPU的A1就该接到外设的A0,一次类推往后移位,具体原因见错位原因。nor flash接在bank0,数据线为16位。存储控制器的特性如下:

1. 大小端设置;

2. 地址空间:每个bank为128MB (总共1GB);

3. 除了bank0其余所有banks的数据位宽是可编程的(8/16/32-bit);(bank0是16/32位)

4. 总共8个memory banks,其中6个bank是接ROM,SRAM等,其余2个bank是接ROM,SRAM,SDRAM等;

5. 7个memory bank的起始地址是固定的;(发现size也是固定的,128MB)

6. 1个memory bank的起始地址和大小是可灵活可变的;

7. 所有banks的访问周期数是可编程的;

8. 支持片外等待信号以扩充总线周期;

9. SDRAM在Power down模式下支持自动刷新

s3c2440对nandflash的操作(一)

ARM9之TQ2440 2010-08-28 11:41:18 阅读110 评论1 字号:大中小 订阅

nandflash在对大容量的数据存储中发挥着重要的作用。相对于norflash,它具有一些优势,但它的一个劣势是很容易产生坏块,因此在使用nandflash时,往往要利用校验算法发现坏块并标注出来,以便以后不再使用该坏块。nandflash没有地址或数据总线,如果是8位nandflash,那么它只有8个IO口,这8个IO口用于传输命令、地址和数据。nandflash主要以page(页)为单位进行读写,以block(块)为单位进行擦除。每一页中又分为main区和spare区,main区用于正常数据的存储,spare区用于存储一些附加信息,如块好坏的标记、块的逻辑地址、页内数据的ECC校验和等。

三星公司是最主要的nandflash供应商,因此在它所开发的各类处理器中,实现对nandflash的支持就不足为奇了。s3c2440不仅具有nandflash的接口,而且还可以利用某些机制实现直接从nandflash启动并运行程序。本文只介绍如何对nandflash实现读、写、擦除等基本操作,不涉及nandflash启动程序的问题。

在这里,我们使用的nandflash为K9F2G08U0A,它是8位的nandflash。不同型号的nandflash的操作会有所不同,但硬件引脚基本相同,这给产品的开发带来了便利。因为不同型号的PCB板是一样的,只要更新一下软件就可以使用不同容量大小的nandflash。

K9F2G08U0A的一页为(2K+64)字节(加号前面的2K表示的是main区容量,加号后面的64表示的是spare区容量),它的一块为64页,而整个设备包括了2048个块。这样算下来一共有2112M位容量,如果只算main区容量则有256M字节(即256M×8位)。要实现用8个IO口来要访问这么大的容量,K9F2G08U0A规定了用5个周期来实现。第一个周期访问的地址为A0~A7;第二个周期访问的地址为A8~A11,它作用在IO0~IO3上,而此时IO4~IO7必须为低电平;第三个周期访问的地址为A12~A19;第四个周期访问的地址为A20~A27;第五个周期访问的地址为A28,它作用在IO0上,而此时IO1~IO7必须为低电平。前两个周期传输的是列地址,后三个周期传输的是行地址。通过分析可知,列地址是用于寻址页内空间,行地址用于寻址页,如果要直接访问块,则需要从地址A18开始。

由于所有的命令、地址和数据全部从8位IO口传输,所以nandflash定义了一个命令集来完成各种操作。有的操作只需要一个命令(即一个周期)即可,而有的操作则需要两个命令(即两个周期)来实现。下面的宏定义为K9F2G08U0A的常用命令:

#define CMD_READ1 0x00 //页读命令周期1

#define CMD_READ2 0x30 //页读命令周期2

#define CMD_READID 0x90 //读ID命令

#define CMD_WRITE1 0x80 //页写命令周期1

#define CMD_WRITE2 0x10 //页写命令周期2

#define CMD_ERASE1 0x60 //块擦除命令周期1

#define CMD_ERASE2 0xd0 //块擦除命令周期2

#define CMD_STATUS 0x70 //读状态命令

#define CMD_RESET 0xff //复位

#define CMD_RANDOMREAD1 0x05 //随意读命令周期1

#define CMD_RANDOMREAD2 0xE0 //随意读命令周期2

#define CMD_RANDOMWRITE 0x85 //随意写命令

在这里,随意读命令和随意写命令可以实现在一页内任意地址地读写。读状态命令可以实现读取设备内的状态寄存器,通过该命令可以获知写操作或擦除操作是否完成(判断第6位),以及是否成功完成(判断第0位)。

下面介绍s3c2440的nandflash控制器。s3c2440支持8位或16位的每页大小为256字,512字节,1K字和2K字节的nandflash,这些配置是通过系统上电后相应引脚的高低电平来实现的。s3c2440还可以硬件产生ECC校验码,这为准确及时发现nandflash的坏块带来了方便。nandflash控制器的主要寄存器有NFCONF(nandflash配置寄存器),NFCONT(nandflash控制寄存器),NFCMMD

(nandflash命令集寄存器),NFADDR(nandflash地址集寄存器),NFDATA(nandflash数据寄存器),NFMECCD0/1(nandflash的main区ECC寄存器),NFSECCD(nandflash的spare区ECC寄存器),NFSTAT(nandflash操作状态寄存器),NFESTAT0/1(nandflash的ECC状态寄存器),NFMECC0/1(nandflash用于数据的ECC寄存器),以及NFSECC(nandflash用于IO的ECC寄存器)。

NFCMMD,NFADDR和NFDATA分别用于传输命令,地址和数据,为了方便起见,我们可以定义一些宏定义用于完成上述操作:

#define NF_CMD(data) {rNFCMD = (data); } //传输命令

#define NF_ADDR(addr) {rNFADDR = (addr); } //传输地址

#define

NF_RDDATA() (rNFDATA) //读32位数据

#define NF_RDDATA8() (rNFDATA8) //读8位数据

#define NF_WRDATA(data) {rNFDATA = (data); } //写32位数据

#define NF_WRDATA8(data) {rNFDATA8 = (data); } //写8位数据

其中rNFDATA8的定义为(*(volatile unsigned char

*)0x4E000010) //0x4E000010此地址是NFDATA寄存器的地址

NFCONF主要用到了TACLS、TWRPH0、TWRPH1,这三个变量用于配置nandflash的时序。s3c2440的数据手册没有详细说明这三个变量的具体含义,但通过它所给出的时序图,我们可以看出,TACLS为CLE/ALE有效到nWE有效之间的持续时间,TWRPH0为nWE的有效持续时间,TWRPH1为nWE无效到CLE/ALE无效之间的持续时间,这些时间都是以HCLK为单位的(本文程序中的HCLK=100MHz)。通过查阅K9F2G08U0A的数据手册,我们可以找到并计算该nandflash与s3c2440相对应的时序:K9F2G08U0A中的tWP与TWRPH0相对应,

tCLH与TWRPH1相对应,(tCLS-tWP)与TACLS相对应。K9F2G08U0A给出的都是最小时间,s3c2440只要满足它的最小时间即可,因此TACLS、TWRPH0、TWRPH1这三个变量取值大一些会更保险。在这里,这三个值分别取1,2和0。NFCONF的第0位表示的是外接的nandflash是8位IO还是16位IO,这里当然要选择8位的IO。NFCONT寄存器是另一个需要事先初始化的寄存器。它的第13位和第12位用于锁定配置,第8位到第10位用于nandflash的中断,第4位到第6位用于ECC的配置,第1位用于nandflash芯片的选取,第0位用于nandflash控制器的使能。另外,为了初始化nandflash,还需要配置GPACON寄存器,使它的第17位到第22位与nandflash芯片的控制引脚相对应。下面的程序实现了初始化nandflash控制器:

void NF_Init ( void )

{

rGPACON = (rGPACON &~(0x3f<<17)) | (0x3f<<17); //配置芯片引脚

//TACLS=1、TWRPH0=2、TWRPH1=0,8位IO

rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);

//非锁定,屏蔽nandflash中断,初始化ECC及锁定main区和spare区ECC,使能nandflash片选及控制器

rNFCONT =

(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);

}

为了更好地应用ECC和使能nandflash片选,我们还需要一些宏定义:

#define NF_nFCE_L() {rNFCONT &= ~(1<<1); }

#define

NF_CE_L() NF_nFCE_L()

//打开nandflash片选

#define NF_nFCE_H() {rNFCONT |= (1<<1); }

#define

NF_CE_H() NF_nFCE_H()

//关闭nandflash片选

#define NF_RSTECC() {rNFCONT |=

(1<<4); } //复位ECC

#define NF_MECC_UnLock() {rNFCONT &= ~(1<<5); } //解锁main区ECC

#define NF_MECC_Lock() {rNFCONT |=

(1<<5); } //锁定main区ECC

#define NF_SECC_UnLock() {rNFCONT &=

~(1<<6); } //解锁spare区ECC

#define NF_SECC_Lock() {rNFCONT |=

(1<<6); } //锁定spare区ECC

NFSTAT是另一个比较重要的寄存器,它的第0位可以用于判断nandflash是否在忙,第2位用于检测RnB引脚信号:

#define

NF_WAITRB() {while(!(rNFSTAT&(1<<0)));} //等待nandflash不忙

#define NF_CLEAR_RB() {rNFSTAT |=

(1<<2); } //清除RnB信号

#define

NF_DETECT_RB() {while(!(rNFSTAT&(1<<2)));} //等待RnB信号变高,即不忙

下面就详细介绍K9F2G08U0A的基本操作,包括复位,读ID,页读、写数据,随意读、写数据,块擦除等。

复位操作最简单,只需写入复位命令即可:

static void rNF_Reset()

{

NF_CE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清除RnB信号

NF_CMD(CMD_RESET); //写入复位命令

NF_DETECT_RB(); //等待RnB信号变高,即不忙

NF_CE_H(); //关闭nandflash片选

}

读取K9F2G08U0A芯片ID操作首先需要写入读ID命令,然后再写入0x00地址,就可以读取到一共五个周期的芯片ID,第一个周期为厂商ID,第二个周期为设备ID,第三个周期至第五个周期包括了一些具体的该芯片信息,这里就不多介绍:

static char rNF_ReadID()

{

char pMID;

char pDID;

char cyc3, cyc4, cyc5;

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READID); //读ID命令

NF_ADDR(0x0); //写0x00地址

//读五个周期的ID

pMID = NF_RDDATA8(); //厂商ID:0xEC

pDID = NF_RDDATA8(); //设备ID:0xDA

cyc3 = NF_RDDATA8(); //0x10

cyc4 = NF_RDDATA8(); //0x95

cyc5 = NF_RDDATA8(); //0x44

NF_nFCE_H(); //关闭nandflash片选

return (pDID);

}

下面介绍读操作,读操作是以页为单位进行的。如果在读取数据的过程中不进行ECC校验判断,则读操作比较简单,在写入读命令的两个周期之间写入要读取的页地址,然后读取数据即可。如果为了更准确地读取数据,则在读取完数据之后还要进行ECC校验判断,以确定所读取的数据是否正确。

在上文中我们已经介绍过,nandflash的每一页有两区:main区和spare区,main区用于存储正常的数据,spare区用于存储其他附加信息,其中就包括ECC校验码。当我们在写入数据的时候,我们就计算这一页数据的ECC校验码,然后把校验码存储到spare区的特定位置中,在下次读取这一页数据的时候,同样我们也计算ECC校验码,然后与spare区中的ECC校验码比较,如果一致则说明读取的数据正确,如果不一致则不正确。ECC的算法较为复杂,好在s3c2440能够硬件产生ECC校验码,这样就省去了不少的麻烦事。s3c2440即可以产生main区的ECC校验码,也可以产生spare区的ECC校验码。因为K9F2G08U0A是8位IO口,因此s3c2440共产生4个字节的main区ECC码和2个字节的spare区ECC码。在这里我们规定,在每一页的spare区的第0个地址到第3个地址存储main区ECC,第4个地址和第5个地址存储spare区ECC。产生ECC校验码的过程为:在读取或写入哪个区的数据之前,先解锁该区的ECC,以便产生该区的ECC。在读取或写入完数据之后,再锁定该区的ECC,这样系统就会把产生的ECC码保存

到相应的寄存器中。main区的ECC保存到NFMECC0/1中(因为K9F2G08U0A是8位IO口,因此这里只用到了NFMECC0),spare区的ECC保存到NFSECC中。对于读操作来说,我们还要继续读取spare区的相应地址内容,已得到上次写操作时所存储的main区和spare区的ECC,并把这些数据分别放入NFMECCD0/1和NFSECCD的相应位置中。最后我们就可以通过读取NFESTAT0/1(因为K9F2G08U0A是8位IO口,因此这里只用到了NFESTAT0)中的低4位来判断读取的数据是否正确,其中第0位和第1位为main区指示错误,第2位和第3位为spare区指示错误。

下面就给出一段具体的页读操作程序:

U8 rNF_ReadPage(U32 page_number)

{

U32 i, mecc0, secc;

NF_RSTECC(); //复位ECC

NF_MECC_UnLock(); //解锁main区ECC

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READ1); //页读命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_READ2); //页读命令周期2

NF_DETECT_RB(); //等待RnB信号变高,即不忙

//读取一页数据内容

for (i = 0; i < 2048; i++)

{

buffer[i] = NF_RDDATA8();

}

NF_MECC_Lock(); //锁定main区ECC值

NF_SECC_UnLock(); //解锁spare区ECC

mecc0=NF_RDDATA(); //读spare区的前4个地址内容,即第2048~2051地址,这4个字节为main区的ECC

//把读取到的main区的ECC校验码放入NFMECCD0/1的相应位置内

rNFMECCD0=((mecc0&0xff00)<<8)|(mecc0&0xff);

rNFMECCD1=((mecc0&0xff000000)>>8)|((mecc0&0xff0000)>>16);

NF_SECC_Lock(); //锁定spare区的ECC值

secc=NF_RDDATA(); //继续读spare区的4个地址内容,即第2052~2055地址,其中前2个字节为spare区的ECC值

//把读取到的spare区的ECC校验码放入NFSECCD的相应位置内

rNFSECCD=((secc&0xff00)<<8)|(secc&0xff);

NF_nFCE_H(); //关闭nandflash片选

//判断所读取到的数据是否正确

if ((rNFESTAT0&0xf) == 0x0)

return 0x66; //正确

else

return 0x44; //错误

}

关于nandflash的基本操作就讲解到这里,当然nandflash还有一些其他复杂的操作,如逻辑地址与物理地址的转换,坏块的替代等,这些内容本文就不再介绍了

s3c2440对nandflash的操作(二)

这段程序是把某一页的内容读取到全局变量数组buffer中。该程序的输入参数直接就为K9F2G08U0A的第几页,例如我们要读取第128064页中的内容,可以调用该程序为:rNF_ReadPage(128064);。由于第128064页是第2001块中的第0页(128064=2001×64+0),所以为了更清楚地表示页与块之间的关系,也可以写为:rNF_ReadPage(2001*64);。

页写操作的大致流程为:在两个写命令周期之间分别写入页地址和数据,当然如果为了保证下次读取该数据时的正确性,还需要把main区的ECC值和spare区的ECC值写入到该页的spare区内。然后我们还需要读取状态寄存器,以判断这次写操作是否正确。下面就给出一段具体的页写操作程序,其中输入参数也是要写入数据到第几页:

U8 rNF_WritePage(U32 page_number)

{

U32 i, mecc0, secc;

U8 stat, temp;

temp = rNF_IsBadBlock(page_number>>6); //判断该块是否为坏块

if(temp == 0x33)

return 0x42; //是坏块,返回

NF_RSTECC(); //复位ECC

NF_MECC_UnLock(); //解锁main区的ECC

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_WRITE1); //页写命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

//写入一页数据

for (i = 0; i < 2048; i++)

{

NF_WRDATA8((char)(i+6));

}

NF_MECC_Lock(); //锁定main区的ECC值

mecc0=rNFMECC0; //读取main区的ECC校验码

//把ECC校验码由字型转换为字节型,并保存到全局变量数组ECCBuf中

ECCBuf[0]=(U8)(mecc0&0xff);

ECCBuf[1]=(U8)((mecc0>>8) & 0xff);

ECCBuf[2]=(U8)((mecc0>>16) & 0xff);

ECCBuf[3]=(U8)((mecc0>>24) & 0xff);

NF_SECC_UnLock(); //解锁spare区的ECC

//把main区的ECC值写入到spare区的前4个字节地址内,即第2048~2051地址

for(i=0;i<4;i++)

{

NF_WRDATA8(ECCBuf[i]);

}

NF_SECC_Lock(); //锁定spare区的ECC值

secc=rNFSECC; //读取spare区的ECC校验码

//把ECC校验码保存到全局变量数组ECCBuf中

ECCBuf[4]=(U8)(secc&0xff);

ECCBuf[5]=(U8)((secc>>8) & 0xff);

//把spare区的ECC值继续写入到spare区的第2052~2053地址内

for(i=4;i<6;i++)

{

NF_WRDATA8(ECCBuf[i]);

}

NF_CMD(CMD_WRITE2); //页写命令周期2

delay(1000); //延时一段时间,以等待写操作完成

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则写操作正确,否则错误

if (stat & 0x1)

{

temp = rNF_MarkBadBlock(page_number>>6); //标注该页所在的块为坏块

if (temp == 0x21)

return 0x43 //标注坏块失败

else

return 0x44; //写操作失败

}

else

return 0x66; //写操作成功

}

该段程序先判断该页所在的坏是否为坏块,如果是则退出。在最后写操作失败后,还要标注该页所在的块为坏块,其中所用到的函数rNF_IsBadBlock和rNF_MarkBadBlock,我们在后面介绍。我们再总结一下该程序所返回数值的含义,0x42:表示该页所在的块为坏块;0x43:表示写操作失败,并且在标注该页所在

的块为坏块时也失败;0x44:表示写操作失败,但是标注坏块成功;0x66:写操作成功。

擦除是以块为单位进行的,因此在写地址周期是,只需写三个行周期,并且要从A18开始写起。与写操作一样,在擦除结束前还要判断是否擦除操作成功,另外同样也存在需要判断是否为坏块以及要标注坏块的问题。下面就给出一段具体的块擦除操作程序:

U8 rNF_EraseBlock(U32 block_number)

{

char stat, temp;

temp = rNF_IsBadBlock(block_number); //判断该块是否为坏块

if(temp == 0x33)

return 0x42; //是坏块,返回

NF_nFCE_L(); //打开片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_ERASE1); //擦除命令周期1

//写入3个地址周期,从A18开始写起

NF_ADDR((block_number << 6) & 0xff); //行地址A18~A19

NF_ADDR((block_number >> 2) & 0xff); //行地址A20~A27

NF_ADDR((block_number >> 10) & 0xff); //行地址A28

NF_CMD(CMD_ERASE2); //擦除命令周期2

delay(1000); //延时一段时间

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则擦除操作正确,否则错误

if (stat & 0x1)

{

temp = rNF_MarkBadBlock(page_number>>6); //标注该块为坏块

if (temp == 0x21)

return 0x43 //标注坏块失败

else

return 0x44; //擦除操作失败

}

else

return 0x66; //擦除操作成功

}

该程序的输入参数为K9F2G08U0A的第几块,例如我们要擦除第2001块,则调用该函数为:rNF_EraseBlock(2001)。

K9F2G08U0A除了提供了页读和页写功能外,还提供了页内地址随意读、写功能。页读和页写是从页的首地址开始读、写,而随意读、写实现了在一页范围内任意地址的读、写。随意读操作是在页读操作后输入随意读命令和页内列地址,这样就可以读取到列地址所指定地址的数据。随意写操作是在页写操作的第二个页写命令周期前,输入随意写命令和页内列地址,以及要写入的数据,这样就可以把数据写入到列地址所指定的地址内。下面两段程序实现了随意读和随意写功能,其中随意读程序的输入参数分别为页地址和页内地址,输出参数为所读取到的数据,随意写程序的输入参数分别为页地址,页内地址,以及要写入的数据。

U8 rNF_RamdomRead(U32 page_number, U32 add)

{

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READ1); //页读命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_READ2); //页读命令周期2

NF_DETECT_RB(); //等待RnB信号变高,即不忙

NF_CMD(CMD_RANDOMREAD1); //随意读命令周期1

//页内地址

NF_ADDR((char)(add&0xff)); //列地址A0~A7

NF_ADDR((char)((add>>8)&0x0f)); //列地址A8~A11

NF_CMD(CMD_RANDOMREAD2); //随意读命令周期2

return NF_RDDATA8(); //读取数据

}

U8 rNF_RamdomWrite(U32 page_number, U32 add, U8 dat)

{

U8 temp,stat;

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_WRITE1); //页写命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_RANDOMWRITE); //随意写命令

//页内地址

NF_ADDR((char)(add&0xff)); //列地址A0~A7

NF_ADDR((char)((add>>8)&0x0f)); //列地址A8~A11

NF_WRDATA8(dat); //写入数据

NF_CMD(CMD_WRITE2); //页写命令周期2

delay(1000); //延时一段时间

NF_CMD(CMD_STATUS); //读状态命令

//判断状态值的第6位是否为1,即是否在忙,该语句的作用与NF_DETECT_RB();相同

do{

stat = NF_RDDATA8();

}while(!(stat&0x40));

NF_nFCE_H(); //关闭nandflash片选

//判断状态值的第0位是否为0,为0则写操作正确,否则错误

if (stat & 0x1)

return 0x44; //失败

else

return 0x66; //成功

}

下面介绍上文中提到的判断坏块以及标注坏块的那两个程序:rNF_IsBadBlock和rNF_MarkBadBlock。在这里,我们定义在spare区的第6个地址(即每页的第2054地址)用来标注坏块,0x44表示该块为坏块。要判断坏块时,利用随意读命令来读取2054地址的内容是否为0x44,要标注坏块时,利用随意写命令来向2054地址写0x33。下面就给出这两个程序,它们的输入参数都为块地址,也就是即使仅仅一页出现问题,我们也标注整个块为坏块。

U8 rNF_IsBadBlock(U32 block)

{

return rNF_RamdomRead(block*64, 2054);

}

U8 rNF_MarkBadBlock(U32 block)

{

U8 result;

result = rNF_RamdomWrite(block*64, 2054, 0x33);

if(result == 0x44)

return 0x21; //写坏块标注失败

else

return 0x60; //写坏块标注成功

}

由于NAND FLASH是接在NAND FLASH控制器上而不是系统总线上,所以没有在S3C2440A的8个BANK中分配地址空间。如果S3C2440被配置成从Nand Flash启动,在S3C2440上电后,Nand Flash控制器的会自动的把Nand Flash上的前4K数据搬移到内部SRAM中,也就是所谓的”Steppingstone”, 同时把这段片内SRAM映射到nGCS0片选的空间(即0x00000000)。系统会从这个内部SRAM中启动,程序员需要完成的工作,就是把最核心的启动程序放在Nand Flash的前4K中,也就是说,你需要编写一个长度小于4K的引导程序,作用是将主程序拷贝到RAM (一般是SDRAM)中运行。而在Nand Flash方式启动的情况下,系统是”看不到”Nor Flash的,因为Nor Flash也是挂在nGCS0上的,而nGCS0的地址空间已经被占用了。

1. 系统是不能从NAND直接启动的(可以从NOR直接启动),必须把程序读入内存才能运行。把boot loader程序放在flash的前4kb空间,2440启动后会自动把前4kb的boot程序读入内存运行,这个过程是自动完成的。

2. 要烧进flash,地址须设置为0x32000000,这不是SDRAM的地址吗?烧写flash的过程也必须是先把data写进内存,再由内存烧写进flash,所以地址要写成内存的地址。

发布评论

评论列表 (0)

  1. 暂无评论