2024年3月13日发(作者:堵秀雅)
五 蒸馏习题解答
1解:
(1)作x-y图及t-x(y)图,作图依据如下:
∵x
A
=(p-p
B
0
)/(p
A
0
-p
B
0
); y
A
=p
A
0
×x
A
/p
以t=90℃为例,x
A
=(760-208.4)/(1008-208.4)=0.6898
y
A
=1008×0.6898/760=0.9150
计算结果汇总:
t℃
x
y
4.612x/(1+
3.612x)
80.02
1
1
1
90
0.6898
0.9150
0.9112
100 110 120
0.3777
130
0.0195
0.0724
131.8
0
0
0
0.4483 0.2672 0.1287
0.7875 0.6118
0.7894 0.6271 0.4052 0.0840
(2)用相对挥发度计算x-y值:
y=αx/[1+(α-1)x]
式中α=α
M
=1/2(α
1
+α
2
)
∵α=p
A
0
/p
B
0
α
1
=760/144.8=5.249 ;α
2
=3020/760=3.974
∴α
M
=1/2(α
1
+α
2
)=1/2(5.249+3.974)=4.612
y=4.612x/(1+3.612x)
由此计算x-y值亦列于计算表中,y-x图,t-x(y) 图如下:
1 题 附 图
2解:
(1)求泡点:
在泡点下两组分的蒸汽分压之和等于总压P,即:p
A
+p
B
=p
A
0
x
A
+x
B
0
x
B
=p求泡点要用试差法,先
设泡点为87℃
lgp
A
0
=6.89740-1206.350/(87+220.237)=2.971
116
p
A
0
=10
2.971
=935.41[mmHg]
lgp
B
0
=6.95334-1343.943/(87+219.337)=2.566
p
B
0
=10
2.566
=368.13[mmHg]
935.41×0.4+368.13×0.6=595≈600mmHg
∴泡点为87℃,气相平衡组成为
y=p
A
/p=p
A
0
x
A
/P=935.41×0.4/600=0.624
(2)求露点:
露点时,液滴中参与甲苯组成应符合下列关系: x
A
+x
B
=1或p
A
/p
A
0
+p
B
/p
B
0
=1
式中 p
A
=0.4×760=304[mmHg]; p
B
=0.6×760=456[mmHg]
求露点亦要用试差法,先设露点为103℃,则:lgp
A
0
=6.8974-120.635/
(103+220.237)=3.165
∴p
A
0
=1462.2[mmHg]
lgp
B
0
=6.95334-1343.943/(103+219.337)=2.784
∴p
B
0
=608.14[mmHg]
于是 :
304/1462.2+456/608.14=0.96<1
再设露点为102℃,同时求得p
A
0
=1380.4; p
B
0
=588.84
304/1380.4+456/588.84=0.995≈1
故露点为102℃,平衡液相组成为
x
A
=p
A
/p
A
0
=304/1380.4=0.22
3解:
(1)x
A
=(p
总
-p
B
0
)/(p
A
0
-p
B
0
)
0.4=(p
总
-40)/(106.7-40)
∴p
总
=66.7KPa
y
A
=x
A
·p
A
0
/p=0.4×106.7/66.7=0.64
(2)α=p
A
0
/p
B
0
=106.7/40=2.67
4解:
(1) y
D
=?
α
D
=(y/x)
A
/(y/x)
B
=(y
D
/0.95)/((1-y
D
)/0.05)=2
y
D
=0.974
(2) L/V
D
=?
∵V=V
D
+L
(V/V
D
)=1+(L/V
D
)
V0.96=V
D
0.974+L0.95
(V/V
D
)0.96=0.974+(L/V
D
)0.95
(1+L/V
D
)0.96=0.974+(L/V
D
)0.95
(L/V
D
)=1.4
5解:
简单蒸馏计算:
117
lnW
1
/W
2
=
x1
x2
dx
yx
W
2
=(1-1/3)W
1
=2/3W
1
;y=0.46x+0.549,x
1
=0.6,代入上式积分解得:
釜液组成:x
2
=0.498,
馏出液组成:W
D
x
D
=W
1
x
1
-W
2
x
2
(1/3W
1
)x
D
=W
1
×0.6-(2/3W
1
)×0.498
∴x
D
=0.804
6解:
Fx
F
=Vy+Lx ∴0.4=0.5y+0.5x --------(1)
y=αx/(1+(α-1)x)=3x/(1+2x) --------(2)
(1),(2)联立求解,得y=0.528,x=0.272
回收率=(V·y)/(Fx
F
)=0.5×0.528/0.4=66%
7.解:
F=D+W
Fx
F
=Dx
D
+Wx
W
已知x
F
=0.24,x
D
=0.95,x
W
=0.03,解得:
D/F=(x
F
-x
W
)/(x
D
-x
W
)=(0.24-0.03)/(0.95-0.03)=0.228
回收率 Dx
D
/Fx
F
=0.228×0.95/0.24=90.4%
残液量求取:
W/D=F/D-1=1/0.228-1=3.38
∴W=3.38D=3.38(V-L)=3.38(850-670)=608.6[kmol/h]
8解:
(1) 求D及W,全凝量V
F=D+W
Fx
F
=Dx
D
+Wx
W
x
F
=0.1,x
D
=0.95,x
W
=0.01(均为质量分率)
F=100[Kg/h],代入上两式解得:
D=9.57[Kg/h]; W=90.43[Kg/h]
由恒摩尔流得知:
F(0.1/78+0.9/92)=V(0.95/78+0.05/92)
[注意:如用质量百分数表示组成,平均分子量M
m
=1/(a
A
/M
A
+a
B
/M
B
)]
解得 V=87[Kg/h] 由 于塔顶为全凝器,故上升蒸汽量V即为冷凝量,
(2) 求回流比R
V=D+L ∴L=V-D=87-9.57=77.43[Kg/h]
R=L/D=77.43/9.57=8.09(因为L与D的组成相同,故8.09亦即为摩尔比)
(3) 操作线方程.
因塔只有精馏段,故精馏段操作线方程为
y
n+1
=Rx
n
/(R+1)+x
D
/(R+1)
式中x
D
应为摩尔分率
118
x
D
=( x
D
/M
A
)/[x
D
/M
A
+(1-x
D
)/M
B
]
=(0.95/78)/(0.95/78+0.05/92)=0.961
∴y
n+1
=8.09x
n
/9.09+0.961/9.09=0.89x
n
+0.106
操作线方程为:y
n+1
=0.89x
n
+0.106
9解:
y=[R/(R+1)]x+x
D
/(R+1)
(1) R/(R+1)=0.75 R=0.75R+0.75 R=0.75/0.25=3
(2) x
D
/(R+1)=0.2075 x
D
/(3+1)=0.2079 x
D
=0.83
(3) q/(q-1)=-0.5 q=-0.5q+0.5 q=0.5/1.5=0.333
(4) 0.75x+0.2075=-0.5x+1.5x
F
0.75x
q
'+0.2075=-0.5x
q
'+1.5×0.44
1.25x
q
'=1.5×0.44-0.2075=0.4425 x
q
'=0.362
(5)0 10解: (1) 求精馏段上升蒸汽量V和下降的液体量L,提馏段上升蒸汽量V'和下降的液体量L'. 进料平均分子量: Mm=0.4×78+0.6×92=86.4 F=1000/86.4=11.6[Kmol/h] Fx F =Dx D +Wx W F=D+W 11.6×0.4=D×0.97+(11.6-D)0.02 ∴D=4.64[Kmol/h] W=6.96[Kmol/h] R=L/D, ∴L=3.7×4.64=17.17[Kmol/h] V=(R+1)D=4.7×4.64=21.8[Kmol/h] 平均气化潜热r=30807×0.4+33320×0.6=32313.6[KJ/Kmol] 从手册中查得x F =0.4时泡点为95℃,则: q=[r+cp(95-20)]/r=(32313.6+159.2×75)/32313.6=1.37 ∴L'=L+qF=17.17+1.37×11.6=33.1[Kmol/h] V'=V-(1-q)F=21.8+0.37×11.6=26.1[Kmol/h] (2) 求塔顶全凝器热负荷及每小时耗水量. Qc=Vr ∴r=0.97×30804+33320×0.03=30879.5[KJ/Kmol] ∴Qc=21.8×30879.5=673172.7[KJ/h] 耗水量 Gc=673172.7/4.18(50-20)=5368.2[Kg/h] (3) 求再沸器热负荷及蒸汽耗量. 塔的热量衡算 Q B +Q F +Q R =Q v +Q W +Q L Q B =Q v +Q W +Q L -Q F -Q R 该式右边第一项是主要的,其它四项之总和通常只占很小比例,故通常有: Q B ≈Q V =V·I v Iv=(r+Cpt)=30879.5+159.2×8.2=43933.9[KJ/Kmol] 119 ∴Q B =21.8×43933.9=957759.02[KJ/h] 2.5[KgF/cm 2 ]下蒸汽潜热r=522Kcal/Kg=522×4.18×18=39275.3[KJ/Kmol] ∴蒸汽需量为G v G v =Q B /r=957759.02/39275.3=24.4Kmol/h =24.4×18=39.04[Kg/h] (4) 提馏段方程 y=L'x/(L'-W)-Wx W /(L'-W)=1.26x-0.005 11解: 提馏段: y m+1 ’=1.25x M ’-0.0187---------(1) =L'x M '/V'-Wx W /V', L'=L+qF=RD+F V'=(R+1)D W=F-D, 精馏段: y n+1 =Rx n /(R+1)+x D /(R+1) =0.75x n +0.25x D --------(2) q线:x F =0.50 --------------(3) 将(3)代入(1)得出: y m+1 =1.25×0.5-0.0187=0.606,代入(2) 0.606=0.75×0.5+0.25x D , x D =0.924 12解: (1) y 1 =x D =0.84, 0.84=0.45x 1 +0.55 x 1 =0.64, y W =3×0.64/(3+1)+0.84/(3+1)=0.69, 0.69=0.45×x W +0.55,x W =0.311, (2) D=100(0.4-0.311)/(0.84-0.311)=16.8(Kmol/h), W=100-16.8=83.2(Kmol/h) 13解: (1) 求R,x D ,x W 精馏段操作线斜率为R/(R+1)=0.723 ∴R=2.61 提馏段方程 y=L'x/(L'-W)-Wx W /(L'-W)=1.25x-0.0187 精馏段操作线截距为 x D /(R+1)=0.263 ∴x D =0.95 提馏段操作线与对角线交点坐标为 y=x=x W x W =1.25 x W -0.0187 ∴x W =0.0748 (2)饱和蒸汽进料时,求取进料组成 将 y=0.723x+0.263 y=1.25x-0.0187 联立求解,得x=0.535,y=0.65 因饱和蒸汽进料,q线为水平线,可得原料组成y=x F =0.65 120 14解: (1) y 1 =x D =0.9,x 1 =0.9/(4-3×0.9)=0.692, (2) y 2 =1×0.692/(1+1)+0.9/2=0.796 (3) x D =x F =0.5, y D =0.5/2+0.9/2=0.7 15解: (1) Fx F =Vy q +Lx q 0.45=(1/3)y q +(2/3)x q y q =2.5x q /(1+1.5x q ) ∴x q =0.375 y q =0.6 (2) Rmin=(x D -y q )/(y q -x q ) =(0.95-0.6)/(0.6-0.375)=1.56 R=1.5Rmin=2.34 D=0.95×0.45/0.95=0.45 W=1-0.45=0.55 x W =(Fx F -Dx D )/W=(0.45-0.45×0.95)/0.55=0.041 L=RD=2.34×0.45=1.053; V=(R+1)D=1.503 L'=L+qF=1.053+(2/3)×1=1.72; V'=V-(1-q)F=1.503-1/3=1.17 y'=(L'/V')x'-Wx W /V'=1.72/1.17x'-0.55×0.041/1.17 =1.47x'-0.0193 16解: 精馏段操作线方程 y n+1 =3/4x n +0.24 平衡线方程 y=αx/[1+(α-1)x]=2.5x/(1+1.5x) 提馏段操作线方程 y=1.256x-0.01278 其计算结果如下: N 0 x y 1 0.906 0.96 2 0.821 0.92 3 0.707 0.86 4 0.573 0.77 5 0.462 0.70 6 0.344 0.567 7 0.224 0.419 8 0.128 0.268 9 0.065 0.148 10 0.029 0.069 由计算结果得知: 理论板为10块(包括釜), 加料板位置在第五块; 17解: D/F=(x F -x W )/(x D -x W )=(0.52-x W )/(0.8-x W )=0.5 121 解得:x W =0.24 精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1)=0.75x n +0.2 --------(1) 平衡线方程:y=αx/(1+(α-1)x)=3x/(1+2x) 或:x=y/(α-(α-1)y)=y/(3-2y) --------(2) 交替运用式(1),(2)逐板计算: x D =y 1 =0.8 .x 1 =0.571; y 2 =0.628,x 2 =0.360; y 3 =0.470,x 3 =0.228 W =0.24 ∴共需N T =3块(包括釜). 18解: q=0,x D =0.9,x F =0.5, x W =0.1,R=5, 精馏段操作线方程: y n+1 =Rx n /(R+1)+x D /(R+1) =5x n /(5+1)+0.9/(5+1) =0.833x n +0.15 图解: 得理论板数为11块(不包括釜),包括釜为12 块 18题附图 19解: (1) F=D+W Fx F =Dx D +Wx W D=F(x F -x W )/(x D -x W ) =100(0.3-0.015)/(0.95-0.015) =30.48 Kmol/h=30.5 Kmol/h W=F-D=69.50 Kmol/h (2) N T 及N F =? x D =0.95、x W =0.015、q=1、 R=1.5;x D /(R+1)=0.38 作图得:N T =9-1=8(不含釜) 进料位置: N F =6 (3)L’,V’,y W 及x W-1 19题附图 ∵q=1,V'=V=(R+1)D V'=30.5(1.5+1)=76.25Kmol/h L'=L+qF=RD+F=1.5×30.5+100=145.8Kmol/h 由图读得:y W =0.06, x W-1 =0.03 20解: 122 (1) 原料为汽液混合物,成平衡的汽液相组成为x ,y 平衡线方程 y=αx/[1+(α-1)x]=4.6x/(1+3.6x) --------- (1) q线方程 (q=2/(1+2)=2/3)则 y=[q/(q-1)]x-x F /(q-1)=-2x+1.35 ---------- (2) 联解(1),(2)两式,经整理得: -2x+1.35=4.6x/(1+3.6x) 7.2x 2 +1.740x-1.35=0 解知,x=0.329 y=0.693 (2) Rmin=(x D -y e )/(y e -x e )=(0.95-0.693)/(0.693-0.329)=0.706 21解: 因为饱和液体进料,q=1 y e =αx e /[1+(α-1)x e ]=2.47×0.6/(1+1.47×0.6)=0.788 R min =(x D -y e )/(ye-x e )=(0.98-0.788)/(0.788-0.6)=1.02 R=1.5×R min =1.53 N min =lg[(x D /(1-x D ))((1-x W )/x W )]/lgα =lg[(0.98/0.02)(0. 95/0. 05)]/lg2.47= 7.56 x=(R-R min )/(R+1)=(1.53-1.02)/(1.53+1)=0.202 Y=(N-N min )/(N+1) Y=0.75(1-x 0.567 ) ∴(N-7.56)/(N+1)=0.75(1-0.202 0.567 ) 解得N=14.5 取15块理论板(包括釜) 实际板数: N=(15-1)/0.7+1=21(包括釜) 求加料板位置,先求最小精馏板数 (N min ) 精 =lg[x D /(1-x D )×(1-x F )/x F ]/lgα =lg[0.98/0.02·0.4/0.6]/lg2.47=3.85 N 精 /N=(N min ) 精 /N min ∴N 精 =N(N min ) 精 /N min =14.5×3.85/7.56=7.4 则精馏段实际板数为 7.4/0.7=10.6 取11块 故实际加料板位置为第12块板上. 22解: (1) 由 y=αx/[1+(α-1)x]=2.4x/(1+1.4x) 作y-x图 由于精馏段有侧线产品抽出,故精馏段被分为上,下两段, 抽出侧线以上的操作线方程式: y n+1 =Rx n /(R+1)+x D /(R+1)=2/3x n +0.3 ----------- (1) 侧线下操作线方程推导如下: 以虚线范围作物料衡算 V=L+D 1 +D 2 Vy s+1 =Lx s +D 1 x D1 +D 2 x D2 ; y s+1 =Lx s /V +(D 1 x D1 +D 2 x D2 )/V =Lxs/(L+D 1 +D 2 )+(D 1 x D 1 +D 2 x D2 )/(L+D 1 +D 2 ); L=L 0 -D 2 , 则: 123 y s+1 =(L 0 -D 2 )x s /(L 0 -D 2 +D 1 +D 2 ) +(D 1 x D 1 +D 2 x D 2 )/(L 0 -D 2 +D 1 +D 2 ) =(R-D 2 /D 1 )x s /(R+1)+(x D1 +D 2 x D2 /D 1 )/(R+1) (R=L 0 /D 1 ) 将已知条件代入上式,得到: y S+1 =0.5x+0.416 (2) 用图解法,求得理论塔板数 为(5-1)块,见附图. 22题附图 23解: 根据所给平衡数据作x-y图. 精馏段操作线 y n+1 =Rx n /(R+1)+x D /(R+1) =1.5x n /(1.5+1)+0.95/(1.5+1) =0.6x n +0.38 q线方程与q线: 料液平均分子量: M m =0.35×+0.65×18=22.9 甲醇分子汽化潜热: r=252×32×4.2=33868.8[KJ/Kmol] 水的分子汽化潜热: r=552×18×4.2=41731.2[KL/Kmol] 23题附图 料液的平均分子汽化潜热: r=0.35×33868.8+0.65×41731.2=38979.4[KL/Kmol] 料液的平均分子比热 Cp=0.88×22.9×4.2=84.6[KL/Kmol·℃] q=[r+Cp(ts-t F )]/r=[38979.4+84.6(78-20)]/38979.4=1.13 q线斜率 q/(q-1)=1/13/0.13=8.7 提馏段操作线方程与操作线: 由于塔釜用直接蒸汽加热,故提馏段操作线过横轴上(x W ,0)一点,于是在x-y图上,作出三条线, 用图解法所得理论板数为7.6块,可取8块(包括釜). 24解: 对全塔进行物料衡算: F 1 +F 2 =D+W ----------(1) F 1 x F1 +F 2 x F2 =Dx D +Wx W 100×0.6+200×0.2=D×0.8+W×0.02 124 100=0.8D+0.02W -----------(2) 由式(1) W=F 1 +F 2 -D=100+200-D=300-D 代入式(2)得:D=120.5Kmol/h L=RD=2×120.5=241kmol/h V=L+D=241+120.5=361.5Kmol/h 在两进料间和塔顶进行物料衡算,并设其间液汽流率为L",V",塔板序号为s. V''+F 1 =D+L'' V''y s+1 "+F 1 x F1 =L''xs''+Dx D y s+1 =(L''/V'')xs''+(Dx D -F 1 x F1 )/V'' L''=L+q 1 F 1 =241+1×100=341Kmol/h V''=V=361.5 y s+1 "=(341/361.5)x s ''+(120.5×0.8-100×0.6)/361.5 y s+1 "=0.943x s ''+0.1 25解: 对于给定的最大V',V=(R+1)D,回流比R愈小,塔顶产品量D愈大,但R 需满足产品的质量要 求x D 》0.98, 故此题的关键是求得回流比R. 由题已知加料板为第14层,故精馏段实际板数为13层,精馏段板数为: 13×0.5=6.5 取苯-甲苯溶液相对挥发度为α=2.54 用捷算法求精馏段最小理论板数 (N min ) 精 =ln[0.98/0.02-0.5/0.5]/ln2.54=4.175 y=[N 精馏段 -(N min ) 精 ]/(N 精馏段 +1)=(6.5-4.175)/(6.5+1) =1.31 由y=0.75(1-x 0.567 ) x=(1-Y/0.75) (1/0.567) =0.392=(R-R min )/(R+1) ∴R=(0.392+R min )/(1-0.392) R min =(x D -y e )/(y e -x e ) 对泡点进料x e =x F =0.5 y e =αx/[1+(α-1)x] =2.54×0.5/(1+1.54×0.5)=1.27/1.77=0.72 ∴R min =(0.98-0.72)/(0.72-0.5)=0.26/0.22=1.18 ∴R=(0.392+1.18)/(1-0.392)=1.572/0.608=2.59 ∴D=V/(R+L)=2.5/(2.59+1)=0.696[Kmol/h] 故最大馏出量为0.696[Kmol/h] 26解: 求n板效率: Emv =(y n -y n+1 )/(y n * -y n+1 ), 因全回流操作,故有y n+1 =x n ,y n =x n-1 与x n 成平衡的y n * =αx n /[1+(α-1)x n ]=2.43×0.285/(1+1.43×0.285)=0.492 125 于是: Emv=(x n-1 -x n )/(y n * -x n )=(0.43-0.285)/(0.492-0.285)=0.7 求n+1板板效率: Emv=(y n+1 -y n+2 )/(y n+1 * -y n+2 )=(x n -x n+ )/(y n+1 * -x n+1 ) y ’ n+1 =2.43×0.173/(1+1.43×0.173)=0.337 ∴Emv=(0.285-0.173)/(0.337-0.173)=0.683 27解: 由图可知:该板的板效率为 Emv=(y 1 -y )/(y 1 * -y W ) 从图中看出,y 1 =x D =0.28,关键要求y 1 * 与y W . 由已知条件 Dx D /Fx F =0.8 ∴D/F=0.8×0.2/0.28=0.57 作系统的物料衡算: Fx F =Dx D +Wx W F=D+W 联立求解: x F =Dx D /F+(1-D/F)x W 0.2=0.57×0.28+(1-0.57)x W 解得x W =0.093 习题27附图 因塔釜溶液处于平衡状态,故 y W =αx W /[1+(α-1)x W ]=2.5×0.093/(1+1.5×0.093)=0.204 y W 与x 1 是操作线关系. y n+1 =L'x n /V'-Wx W /V' =Fx n /D-Wx W /D =Fx n /D-(F-D)x W /D=Fx n /D-(F/D-1)x W ∴y n+1 =x n /0.57-(1/0.57-1)0.093=1.75x n -0.07 当 y n+1 =y W 时,x n =x 1 ∴x 1 =(y W +0.07)/1.75=(0.204+0.07)/1.75=0.157 与x 1 成平衡气相组成为y 1 * y 1 * =αx 1 /[1+(α-1)x 1 ]=2.5×0.157/(1+1.5×0.157)=0.318 ∴ Emv=(0.28-0.204)/(0.318-0.204)=66.8% 28解: (1)精馏段有两层理论板,x D =0.85,x F =0.5,用试差法得精馏 段操作线ac,与x=x F =0.5线交于d.提馏段有两层理论板,从 点d开始再用试差法作图,得提馏段操作线bd,得:x W =0.17 x D /(R+1)=0.103R=0.85/0.103-1=7.25 F=D+W Fx F =Dx D +Wx W 100=D+W 100×0.5=D×0.85+W×0.17 得 D=48.5Kmol/h V'=V=(R+1)D=8.25×48.5=400Kmol/h 28题附图 (2)此时加入的料液全被气化而从塔顶排出,其组成与原料组成相同,相当于一个提馏塔. 29解: (1) D=η,Fx F /x D =0.9×100×0.4/0.92 =39.13Kmol/h,W=60.9Kmol/h 126 x W =0.1Fx F /W=0.1×100×0.4/60.9=0.0656 ∵q=1 ∴x q =0.4 查图得y q =0.61 R min =(x D -y q )/(y q -x q )=(0.92-0.61)/(0.61-0.4)=1.48 R=1.5×1.48=2.2 x D /(R+1)=0.92/3.2=0.29 在y-x图中绘图得 N T =15-1=14块(未包括釜),N加料=第6块理论板 N p =14/0.7=20块(不包括釜) N p 精 =5/0.7=7.14,取8块,∴第九块 为实际加料板 (2) 可用措施:(1)加大回流比,x D ↑,x W ↓,η=↑ (2)改为冷液进料,N T T ' q=1, N T =const ∴x D ↑ q约为const,下移加料点,x D ↑. 29题附图 30解: (1) Dx D /Fx F =0.922; Dx D =0.922×150×0.4=55.32 Dx D =Fx F -Wx W =Fx F -(F-D)x W =55.32 150×0.4-(150-D)×0.05=55.32 D=56.4Kmol/h W=F-D=93.6Kmol/h x D =55.32/56.4=0.981 (2) N T 及N F (进料位置) x D =0.981,x W =0.05,q=1, x D /(R+1)=0.981/(2.43+1)=0.286 a(0.981,0.981), b(0.05,0.05) q线: x F =0.4、q=1, q线为垂线。 作图得:N T =12-1=11,不含釜,N F =7 (3) 液气比 精馏段: 127 L/V=R/(R+1) =2.43/(2.43+1)=0.708 提馏段: L'/V'=(L+qF)/(L+qF-W) 或V'=V ,L=RD L'/V'=(RD+F)/((R+1)D) =(2.43×56.4+150)/(3.43 ×56.4)=1.484 (4)由于再沸器结垢, 则Q B ↓,V'↓,R↓∴x D ↓ 若要求维持x D 不变,应提高再沸器加热蒸汽 的压力p s ,及时清除污垢 31解: (1)R=0.8时,x D ,x W 各为多少? 由题知,当塔板为无穷时: R=R min =0.8, 30题附图 对泡点进料, R min =(x D -y e )/(y e -x e ) x e =x F =0.5, y e =αx e /[1+(α-1)x e ]=αx F /[1+(α-1)x F ]=2×0.5/(1+0.5)=0.667 于是: (x D -0.667)/(0.667-0.5)=0.8 解得: x D =0.8 Fx F =Dx D +Wx W x F =Dx D /F+(1-D/F)x W 由题知D/F=0.6代入上式, 解得x W =0.05, (2)R=1.5时,求x D ,x W . 由题知,当塔板为无穷多时, R=R min =1.5 R min =(x D -y e )/(y e -x e ) 同理求得x D =0.917,代入物料衡算式 x F =Dx D /F+(1-D/F)x W 0.5=0.6×0.917=(1-0.6)x W x W =-0.125,不成立. 31题附图 故操作线与平衡线应取x W =0处相交,即: x W =0; Fx F =Dx D +Wx W ∴x D =Fx F /D=0.5×1/0.6=0.83 此时精馏段与提馏段操作线示意图如上: 32解: (1) x F =y q =0.5,; x q =y q /(α-(α-1)y q )=0.5/(3-2×0.5)=0.25 128 R min =(x D -y q )/(y q -x q )=(0.9-0.5)/(0.5-0.25)=1.6 R=2×1.6=3.2 F=D+W Fx F =Dx D +Wx W 0.5=0.9D+0.05W D=0.529 W=0.471 L=RD=3.2×0.529=1.693 V=2.222 L'=L=1.693 V'=V-F=1.222 ∴y'=1.385x'-0.0193 (2)精馏段操作线 y=(L/V)x+Dx D /V=(1.693/2.222)x+0.529×0.9/2.222 y=0.762x+0.214 或y=Rx/(R+1)+x D /(R+1)=3.2x/4.2+0.9/4.2=0.762x+0.214 y 1 =x D =0.9 x 1 =y 1 /(3-2×y 1 )=0.9/(3-2×0.9)=0.75 y 2 =0.762×0.75+0.214=0.7855 (3)应维持R不变,此时V=F=1 此时D=V/(R+1)=1/(3.2+1)=0.238 即D/F应改为0.238 x W =(Fx F -Dx D )/W=(0.5-0.238×0.9)/(1-0.238)=0.375 33解: q=(r+(80-20)Cp)/r=(40000+60×100)/40000=1.15 W=L+qF=1.15×100=115 D=F+S-W=100+50-115=35 Fx F =Dx D +Wx W y=(L/s)x-(W/S)x W =2.3x-2.3x W y 2 与x W 成平衡 ∴y 2 =3x W x 1 =y 2 /2.3+x W =2.304x W y 1 =3x 1 =6.913x W =x D 100×0 2=35×6.913x W +115x W x W =0.056 x D =0.387 η=35×0.387/(1000×0.2) =0.678 34解: 作精馏段物料衡算,得精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1) 将 x 0 =0.5、y 1 =0.63、x D =0.9 代人上述方程: 0.63=(R/(R+1))0.5+0.9/(R+1) 解得: R=2.08 操作线: 截距 x D /(R+1)=0.9/(2.08*1)=0.292 129 作精馏段操作线ac 再就q=1,x F =0.4作进料线。 从y 1 、x o 开始作梯级,共得6块理论板。 35解: 对第n块板:E mL =(x n-1 -x n )/(x n-1 -x n * )=0.5; x n =0.4-0.5(0.4-x n * ) y n =αx n * /[1+(α-1)x n * ]=2x n * /(1+x n * ) 对第n板作物料衡算: 100×0.3+100×0.4=100×(2x n * /(1+x n * ))+100×[0.4-0.5(0.4- x n * )] 解得:x n * =0.263 x n =0.4-0.5(0.4- 0.263)=0.318 y n =2×0.263/(1+0.236)=0.382 36解: 作全塔总物料衡算: F=D+W ……… (1) 作全塔易挥发组分物料衡算: Fx F =Dx D +Wx W ……… (2) 作分凝器易挥发组分物料衡算: Vy 1 =Dx D +Lx L … (3) 因为:V=2D L=D,(3)式:2y 1 =x D +x L ………… (3) 相平衡方程:x D =αx L /[1+(α-1)x L ] 即:0.8=2.46x L /[1+(2.46-1)x L 解得:x L =0.619; 代人(3)式:2y 1 =0.8+0.619,得y 1 =0.71 y 1 =y W =0.71,代人平衡方程:0.71=2.46x W /[1+(2.46-1)x W 解得:x W =0.5 代人(2)得:D=F(x F -x W )/(x D -x W )=66.7 Kmol/h, W=33.3Kmol/h 汽化量:V=2×66.7=133.4 Kmol/h 37解: (1) 精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1) =(4/(4+1))x+0.7/(4+1)=0.8x+0.14 提馏段操作线方程: y’=(L’/V’)x-(W/V’)x W D/F=(x F -x W )/(x D -x W )=(0.3-x W )/(0.7-x W )=0.4 → x W =0.0333 因为 q=1,所以: L’/V’=(L+F)/(R+1)D=[R×(D/F)+1]/[(R+1)D/F] =(4×0.4+1)/[(4+1)×0.4]=1.3 (W/V’)x W =(F-D)/[(R+1)D×x W =(1-D/F)/[(R+1)D/F]×x W =[(1-0.4)/(5×0.4)]×0.0333=0.01 所以:y’=1.3x’-0.01 (2) y q =αx F /[1+(α-1) x F ]=2×0.3/(1+(2-1)×0.3)=0.4615 若平衡点在进料口处: Rm/(Rm*1)=4/(4+1)=(x D -y q )/(x D -x F ) =(x D -0.4615)/(x D -0.3) → x D =1.11 130 不可能在进料口平衡。 在塔顶平衡:即 x D =1 D/F=(x F -x W )/(x D -x W )=0.4; (0.3-x W )/(1-x W )=0.4 解得 x W =-0.167 故不可能。 在塔底平衡:即x W =0 x Dmax =F×x F /D=0.3/0.4=0.75 38解: (1)饱和水蒸气用量S=V`=V=(R+1)D=2.5D,(∵q=1) y 1 =x D =0.95 Emv=(y 1 -y 2 )/(y 1 * -y 2 )=(0.95-y 2 )/(0.5x1+0.5-y 2 )=0.5 整理得: 0.5y 2 =0.7-0.25x 1 ………… (1) Vy 2 =Lx 1 +Dx D 2.5D×y 2 =1.5D×x 1 +Dx D 整理得: 2.5y 2 =1.5x 1 +0.95 ………… (2) 联解(1)、(2)式得:x 1 =0.927 (2) F+S=D+W; S=V’=2.5D; F+2.5D=D+W 即 F+1.5D=W (3) F×x F =D×x D +W×x W (4) 式(3)代人(4)消去W得: D/F=(x F -xW)/(x D +1.5xW) =(0.5-0.1)/(0.95+1.5×0.1)=0.364 39解: (1) η=Dx D /(Fx F )= x D (x F -x W )/( x F (x D -x W )) =x D (0.4-0.05)/(0.4(x D -0.05))=0.955 → x D =0.6 D/F=ηx F /x D =0.955×0.4/0.6=0.64 ∴D=0.64F=64Kmol/h, W=36Kmol/h (2) 该塔只有提馏段,又q=1, ∴L=F,V=D,故(L/V)=F/D 操作线方程:y n+1 =(F/D)x n -(W/D)x W =(100/64)x n -(36/64)×0.05 =1.56x n -0.028 (3) 当N T →∞时,可获得x Dmax ∵ q=1. q线是垂线交平衡线上y e 点 y e =αx F /(1+(α-1)x F )=(3×0.4)/(1+2×0.4)=0.667,此值是否最大值必须校验,由于F,V不变, ∴D,W不变 x W =(x F -(D/F)x D )/ (W/F)=(0.4-0.64×0.667)/0.36=-0.0747<0 ∴ 当x W =0,夹点在塔底 x Dmax =(F/D)x F =0.4/0.64=0.625 40解: (1) F 1 x F1 +F 2 x F2 =Dx D +W x W 1×0.6+0.5×0.4=0.99D+0.02W 131 F 1 +F 2 =D+W 1+0.5=D+W ∴D=0.794Kmol/s W=0.706Kmol/s L=RD=0.794Kmol/s V=L+D=1.588Kmol/s L″=L+q 1 F 1 =1.794Kmol/s V″=V=1.588Kmol/s y″=(L″/V″)x″+(Dx D -F 1 x F1 )/V″ =(1.794/1.588)x″+(0.794×0.99-1×0.6)/1.588 ∴ y″=1.13x″+0.117 (2) 若夹紧点在第一进料口处(第一段操作线与q线交点落在平衡线上): x q1 =0.6 y q1 =3×0.6/(1+2×0.6)=0.82 R’m=(x D -y q1 )/(y q1 -x q1 )=(0.99-0.82)/(0.82-0.6)=0.773 若夹紧点在第二进料口处: y q2 =0.4 x q2 =y q2 /(α-(α-1)y q2 )=0.4/(3-2×0.4)=0.182 提馏段操作线斜率: L’/V’=(y q2 -y W )/(x q2 -x W ) =(0.4-0.02)/(0.182-0.02)=2.35 L’=2.35V’,代人L’-V’=W=0.706得:V’=0.523 而 V’=V″-F 2 =V-F 2 =(R M +1)D-F 2 =(R M +1)×0.794-0.5=0.523 解得: R M =0.288 ; 取R min =R ’ m =0.773. 41解: (1) D/F=(x F -x W )/(x D -x W ) =(0.5-0.2)/(0.8-0.2)=0.5,令F=1,∴D=0.5 W=0.5 R=L/D=(2V/3)/(V/3)=2 L=RD=2D=1 L’=L+qF=2 V’=V=3D=1.5 ∴L’x’=V’y+Wx W x’=0.75y’+0.05……(1) y=αx/(1+(α-1)x)=3x/(1+2x) ……(2) 由塔底开始计算:x 1 =x W =0.2 y 1 =0.429 x 2 =0.372 y 2 =0.64 x 3 =0.53 y 3 =0.77 x 4 =0.629 y 4 =0.836> x D 共需四块理论板 (2)设操作线上端与平衡线相交 y=x D ………(1) x=0.75y+0.25x W …………(2) x=y/(α-(α-1)y)=y/(3-2y) …………(3) Fx F =Dx D +Wx W ∴x D +x W =1 …… (4) 联立求得x D =0.866 即N T →∞,塔顶浓度为0.866 42解: 全回流条件下,操作线方程为 y n+1 = x n ∴ y n = x n-1 =0.57 y n+1 = x n =0.41 y n+2 = x n+1 =0.28 已知 x n-1 =0.57 x n =0.41 x n+1 =0.28 132 由平衡数据线性插值得到 x n * = 0.356 x n+1 * =0.228 y n * = 0.628 y n+1 * =0.475 E n,v = (y n - y n+1 )/(y n * - y n+1 ) E n, L =(x n-1 - x n )/(x n-1 - x n * ) E n+1 , v = (y n+1 - y n+2 )/(y n+1 * - y n+2 ) E n+1 , L =(x n - x n+1 )/(x n - x n+1 * ) 将已知数据带入上述相应公式,得到 E n,v = 0.826 E n,L =0.841 E n+1 , v = 0.667 E n+1 , L =0.592 1.43解:先由精馏段操作线方程求得R和x D ,再任意假设原料液流量F,通过全塔物料衡 算求得D 、 W及x W ,而后即可求出提馏段操作线方程。 E mv1 可由默夫里效率定义式求得。 1.提馏段操作线方程 由精馏段操作线方程知 R 0.75 R1 解得 R=3.0 x D 0.20 R1 解得 x D =0.8 设原料液流量F=100kmol/h 则 D=0.4×100=40kmol/h W=60kmol/h x W Fx F Dx D 1000.35400.8 0.05 FD10040 因q=0,故 L′=L=RD=3×40=120kmol/h V′=V -( 1 - q ) F= ( R+1 ) D -( 1 - q ) F=4×40-100=60kmol/h 提馏段操作线方程为 L L 12060 y x x w x 0.052x0.05 VW6060 2.板效率E mv1 由默夫里板效率定义知: yy 2 E mv1 1 * y 1 y 2 其中 y 1 =x D =0.8 y 2 =0.75×0.7+0.2=0.725 ax 1 2.50.7 * y 1 0.854 1 a1 x 1 11.50.7 133 故 E mv1 0.800.72 0.5858% 0.8540.725 思 考 题 42 [1]. y 6 =0.82 x 6 =0.70 y 7 =0.75 x 7 =0.62 [2]. a) y n ,x n-1 b)y n ,x n c)y n+1 ,x n d)x n-1 -x n e)y n -y n+1 [3]. 0.7 0.4375 76.2% (x) [4]. 冷液 t F 泡 最远 最少. x [5].(1)对于具有共沸组成物系,组分间沸点差导仍存在,但相对挥发度α=1处不能分离; (2)t 4 =t 3 >t 2 =t 1; (3)增加被分离组分的相对挥发度 [6].D 1 2 , W 1 >W 2 , R 1 >R 2 [7].(1)R=∞, N=N min ; (2)R=R min , n=∞ [8].∞; 0; 1. [9]. y n =αx n /(1+(α-1)x n )=3×0.3/(1+2×0.3)=0.563 x n-1 =y n =0.563; y n-1 =3×0.563/(1+2×0.563)=0.794 [10]. =,>. [11]. <,<,>,=,> [12].(1)下降 (2)下降 (3)下降 (4)不变 (5)上升 [13].(1)增大 则不变; (2)1 1 多 [14].(1)等于 无; (2)减少 增加 增加 增大 [15].增大 变小 上升 下降 [16].(1)<,> (2)>,> [17].(1)减少,增加; (2)增加,减少,增加 [18].变小,变大,变小. [19].L/V不变 N T 增加 [20].变小 ,变小, 变小 [21].增大,增大,增大,减少. [22].解:减少,增加,增加,无法确定 [23].解:增加,减少,增加,增加 [24].解:增加,减少,不变,不变 [25].解:<,>,>. [26].y=(L/V)x-Wx W /V, ∵D/F=0.5 x W =0, 又q=1 ∴L/V=(R×(D/F)+1)/((R+1)×D/F)=(2×0.5+1)/(3×0.5)=4/3 x D =x F /(D/F)=0.4/0.5=0.8 [27].解:变大,变大,变大; [28].变小,变小,变小; [29].见图 [30].见图; [31].见图 [32].见图,粗线为新工况操作线, 134 29题附图 31题附图 [33].(C); [34].(1)C (2)A; [35].(1)D (2)D; [36].(D) [37]. B [38].(D); [39].(B) [40].(1)C (2)B 30题附图 32题附图 135 2024年3月13日发(作者:堵秀雅) 五 蒸馏习题解答 1解: (1)作x-y图及t-x(y)图,作图依据如下: ∵x A =(p-p B 0 )/(p A 0 -p B 0 ); y A =p A 0 ×x A /p 以t=90℃为例,x A =(760-208.4)/(1008-208.4)=0.6898 y A =1008×0.6898/760=0.9150 计算结果汇总: t℃ x y 4.612x/(1+ 3.612x) 80.02 1 1 1 90 0.6898 0.9150 0.9112 100 110 120 0.3777 130 0.0195 0.0724 131.8 0 0 0 0.4483 0.2672 0.1287 0.7875 0.6118 0.7894 0.6271 0.4052 0.0840 (2)用相对挥发度计算x-y值: y=αx/[1+(α-1)x] 式中α=α M =1/2(α 1 +α 2 ) ∵α=p A 0 /p B 0 α 1 =760/144.8=5.249 ;α 2 =3020/760=3.974 ∴α M =1/2(α 1 +α 2 )=1/2(5.249+3.974)=4.612 y=4.612x/(1+3.612x) 由此计算x-y值亦列于计算表中,y-x图,t-x(y) 图如下: 1 题 附 图 2解: (1)求泡点: 在泡点下两组分的蒸汽分压之和等于总压P,即:p A +p B =p A 0 x A +x B 0 x B =p求泡点要用试差法,先 设泡点为87℃ lgp A 0 =6.89740-1206.350/(87+220.237)=2.971 116 p A 0 =10 2.971 =935.41[mmHg] lgp B 0 =6.95334-1343.943/(87+219.337)=2.566 p B 0 =10 2.566 =368.13[mmHg] 935.41×0.4+368.13×0.6=595≈600mmHg ∴泡点为87℃,气相平衡组成为 y=p A /p=p A 0 x A /P=935.41×0.4/600=0.624 (2)求露点: 露点时,液滴中参与甲苯组成应符合下列关系: x A +x B =1或p A /p A 0 +p B /p B 0 =1 式中 p A =0.4×760=304[mmHg]; p B =0.6×760=456[mmHg] 求露点亦要用试差法,先设露点为103℃,则:lgp A 0 =6.8974-120.635/ (103+220.237)=3.165 ∴p A 0 =1462.2[mmHg] lgp B 0 =6.95334-1343.943/(103+219.337)=2.784 ∴p B 0 =608.14[mmHg] 于是 : 304/1462.2+456/608.14=0.96<1 再设露点为102℃,同时求得p A 0 =1380.4; p B 0 =588.84 304/1380.4+456/588.84=0.995≈1 故露点为102℃,平衡液相组成为 x A =p A /p A 0 =304/1380.4=0.22 3解: (1)x A =(p 总 -p B 0 )/(p A 0 -p B 0 ) 0.4=(p 总 -40)/(106.7-40) ∴p 总 =66.7KPa y A =x A ·p A 0 /p=0.4×106.7/66.7=0.64 (2)α=p A 0 /p B 0 =106.7/40=2.67 4解: (1) y D =? α D =(y/x) A /(y/x) B =(y D /0.95)/((1-y D )/0.05)=2 y D =0.974 (2) L/V D =? ∵V=V D +L (V/V D )=1+(L/V D ) V0.96=V D 0.974+L0.95 (V/V D )0.96=0.974+(L/V D )0.95 (1+L/V D )0.96=0.974+(L/V D )0.95 (L/V D )=1.4 5解: 简单蒸馏计算: 117 lnW 1 /W 2 = x1 x2 dx yx W 2 =(1-1/3)W 1 =2/3W 1 ;y=0.46x+0.549,x 1 =0.6,代入上式积分解得: 釜液组成:x 2 =0.498, 馏出液组成:W D x D =W 1 x 1 -W 2 x 2 (1/3W 1 )x D =W 1 ×0.6-(2/3W 1 )×0.498 ∴x D =0.804 6解: Fx F =Vy+Lx ∴0.4=0.5y+0.5x --------(1) y=αx/(1+(α-1)x)=3x/(1+2x) --------(2) (1),(2)联立求解,得y=0.528,x=0.272 回收率=(V·y)/(Fx F )=0.5×0.528/0.4=66% 7.解: F=D+W Fx F =Dx D +Wx W 已知x F =0.24,x D =0.95,x W =0.03,解得: D/F=(x F -x W )/(x D -x W )=(0.24-0.03)/(0.95-0.03)=0.228 回收率 Dx D /Fx F =0.228×0.95/0.24=90.4% 残液量求取: W/D=F/D-1=1/0.228-1=3.38 ∴W=3.38D=3.38(V-L)=3.38(850-670)=608.6[kmol/h] 8解: (1) 求D及W,全凝量V F=D+W Fx F =Dx D +Wx W x F =0.1,x D =0.95,x W =0.01(均为质量分率) F=100[Kg/h],代入上两式解得: D=9.57[Kg/h]; W=90.43[Kg/h] 由恒摩尔流得知: F(0.1/78+0.9/92)=V(0.95/78+0.05/92) [注意:如用质量百分数表示组成,平均分子量M m =1/(a A /M A +a B /M B )] 解得 V=87[Kg/h] 由 于塔顶为全凝器,故上升蒸汽量V即为冷凝量, (2) 求回流比R V=D+L ∴L=V-D=87-9.57=77.43[Kg/h] R=L/D=77.43/9.57=8.09(因为L与D的组成相同,故8.09亦即为摩尔比) (3) 操作线方程. 因塔只有精馏段,故精馏段操作线方程为 y n+1 =Rx n /(R+1)+x D /(R+1) 式中x D 应为摩尔分率 118 x D =( x D /M A )/[x D /M A +(1-x D )/M B ] =(0.95/78)/(0.95/78+0.05/92)=0.961 ∴y n+1 =8.09x n /9.09+0.961/9.09=0.89x n +0.106 操作线方程为:y n+1 =0.89x n +0.106 9解: y=[R/(R+1)]x+x D /(R+1) (1) R/(R+1)=0.75 R=0.75R+0.75 R=0.75/0.25=3 (2) x D /(R+1)=0.2075 x D /(3+1)=0.2079 x D =0.83 (3) q/(q-1)=-0.5 q=-0.5q+0.5 q=0.5/1.5=0.333 (4) 0.75x+0.2075=-0.5x+1.5x F 0.75x q '+0.2075=-0.5x q '+1.5×0.44 1.25x q '=1.5×0.44-0.2075=0.4425 x q '=0.362 (5)0 10解: (1) 求精馏段上升蒸汽量V和下降的液体量L,提馏段上升蒸汽量V'和下降的液体量L'. 进料平均分子量: Mm=0.4×78+0.6×92=86.4 F=1000/86.4=11.6[Kmol/h] Fx F =Dx D +Wx W F=D+W 11.6×0.4=D×0.97+(11.6-D)0.02 ∴D=4.64[Kmol/h] W=6.96[Kmol/h] R=L/D, ∴L=3.7×4.64=17.17[Kmol/h] V=(R+1)D=4.7×4.64=21.8[Kmol/h] 平均气化潜热r=30807×0.4+33320×0.6=32313.6[KJ/Kmol] 从手册中查得x F =0.4时泡点为95℃,则: q=[r+cp(95-20)]/r=(32313.6+159.2×75)/32313.6=1.37 ∴L'=L+qF=17.17+1.37×11.6=33.1[Kmol/h] V'=V-(1-q)F=21.8+0.37×11.6=26.1[Kmol/h] (2) 求塔顶全凝器热负荷及每小时耗水量. Qc=Vr ∴r=0.97×30804+33320×0.03=30879.5[KJ/Kmol] ∴Qc=21.8×30879.5=673172.7[KJ/h] 耗水量 Gc=673172.7/4.18(50-20)=5368.2[Kg/h] (3) 求再沸器热负荷及蒸汽耗量. 塔的热量衡算 Q B +Q F +Q R =Q v +Q W +Q L Q B =Q v +Q W +Q L -Q F -Q R 该式右边第一项是主要的,其它四项之总和通常只占很小比例,故通常有: Q B ≈Q V =V·I v Iv=(r+Cpt)=30879.5+159.2×8.2=43933.9[KJ/Kmol] 119 ∴Q B =21.8×43933.9=957759.02[KJ/h] 2.5[KgF/cm 2 ]下蒸汽潜热r=522Kcal/Kg=522×4.18×18=39275.3[KJ/Kmol] ∴蒸汽需量为G v G v =Q B /r=957759.02/39275.3=24.4Kmol/h =24.4×18=39.04[Kg/h] (4) 提馏段方程 y=L'x/(L'-W)-Wx W /(L'-W)=1.26x-0.005 11解: 提馏段: y m+1 ’=1.25x M ’-0.0187---------(1) =L'x M '/V'-Wx W /V', L'=L+qF=RD+F V'=(R+1)D W=F-D, 精馏段: y n+1 =Rx n /(R+1)+x D /(R+1) =0.75x n +0.25x D --------(2) q线:x F =0.50 --------------(3) 将(3)代入(1)得出: y m+1 =1.25×0.5-0.0187=0.606,代入(2) 0.606=0.75×0.5+0.25x D , x D =0.924 12解: (1) y 1 =x D =0.84, 0.84=0.45x 1 +0.55 x 1 =0.64, y W =3×0.64/(3+1)+0.84/(3+1)=0.69, 0.69=0.45×x W +0.55,x W =0.311, (2) D=100(0.4-0.311)/(0.84-0.311)=16.8(Kmol/h), W=100-16.8=83.2(Kmol/h) 13解: (1) 求R,x D ,x W 精馏段操作线斜率为R/(R+1)=0.723 ∴R=2.61 提馏段方程 y=L'x/(L'-W)-Wx W /(L'-W)=1.25x-0.0187 精馏段操作线截距为 x D /(R+1)=0.263 ∴x D =0.95 提馏段操作线与对角线交点坐标为 y=x=x W x W =1.25 x W -0.0187 ∴x W =0.0748 (2)饱和蒸汽进料时,求取进料组成 将 y=0.723x+0.263 y=1.25x-0.0187 联立求解,得x=0.535,y=0.65 因饱和蒸汽进料,q线为水平线,可得原料组成y=x F =0.65 120 14解: (1) y 1 =x D =0.9,x 1 =0.9/(4-3×0.9)=0.692, (2) y 2 =1×0.692/(1+1)+0.9/2=0.796 (3) x D =x F =0.5, y D =0.5/2+0.9/2=0.7 15解: (1) Fx F =Vy q +Lx q 0.45=(1/3)y q +(2/3)x q y q =2.5x q /(1+1.5x q ) ∴x q =0.375 y q =0.6 (2) Rmin=(x D -y q )/(y q -x q ) =(0.95-0.6)/(0.6-0.375)=1.56 R=1.5Rmin=2.34 D=0.95×0.45/0.95=0.45 W=1-0.45=0.55 x W =(Fx F -Dx D )/W=(0.45-0.45×0.95)/0.55=0.041 L=RD=2.34×0.45=1.053; V=(R+1)D=1.503 L'=L+qF=1.053+(2/3)×1=1.72; V'=V-(1-q)F=1.503-1/3=1.17 y'=(L'/V')x'-Wx W /V'=1.72/1.17x'-0.55×0.041/1.17 =1.47x'-0.0193 16解: 精馏段操作线方程 y n+1 =3/4x n +0.24 平衡线方程 y=αx/[1+(α-1)x]=2.5x/(1+1.5x) 提馏段操作线方程 y=1.256x-0.01278 其计算结果如下: N 0 x y 1 0.906 0.96 2 0.821 0.92 3 0.707 0.86 4 0.573 0.77 5 0.462 0.70 6 0.344 0.567 7 0.224 0.419 8 0.128 0.268 9 0.065 0.148 10 0.029 0.069 由计算结果得知: 理论板为10块(包括釜), 加料板位置在第五块; 17解: D/F=(x F -x W )/(x D -x W )=(0.52-x W )/(0.8-x W )=0.5 121 解得:x W =0.24 精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1)=0.75x n +0.2 --------(1) 平衡线方程:y=αx/(1+(α-1)x)=3x/(1+2x) 或:x=y/(α-(α-1)y)=y/(3-2y) --------(2) 交替运用式(1),(2)逐板计算: x D =y 1 =0.8 .x 1 =0.571; y 2 =0.628,x 2 =0.360; y 3 =0.470,x 3 =0.228 W =0.24 ∴共需N T =3块(包括釜). 18解: q=0,x D =0.9,x F =0.5, x W =0.1,R=5, 精馏段操作线方程: y n+1 =Rx n /(R+1)+x D /(R+1) =5x n /(5+1)+0.9/(5+1) =0.833x n +0.15 图解: 得理论板数为11块(不包括釜),包括釜为12 块 18题附图 19解: (1) F=D+W Fx F =Dx D +Wx W D=F(x F -x W )/(x D -x W ) =100(0.3-0.015)/(0.95-0.015) =30.48 Kmol/h=30.5 Kmol/h W=F-D=69.50 Kmol/h (2) N T 及N F =? x D =0.95、x W =0.015、q=1、 R=1.5;x D /(R+1)=0.38 作图得:N T =9-1=8(不含釜) 进料位置: N F =6 (3)L’,V’,y W 及x W-1 19题附图 ∵q=1,V'=V=(R+1)D V'=30.5(1.5+1)=76.25Kmol/h L'=L+qF=RD+F=1.5×30.5+100=145.8Kmol/h 由图读得:y W =0.06, x W-1 =0.03 20解: 122 (1) 原料为汽液混合物,成平衡的汽液相组成为x ,y 平衡线方程 y=αx/[1+(α-1)x]=4.6x/(1+3.6x) --------- (1) q线方程 (q=2/(1+2)=2/3)则 y=[q/(q-1)]x-x F /(q-1)=-2x+1.35 ---------- (2) 联解(1),(2)两式,经整理得: -2x+1.35=4.6x/(1+3.6x) 7.2x 2 +1.740x-1.35=0 解知,x=0.329 y=0.693 (2) Rmin=(x D -y e )/(y e -x e )=(0.95-0.693)/(0.693-0.329)=0.706 21解: 因为饱和液体进料,q=1 y e =αx e /[1+(α-1)x e ]=2.47×0.6/(1+1.47×0.6)=0.788 R min =(x D -y e )/(ye-x e )=(0.98-0.788)/(0.788-0.6)=1.02 R=1.5×R min =1.53 N min =lg[(x D /(1-x D ))((1-x W )/x W )]/lgα =lg[(0.98/0.02)(0. 95/0. 05)]/lg2.47= 7.56 x=(R-R min )/(R+1)=(1.53-1.02)/(1.53+1)=0.202 Y=(N-N min )/(N+1) Y=0.75(1-x 0.567 ) ∴(N-7.56)/(N+1)=0.75(1-0.202 0.567 ) 解得N=14.5 取15块理论板(包括釜) 实际板数: N=(15-1)/0.7+1=21(包括釜) 求加料板位置,先求最小精馏板数 (N min ) 精 =lg[x D /(1-x D )×(1-x F )/x F ]/lgα =lg[0.98/0.02·0.4/0.6]/lg2.47=3.85 N 精 /N=(N min ) 精 /N min ∴N 精 =N(N min ) 精 /N min =14.5×3.85/7.56=7.4 则精馏段实际板数为 7.4/0.7=10.6 取11块 故实际加料板位置为第12块板上. 22解: (1) 由 y=αx/[1+(α-1)x]=2.4x/(1+1.4x) 作y-x图 由于精馏段有侧线产品抽出,故精馏段被分为上,下两段, 抽出侧线以上的操作线方程式: y n+1 =Rx n /(R+1)+x D /(R+1)=2/3x n +0.3 ----------- (1) 侧线下操作线方程推导如下: 以虚线范围作物料衡算 V=L+D 1 +D 2 Vy s+1 =Lx s +D 1 x D1 +D 2 x D2 ; y s+1 =Lx s /V +(D 1 x D1 +D 2 x D2 )/V =Lxs/(L+D 1 +D 2 )+(D 1 x D 1 +D 2 x D2 )/(L+D 1 +D 2 ); L=L 0 -D 2 , 则: 123 y s+1 =(L 0 -D 2 )x s /(L 0 -D 2 +D 1 +D 2 ) +(D 1 x D 1 +D 2 x D 2 )/(L 0 -D 2 +D 1 +D 2 ) =(R-D 2 /D 1 )x s /(R+1)+(x D1 +D 2 x D2 /D 1 )/(R+1) (R=L 0 /D 1 ) 将已知条件代入上式,得到: y S+1 =0.5x+0.416 (2) 用图解法,求得理论塔板数 为(5-1)块,见附图. 22题附图 23解: 根据所给平衡数据作x-y图. 精馏段操作线 y n+1 =Rx n /(R+1)+x D /(R+1) =1.5x n /(1.5+1)+0.95/(1.5+1) =0.6x n +0.38 q线方程与q线: 料液平均分子量: M m =0.35×+0.65×18=22.9 甲醇分子汽化潜热: r=252×32×4.2=33868.8[KJ/Kmol] 水的分子汽化潜热: r=552×18×4.2=41731.2[KL/Kmol] 23题附图 料液的平均分子汽化潜热: r=0.35×33868.8+0.65×41731.2=38979.4[KL/Kmol] 料液的平均分子比热 Cp=0.88×22.9×4.2=84.6[KL/Kmol·℃] q=[r+Cp(ts-t F )]/r=[38979.4+84.6(78-20)]/38979.4=1.13 q线斜率 q/(q-1)=1/13/0.13=8.7 提馏段操作线方程与操作线: 由于塔釜用直接蒸汽加热,故提馏段操作线过横轴上(x W ,0)一点,于是在x-y图上,作出三条线, 用图解法所得理论板数为7.6块,可取8块(包括釜). 24解: 对全塔进行物料衡算: F 1 +F 2 =D+W ----------(1) F 1 x F1 +F 2 x F2 =Dx D +Wx W 100×0.6+200×0.2=D×0.8+W×0.02 124 100=0.8D+0.02W -----------(2) 由式(1) W=F 1 +F 2 -D=100+200-D=300-D 代入式(2)得:D=120.5Kmol/h L=RD=2×120.5=241kmol/h V=L+D=241+120.5=361.5Kmol/h 在两进料间和塔顶进行物料衡算,并设其间液汽流率为L",V",塔板序号为s. V''+F 1 =D+L'' V''y s+1 "+F 1 x F1 =L''xs''+Dx D y s+1 =(L''/V'')xs''+(Dx D -F 1 x F1 )/V'' L''=L+q 1 F 1 =241+1×100=341Kmol/h V''=V=361.5 y s+1 "=(341/361.5)x s ''+(120.5×0.8-100×0.6)/361.5 y s+1 "=0.943x s ''+0.1 25解: 对于给定的最大V',V=(R+1)D,回流比R愈小,塔顶产品量D愈大,但R 需满足产品的质量要 求x D 》0.98, 故此题的关键是求得回流比R. 由题已知加料板为第14层,故精馏段实际板数为13层,精馏段板数为: 13×0.5=6.5 取苯-甲苯溶液相对挥发度为α=2.54 用捷算法求精馏段最小理论板数 (N min ) 精 =ln[0.98/0.02-0.5/0.5]/ln2.54=4.175 y=[N 精馏段 -(N min ) 精 ]/(N 精馏段 +1)=(6.5-4.175)/(6.5+1) =1.31 由y=0.75(1-x 0.567 ) x=(1-Y/0.75) (1/0.567) =0.392=(R-R min )/(R+1) ∴R=(0.392+R min )/(1-0.392) R min =(x D -y e )/(y e -x e ) 对泡点进料x e =x F =0.5 y e =αx/[1+(α-1)x] =2.54×0.5/(1+1.54×0.5)=1.27/1.77=0.72 ∴R min =(0.98-0.72)/(0.72-0.5)=0.26/0.22=1.18 ∴R=(0.392+1.18)/(1-0.392)=1.572/0.608=2.59 ∴D=V/(R+L)=2.5/(2.59+1)=0.696[Kmol/h] 故最大馏出量为0.696[Kmol/h] 26解: 求n板效率: Emv =(y n -y n+1 )/(y n * -y n+1 ), 因全回流操作,故有y n+1 =x n ,y n =x n-1 与x n 成平衡的y n * =αx n /[1+(α-1)x n ]=2.43×0.285/(1+1.43×0.285)=0.492 125 于是: Emv=(x n-1 -x n )/(y n * -x n )=(0.43-0.285)/(0.492-0.285)=0.7 求n+1板板效率: Emv=(y n+1 -y n+2 )/(y n+1 * -y n+2 )=(x n -x n+ )/(y n+1 * -x n+1 ) y ’ n+1 =2.43×0.173/(1+1.43×0.173)=0.337 ∴Emv=(0.285-0.173)/(0.337-0.173)=0.683 27解: 由图可知:该板的板效率为 Emv=(y 1 -y )/(y 1 * -y W ) 从图中看出,y 1 =x D =0.28,关键要求y 1 * 与y W . 由已知条件 Dx D /Fx F =0.8 ∴D/F=0.8×0.2/0.28=0.57 作系统的物料衡算: Fx F =Dx D +Wx W F=D+W 联立求解: x F =Dx D /F+(1-D/F)x W 0.2=0.57×0.28+(1-0.57)x W 解得x W =0.093 习题27附图 因塔釜溶液处于平衡状态,故 y W =αx W /[1+(α-1)x W ]=2.5×0.093/(1+1.5×0.093)=0.204 y W 与x 1 是操作线关系. y n+1 =L'x n /V'-Wx W /V' =Fx n /D-Wx W /D =Fx n /D-(F-D)x W /D=Fx n /D-(F/D-1)x W ∴y n+1 =x n /0.57-(1/0.57-1)0.093=1.75x n -0.07 当 y n+1 =y W 时,x n =x 1 ∴x 1 =(y W +0.07)/1.75=(0.204+0.07)/1.75=0.157 与x 1 成平衡气相组成为y 1 * y 1 * =αx 1 /[1+(α-1)x 1 ]=2.5×0.157/(1+1.5×0.157)=0.318 ∴ Emv=(0.28-0.204)/(0.318-0.204)=66.8% 28解: (1)精馏段有两层理论板,x D =0.85,x F =0.5,用试差法得精馏 段操作线ac,与x=x F =0.5线交于d.提馏段有两层理论板,从 点d开始再用试差法作图,得提馏段操作线bd,得:x W =0.17 x D /(R+1)=0.103R=0.85/0.103-1=7.25 F=D+W Fx F =Dx D +Wx W 100=D+W 100×0.5=D×0.85+W×0.17 得 D=48.5Kmol/h V'=V=(R+1)D=8.25×48.5=400Kmol/h 28题附图 (2)此时加入的料液全被气化而从塔顶排出,其组成与原料组成相同,相当于一个提馏塔. 29解: (1) D=η,Fx F /x D =0.9×100×0.4/0.92 =39.13Kmol/h,W=60.9Kmol/h 126 x W =0.1Fx F /W=0.1×100×0.4/60.9=0.0656 ∵q=1 ∴x q =0.4 查图得y q =0.61 R min =(x D -y q )/(y q -x q )=(0.92-0.61)/(0.61-0.4)=1.48 R=1.5×1.48=2.2 x D /(R+1)=0.92/3.2=0.29 在y-x图中绘图得 N T =15-1=14块(未包括釜),N加料=第6块理论板 N p =14/0.7=20块(不包括釜) N p 精 =5/0.7=7.14,取8块,∴第九块 为实际加料板 (2) 可用措施:(1)加大回流比,x D ↑,x W ↓,η=↑ (2)改为冷液进料,N T T ' q=1, N T =const ∴x D ↑ q约为const,下移加料点,x D ↑. 29题附图 30解: (1) Dx D /Fx F =0.922; Dx D =0.922×150×0.4=55.32 Dx D =Fx F -Wx W =Fx F -(F-D)x W =55.32 150×0.4-(150-D)×0.05=55.32 D=56.4Kmol/h W=F-D=93.6Kmol/h x D =55.32/56.4=0.981 (2) N T 及N F (进料位置) x D =0.981,x W =0.05,q=1, x D /(R+1)=0.981/(2.43+1)=0.286 a(0.981,0.981), b(0.05,0.05) q线: x F =0.4、q=1, q线为垂线。 作图得:N T =12-1=11,不含釜,N F =7 (3) 液气比 精馏段: 127 L/V=R/(R+1) =2.43/(2.43+1)=0.708 提馏段: L'/V'=(L+qF)/(L+qF-W) 或V'=V ,L=RD L'/V'=(RD+F)/((R+1)D) =(2.43×56.4+150)/(3.43 ×56.4)=1.484 (4)由于再沸器结垢, 则Q B ↓,V'↓,R↓∴x D ↓ 若要求维持x D 不变,应提高再沸器加热蒸汽 的压力p s ,及时清除污垢 31解: (1)R=0.8时,x D ,x W 各为多少? 由题知,当塔板为无穷时: R=R min =0.8, 30题附图 对泡点进料, R min =(x D -y e )/(y e -x e ) x e =x F =0.5, y e =αx e /[1+(α-1)x e ]=αx F /[1+(α-1)x F ]=2×0.5/(1+0.5)=0.667 于是: (x D -0.667)/(0.667-0.5)=0.8 解得: x D =0.8 Fx F =Dx D +Wx W x F =Dx D /F+(1-D/F)x W 由题知D/F=0.6代入上式, 解得x W =0.05, (2)R=1.5时,求x D ,x W . 由题知,当塔板为无穷多时, R=R min =1.5 R min =(x D -y e )/(y e -x e ) 同理求得x D =0.917,代入物料衡算式 x F =Dx D /F+(1-D/F)x W 0.5=0.6×0.917=(1-0.6)x W x W =-0.125,不成立. 31题附图 故操作线与平衡线应取x W =0处相交,即: x W =0; Fx F =Dx D +Wx W ∴x D =Fx F /D=0.5×1/0.6=0.83 此时精馏段与提馏段操作线示意图如上: 32解: (1) x F =y q =0.5,; x q =y q /(α-(α-1)y q )=0.5/(3-2×0.5)=0.25 128 R min =(x D -y q )/(y q -x q )=(0.9-0.5)/(0.5-0.25)=1.6 R=2×1.6=3.2 F=D+W Fx F =Dx D +Wx W 0.5=0.9D+0.05W D=0.529 W=0.471 L=RD=3.2×0.529=1.693 V=2.222 L'=L=1.693 V'=V-F=1.222 ∴y'=1.385x'-0.0193 (2)精馏段操作线 y=(L/V)x+Dx D /V=(1.693/2.222)x+0.529×0.9/2.222 y=0.762x+0.214 或y=Rx/(R+1)+x D /(R+1)=3.2x/4.2+0.9/4.2=0.762x+0.214 y 1 =x D =0.9 x 1 =y 1 /(3-2×y 1 )=0.9/(3-2×0.9)=0.75 y 2 =0.762×0.75+0.214=0.7855 (3)应维持R不变,此时V=F=1 此时D=V/(R+1)=1/(3.2+1)=0.238 即D/F应改为0.238 x W =(Fx F -Dx D )/W=(0.5-0.238×0.9)/(1-0.238)=0.375 33解: q=(r+(80-20)Cp)/r=(40000+60×100)/40000=1.15 W=L+qF=1.15×100=115 D=F+S-W=100+50-115=35 Fx F =Dx D +Wx W y=(L/s)x-(W/S)x W =2.3x-2.3x W y 2 与x W 成平衡 ∴y 2 =3x W x 1 =y 2 /2.3+x W =2.304x W y 1 =3x 1 =6.913x W =x D 100×0 2=35×6.913x W +115x W x W =0.056 x D =0.387 η=35×0.387/(1000×0.2) =0.678 34解: 作精馏段物料衡算,得精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1) 将 x 0 =0.5、y 1 =0.63、x D =0.9 代人上述方程: 0.63=(R/(R+1))0.5+0.9/(R+1) 解得: R=2.08 操作线: 截距 x D /(R+1)=0.9/(2.08*1)=0.292 129 作精馏段操作线ac 再就q=1,x F =0.4作进料线。 从y 1 、x o 开始作梯级,共得6块理论板。 35解: 对第n块板:E mL =(x n-1 -x n )/(x n-1 -x n * )=0.5; x n =0.4-0.5(0.4-x n * ) y n =αx n * /[1+(α-1)x n * ]=2x n * /(1+x n * ) 对第n板作物料衡算: 100×0.3+100×0.4=100×(2x n * /(1+x n * ))+100×[0.4-0.5(0.4- x n * )] 解得:x n * =0.263 x n =0.4-0.5(0.4- 0.263)=0.318 y n =2×0.263/(1+0.236)=0.382 36解: 作全塔总物料衡算: F=D+W ……… (1) 作全塔易挥发组分物料衡算: Fx F =Dx D +Wx W ……… (2) 作分凝器易挥发组分物料衡算: Vy 1 =Dx D +Lx L … (3) 因为:V=2D L=D,(3)式:2y 1 =x D +x L ………… (3) 相平衡方程:x D =αx L /[1+(α-1)x L ] 即:0.8=2.46x L /[1+(2.46-1)x L 解得:x L =0.619; 代人(3)式:2y 1 =0.8+0.619,得y 1 =0.71 y 1 =y W =0.71,代人平衡方程:0.71=2.46x W /[1+(2.46-1)x W 解得:x W =0.5 代人(2)得:D=F(x F -x W )/(x D -x W )=66.7 Kmol/h, W=33.3Kmol/h 汽化量:V=2×66.7=133.4 Kmol/h 37解: (1) 精馏段操作线方程: y n+1 =(R/(R+1))x n +x D /(R+1) =(4/(4+1))x+0.7/(4+1)=0.8x+0.14 提馏段操作线方程: y’=(L’/V’)x-(W/V’)x W D/F=(x F -x W )/(x D -x W )=(0.3-x W )/(0.7-x W )=0.4 → x W =0.0333 因为 q=1,所以: L’/V’=(L+F)/(R+1)D=[R×(D/F)+1]/[(R+1)D/F] =(4×0.4+1)/[(4+1)×0.4]=1.3 (W/V’)x W =(F-D)/[(R+1)D×x W =(1-D/F)/[(R+1)D/F]×x W =[(1-0.4)/(5×0.4)]×0.0333=0.01 所以:y’=1.3x’-0.01 (2) y q =αx F /[1+(α-1) x F ]=2×0.3/(1+(2-1)×0.3)=0.4615 若平衡点在进料口处: Rm/(Rm*1)=4/(4+1)=(x D -y q )/(x D -x F ) =(x D -0.4615)/(x D -0.3) → x D =1.11 130 不可能在进料口平衡。 在塔顶平衡:即 x D =1 D/F=(x F -x W )/(x D -x W )=0.4; (0.3-x W )/(1-x W )=0.4 解得 x W =-0.167 故不可能。 在塔底平衡:即x W =0 x Dmax =F×x F /D=0.3/0.4=0.75 38解: (1)饱和水蒸气用量S=V`=V=(R+1)D=2.5D,(∵q=1) y 1 =x D =0.95 Emv=(y 1 -y 2 )/(y 1 * -y 2 )=(0.95-y 2 )/(0.5x1+0.5-y 2 )=0.5 整理得: 0.5y 2 =0.7-0.25x 1 ………… (1) Vy 2 =Lx 1 +Dx D 2.5D×y 2 =1.5D×x 1 +Dx D 整理得: 2.5y 2 =1.5x 1 +0.95 ………… (2) 联解(1)、(2)式得:x 1 =0.927 (2) F+S=D+W; S=V’=2.5D; F+2.5D=D+W 即 F+1.5D=W (3) F×x F =D×x D +W×x W (4) 式(3)代人(4)消去W得: D/F=(x F -xW)/(x D +1.5xW) =(0.5-0.1)/(0.95+1.5×0.1)=0.364 39解: (1) η=Dx D /(Fx F )= x D (x F -x W )/( x F (x D -x W )) =x D (0.4-0.05)/(0.4(x D -0.05))=0.955 → x D =0.6 D/F=ηx F /x D =0.955×0.4/0.6=0.64 ∴D=0.64F=64Kmol/h, W=36Kmol/h (2) 该塔只有提馏段,又q=1, ∴L=F,V=D,故(L/V)=F/D 操作线方程:y n+1 =(F/D)x n -(W/D)x W =(100/64)x n -(36/64)×0.05 =1.56x n -0.028 (3) 当N T →∞时,可获得x Dmax ∵ q=1. q线是垂线交平衡线上y e 点 y e =αx F /(1+(α-1)x F )=(3×0.4)/(1+2×0.4)=0.667,此值是否最大值必须校验,由于F,V不变, ∴D,W不变 x W =(x F -(D/F)x D )/ (W/F)=(0.4-0.64×0.667)/0.36=-0.0747<0 ∴ 当x W =0,夹点在塔底 x Dmax =(F/D)x F =0.4/0.64=0.625 40解: (1) F 1 x F1 +F 2 x F2 =Dx D +W x W 1×0.6+0.5×0.4=0.99D+0.02W 131 F 1 +F 2 =D+W 1+0.5=D+W ∴D=0.794Kmol/s W=0.706Kmol/s L=RD=0.794Kmol/s V=L+D=1.588Kmol/s L″=L+q 1 F 1 =1.794Kmol/s V″=V=1.588Kmol/s y″=(L″/V″)x″+(Dx D -F 1 x F1 )/V″ =(1.794/1.588)x″+(0.794×0.99-1×0.6)/1.588 ∴ y″=1.13x″+0.117 (2) 若夹紧点在第一进料口处(第一段操作线与q线交点落在平衡线上): x q1 =0.6 y q1 =3×0.6/(1+2×0.6)=0.82 R’m=(x D -y q1 )/(y q1 -x q1 )=(0.99-0.82)/(0.82-0.6)=0.773 若夹紧点在第二进料口处: y q2 =0.4 x q2 =y q2 /(α-(α-1)y q2 )=0.4/(3-2×0.4)=0.182 提馏段操作线斜率: L’/V’=(y q2 -y W )/(x q2 -x W ) =(0.4-0.02)/(0.182-0.02)=2.35 L’=2.35V’,代人L’-V’=W=0.706得:V’=0.523 而 V’=V″-F 2 =V-F 2 =(R M +1)D-F 2 =(R M +1)×0.794-0.5=0.523 解得: R M =0.288 ; 取R min =R ’ m =0.773. 41解: (1) D/F=(x F -x W )/(x D -x W ) =(0.5-0.2)/(0.8-0.2)=0.5,令F=1,∴D=0.5 W=0.5 R=L/D=(2V/3)/(V/3)=2 L=RD=2D=1 L’=L+qF=2 V’=V=3D=1.5 ∴L’x’=V’y+Wx W x’=0.75y’+0.05……(1) y=αx/(1+(α-1)x)=3x/(1+2x) ……(2) 由塔底开始计算:x 1 =x W =0.2 y 1 =0.429 x 2 =0.372 y 2 =0.64 x 3 =0.53 y 3 =0.77 x 4 =0.629 y 4 =0.836> x D 共需四块理论板 (2)设操作线上端与平衡线相交 y=x D ………(1) x=0.75y+0.25x W …………(2) x=y/(α-(α-1)y)=y/(3-2y) …………(3) Fx F =Dx D +Wx W ∴x D +x W =1 …… (4) 联立求得x D =0.866 即N T →∞,塔顶浓度为0.866 42解: 全回流条件下,操作线方程为 y n+1 = x n ∴ y n = x n-1 =0.57 y n+1 = x n =0.41 y n+2 = x n+1 =0.28 已知 x n-1 =0.57 x n =0.41 x n+1 =0.28 132 由平衡数据线性插值得到 x n * = 0.356 x n+1 * =0.228 y n * = 0.628 y n+1 * =0.475 E n,v = (y n - y n+1 )/(y n * - y n+1 ) E n, L =(x n-1 - x n )/(x n-1 - x n * ) E n+1 , v = (y n+1 - y n+2 )/(y n+1 * - y n+2 ) E n+1 , L =(x n - x n+1 )/(x n - x n+1 * ) 将已知数据带入上述相应公式,得到 E n,v = 0.826 E n,L =0.841 E n+1 , v = 0.667 E n+1 , L =0.592 1.43解:先由精馏段操作线方程求得R和x D ,再任意假设原料液流量F,通过全塔物料衡 算求得D 、 W及x W ,而后即可求出提馏段操作线方程。 E mv1 可由默夫里效率定义式求得。 1.提馏段操作线方程 由精馏段操作线方程知 R 0.75 R1 解得 R=3.0 x D 0.20 R1 解得 x D =0.8 设原料液流量F=100kmol/h 则 D=0.4×100=40kmol/h W=60kmol/h x W Fx F Dx D 1000.35400.8 0.05 FD10040 因q=0,故 L′=L=RD=3×40=120kmol/h V′=V -( 1 - q ) F= ( R+1 ) D -( 1 - q ) F=4×40-100=60kmol/h 提馏段操作线方程为 L L 12060 y x x w x 0.052x0.05 VW6060 2.板效率E mv1 由默夫里板效率定义知: yy 2 E mv1 1 * y 1 y 2 其中 y 1 =x D =0.8 y 2 =0.75×0.7+0.2=0.725 ax 1 2.50.7 * y 1 0.854 1 a1 x 1 11.50.7 133 故 E mv1 0.800.72 0.5858% 0.8540.725 思 考 题 42 [1]. y 6 =0.82 x 6 =0.70 y 7 =0.75 x 7 =0.62 [2]. a) y n ,x n-1 b)y n ,x n c)y n+1 ,x n d)x n-1 -x n e)y n -y n+1 [3]. 0.7 0.4375 76.2% (x) [4]. 冷液 t F 泡 最远 最少. x [5].(1)对于具有共沸组成物系,组分间沸点差导仍存在,但相对挥发度α=1处不能分离; (2)t 4 =t 3 >t 2 =t 1; (3)增加被分离组分的相对挥发度 [6].D 1 2 , W 1 >W 2 , R 1 >R 2 [7].(1)R=∞, N=N min ; (2)R=R min , n=∞ [8].∞; 0; 1. [9]. y n =αx n /(1+(α-1)x n )=3×0.3/(1+2×0.3)=0.563 x n-1 =y n =0.563; y n-1 =3×0.563/(1+2×0.563)=0.794 [10]. =,>. [11]. <,<,>,=,> [12].(1)下降 (2)下降 (3)下降 (4)不变 (5)上升 [13].(1)增大 则不变; (2)1 1 多 [14].(1)等于 无; (2)减少 增加 增加 增大 [15].增大 变小 上升 下降 [16].(1)<,> (2)>,> [17].(1)减少,增加; (2)增加,减少,增加 [18].变小,变大,变小. [19].L/V不变 N T 增加 [20].变小 ,变小, 变小 [21].增大,增大,增大,减少. [22].解:减少,增加,增加,无法确定 [23].解:增加,减少,增加,增加 [24].解:增加,减少,不变,不变 [25].解:<,>,>. [26].y=(L/V)x-Wx W /V, ∵D/F=0.5 x W =0, 又q=1 ∴L/V=(R×(D/F)+1)/((R+1)×D/F)=(2×0.5+1)/(3×0.5)=4/3 x D =x F /(D/F)=0.4/0.5=0.8 [27].解:变大,变大,变大; [28].变小,变小,变小; [29].见图 [30].见图; [31].见图 [32].见图,粗线为新工况操作线, 134 29题附图 31题附图 [33].(C); [34].(1)C (2)A; [35].(1)D (2)D; [36].(D) [37]. B [38].(D); [39].(B) [40].(1)C (2)B 30题附图 32题附图 135