最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

化工原理第五章 精馏 答案

IT圈 admin 45浏览 0评论

2024年3月13日发(作者:堵秀雅)

五 蒸馏习题解答

1解:

(1)作x-y图及t-x(y)图,作图依据如下:

∵x

A

=(p-p

B

0

)/(p

A

0

-p

B

0

); y

A

=p

A

0

×x

A

/p

以t=90℃为例,x

A

=(760-208.4)/(1008-208.4)=0.6898

y

A

=1008×0.6898/760=0.9150

计算结果汇总:

t℃

x

y

4.612x/(1+

3.612x)

80.02

1

1

1

90

0.6898

0.9150

0.9112

100 110 120

0.3777

130

0.0195

0.0724

131.8

0

0

0

0.4483 0.2672 0.1287

0.7875 0.6118

0.7894 0.6271 0.4052 0.0840

(2)用相对挥发度计算x-y值:

y=αx/[1+(α-1)x]

式中α=α

M

=1/2(α

1

2

)

∵α=p

A

0

/p

B

0

α

1

=760/144.8=5.249 ;α

2

=3020/760=3.974

∴α

M

=1/2(α

1

2

)=1/2(5.249+3.974)=4.612

y=4.612x/(1+3.612x)

由此计算x-y值亦列于计算表中,y-x图,t-x(y) 图如下:

1 题 附 图

2解:

(1)求泡点:

在泡点下两组分的蒸汽分压之和等于总压P,即:p

A

+p

B

=p

A

0

x

A

+x

B

0

x

B

=p求泡点要用试差法,先

设泡点为87℃

lgp

A

0

=6.89740-1206.350/(87+220.237)=2.971

116

p

A

0

=10

2.971

=935.41[mmHg]

lgp

B

0

=6.95334-1343.943/(87+219.337)=2.566

p

B

0

=10

2.566

=368.13[mmHg]

935.41×0.4+368.13×0.6=595≈600mmHg

∴泡点为87℃,气相平衡组成为

y=p

A

/p=p

A

0

x

A

/P=935.41×0.4/600=0.624

(2)求露点:

露点时,液滴中参与甲苯组成应符合下列关系: x

A

+x

B

=1或p

A

/p

A

0

+p

B

/p

B

0

=1

式中 p

A

=0.4×760=304[mmHg]; p

B

=0.6×760=456[mmHg]

求露点亦要用试差法,先设露点为103℃,则:lgp

A

0

=6.8974-120.635/

(103+220.237)=3.165

∴p

A

0

=1462.2[mmHg]

lgp

B

0

=6.95334-1343.943/(103+219.337)=2.784

∴p

B

0

=608.14[mmHg]

于是 :

304/1462.2+456/608.14=0.96<1

再设露点为102℃,同时求得p

A

0

=1380.4; p

B

0

=588.84

304/1380.4+456/588.84=0.995≈1

故露点为102℃,平衡液相组成为

x

A

=p

A

/p

A

0

=304/1380.4=0.22

3解:

(1)x

A

=(p

-p

B

0

)/(p

A

0

-p

B

0

)

0.4=(p

-40)/(106.7-40)

∴p

=66.7KPa

y

A

=x

A

·p

A

0

/p=0.4×106.7/66.7=0.64

(2)α=p

A

0

/p

B

0

=106.7/40=2.67

4解:

(1) y

D

=?

α

D

=(y/x)

A

/(y/x)

B

=(y

D

/0.95)/((1-y

D

)/0.05)=2

y

D

=0.974

(2) L/V

D

=?

∵V=V

D

+L

(V/V

D

)=1+(L/V

D

)

V0.96=V

D

0.974+L0.95

(V/V

D

)0.96=0.974+(L/V

D

)0.95

(1+L/V

D

)0.96=0.974+(L/V

D

)0.95

(L/V

D

)=1.4

5解:

简单蒸馏计算:

117

lnW

1

/W

2

=

x1

x2

dx

yx

W

2

=(1-1/3)W

1

=2/3W

1

;y=0.46x+0.549,x

1

=0.6,代入上式积分解得:

釜液组成:x

2

=0.498,

馏出液组成:W

D

x

D

=W

1

x

1

-W

2

x

2

(1/3W

1

)x

D

=W

1

×0.6-(2/3W

1

)×0.498

∴x

D

=0.804

6解:

Fx

F

=Vy+Lx ∴0.4=0.5y+0.5x --------(1)

y=αx/(1+(α-1)x)=3x/(1+2x) --------(2)

(1),(2)联立求解,得y=0.528,x=0.272

回收率=(V·y)/(Fx

F

)=0.5×0.528/0.4=66%

7.解:

F=D+W

Fx

F

=Dx

D

+Wx

W

已知x

F

=0.24,x

D

=0.95,x

W

=0.03,解得:

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.24-0.03)/(0.95-0.03)=0.228

回收率 Dx

D

/Fx

F

=0.228×0.95/0.24=90.4%

残液量求取:

W/D=F/D-1=1/0.228-1=3.38

∴W=3.38D=3.38(V-L)=3.38(850-670)=608.6[kmol/h]

8解:

(1) 求D及W,全凝量V

F=D+W

Fx

F

=Dx

D

+Wx

W

x

F

=0.1,x

D

=0.95,x

W

=0.01(均为质量分率)

F=100[Kg/h],代入上两式解得:

D=9.57[Kg/h]; W=90.43[Kg/h]

由恒摩尔流得知:

F(0.1/78+0.9/92)=V(0.95/78+0.05/92)

[注意:如用质量百分数表示组成,平均分子量M

m

=1/(a

A

/M

A

+a

B

/M

B

)]

解得 V=87[Kg/h] 由 于塔顶为全凝器,故上升蒸汽量V即为冷凝量,

(2) 求回流比R

V=D+L ∴L=V-D=87-9.57=77.43[Kg/h]

R=L/D=77.43/9.57=8.09(因为L与D的组成相同,故8.09亦即为摩尔比)

(3) 操作线方程.

因塔只有精馏段,故精馏段操作线方程为

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

式中x

D

应为摩尔分率

118

x

D

=( x

D

/M

A

)/[x

D

/M

A

+(1-x

D

)/M

B

]

=(0.95/78)/(0.95/78+0.05/92)=0.961

∴y

n+1

=8.09x

n

/9.09+0.961/9.09=0.89x

n

+0.106

操作线方程为:y

n+1

=0.89x

n

+0.106

9解:

y=[R/(R+1)]x+x

D

/(R+1)

(1) R/(R+1)=0.75 R=0.75R+0.75 R=0.75/0.25=3

(2) x

D

/(R+1)=0.2075 x

D

/(3+1)=0.2079 x

D

=0.83

(3) q/(q-1)=-0.5 q=-0.5q+0.5 q=0.5/1.5=0.333

(4) 0.75x+0.2075=-0.5x+1.5x

F

0.75x

q

'+0.2075=-0.5x

q

'+1.5×0.44

1.25x

q

'=1.5×0.44-0.2075=0.4425 x

q

'=0.362

(5)0

10解:

(1) 求精馏段上升蒸汽量V和下降的液体量L,提馏段上升蒸汽量V'和下降的液体量L'.

进料平均分子量: Mm=0.4×78+0.6×92=86.4

F=1000/86.4=11.6[Kmol/h]

Fx

F

=Dx

D

+Wx

W

F=D+W

11.6×0.4=D×0.97+(11.6-D)0.02

∴D=4.64[Kmol/h]

W=6.96[Kmol/h]

R=L/D, ∴L=3.7×4.64=17.17[Kmol/h]

V=(R+1)D=4.7×4.64=21.8[Kmol/h]

平均气化潜热r=30807×0.4+33320×0.6=32313.6[KJ/Kmol]

从手册中查得x

F

=0.4时泡点为95℃,则:

q=[r+cp(95-20)]/r=(32313.6+159.2×75)/32313.6=1.37

∴L'=L+qF=17.17+1.37×11.6=33.1[Kmol/h]

V'=V-(1-q)F=21.8+0.37×11.6=26.1[Kmol/h]

(2) 求塔顶全凝器热负荷及每小时耗水量.

Qc=Vr

∴r=0.97×30804+33320×0.03=30879.5[KJ/Kmol]

∴Qc=21.8×30879.5=673172.7[KJ/h]

耗水量 Gc=673172.7/4.18(50-20)=5368.2[Kg/h]

(3) 求再沸器热负荷及蒸汽耗量.

塔的热量衡算

Q

B

+Q

F

+Q

R

=Q

v

+Q

W

+Q

L

Q

B

=Q

v

+Q

W

+Q

L

-Q

F

-Q

R

该式右边第一项是主要的,其它四项之总和通常只占很小比例,故通常有:

Q

B

≈Q

V

=V·I

v

Iv=(r+Cpt)=30879.5+159.2×8.2=43933.9[KJ/Kmol]

119

∴Q

B

=21.8×43933.9=957759.02[KJ/h]

2.5[KgF/cm

2

]下蒸汽潜热r=522Kcal/Kg=522×4.18×18=39275.3[KJ/Kmol]

∴蒸汽需量为G

v

G

v

=Q

B

/r=957759.02/39275.3=24.4Kmol/h

=24.4×18=39.04[Kg/h]

(4) 提馏段方程 y=L'x/(L'-W)-Wx

W

/(L'-W)=1.26x-0.005

11解:

提馏段: y

m+1

’=1.25x

M

’-0.0187---------(1)

=L'x

M

'/V'-Wx

W

/V',

L'=L+qF=RD+F

V'=(R+1)D

W=F-D,

精馏段: y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=0.75x

n

+0.25x

D

--------(2)

q线:x

F

=0.50 --------------(3)

将(3)代入(1)得出:

y

m+1

=1.25×0.5-0.0187=0.606,代入(2)

0.606=0.75×0.5+0.25x

D

,

x

D

=0.924

12解:

(1) y

1

=x

D

=0.84,

0.84=0.45x

1

+0.55

x

1

=0.64,

y

W

=3×0.64/(3+1)+0.84/(3+1)=0.69,

0.69=0.45×x

W

+0.55,x

W

=0.311,

(2) D=100(0.4-0.311)/(0.84-0.311)=16.8(Kmol/h),

W=100-16.8=83.2(Kmol/h)

13解:

(1) 求R,x

D

,x

W

精馏段操作线斜率为R/(R+1)=0.723 ∴R=2.61

提馏段方程 y=L'x/(L'-W)-Wx

W

/(L'-W)=1.25x-0.0187

精馏段操作线截距为

x

D

/(R+1)=0.263 ∴x

D

=0.95

提馏段操作线与对角线交点坐标为

y=x=x

W

x

W

=1.25 x

W

-0.0187 ∴x

W

=0.0748

(2)饱和蒸汽进料时,求取进料组成

将 y=0.723x+0.263

y=1.25x-0.0187

联立求解,得x=0.535,y=0.65

因饱和蒸汽进料,q线为水平线,可得原料组成y=x

F

=0.65

120

14解:

(1) y

1

=x

D

=0.9,x

1

=0.9/(4-3×0.9)=0.692,

(2) y

2

=1×0.692/(1+1)+0.9/2=0.796

(3) x

D

=x

F

=0.5, y

D

=0.5/2+0.9/2=0.7

15解:

(1) Fx

F

=Vy

q

+Lx

q

0.45=(1/3)y

q

+(2/3)x

q

y

q

=2.5x

q

/(1+1.5x

q

)

∴x

q

=0.375 y

q

=0.6

(2) Rmin=(x

D

-y

q

)/(y

q

-x

q

)

=(0.95-0.6)/(0.6-0.375)=1.56

R=1.5Rmin=2.34

D=0.95×0.45/0.95=0.45 W=1-0.45=0.55

x

W

=(Fx

F

-Dx

D

)/W=(0.45-0.45×0.95)/0.55=0.041

L=RD=2.34×0.45=1.053; V=(R+1)D=1.503

L'=L+qF=1.053+(2/3)×1=1.72; V'=V-(1-q)F=1.503-1/3=1.17

y'=(L'/V')x'-Wx

W

/V'=1.72/1.17x'-0.55×0.041/1.17

=1.47x'-0.0193

16解:

精馏段操作线方程

y

n+1

=3/4x

n

+0.24

平衡线方程 y=αx/[1+(α-1)x]=2.5x/(1+1.5x)

提馏段操作线方程

y=1.256x-0.01278

其计算结果如下:

N

0

x y

1 0.906 0.96

2 0.821 0.92

3 0.707 0.86

4 0.573 0.77

5 0.462 0.70

6 0.344 0.567

7 0.224 0.419

8 0.128 0.268

9 0.065 0.148

10 0.029 0.069

由计算结果得知:

理论板为10块(包括釜), 加料板位置在第五块;

17解:

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.52-x

W

)/(0.8-x

W

)=0.5

121

解得:x

W

=0.24

精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)=0.75x

n

+0.2 --------(1)

平衡线方程:y=αx/(1+(α-1)x)=3x/(1+2x)

或:x=y/(α-(α-1)y)=y/(3-2y) --------(2)

交替运用式(1),(2)逐板计算:

x

D

=y

1

=0.8 .x

1

=0.571;

y

2

=0.628,x

2

=0.360;

y

3

=0.470,x

3

=0.228

W

=0.24

∴共需N

T

=3块(包括釜).

18解:

q=0,x

D

=0.9,x

F

=0.5,

x

W

=0.1,R=5,

精馏段操作线方程:

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=5x

n

/(5+1)+0.9/(5+1)

=0.833x

n

+0.15

图解:

得理论板数为11块(不包括釜),包括釜为12

18题附图

19解:

(1) F=D+W

Fx

F

=Dx

D

+Wx

W

D=F(x

F

-x

W

)/(x

D

-x

W

)

=100(0.3-0.015)/(0.95-0.015)

=30.48 Kmol/h=30.5 Kmol/h

W=F-D=69.50 Kmol/h

(2) N

T

及N

F

=?

x

D

=0.95、x

W

=0.015、q=1、

R=1.5;x

D

/(R+1)=0.38

作图得:N

T

=9-1=8(不含釜)

进料位置: N

F

=6

(3)L’,V’,y

W

及x

W-1

19题附图

∵q=1,V'=V=(R+1)D

V'=30.5(1.5+1)=76.25Kmol/h

L'=L+qF=RD+F=1.5×30.5+100=145.8Kmol/h

由图读得:y

W

=0.06, x

W-1

=0.03

20解:

122

(1) 原料为汽液混合物,成平衡的汽液相组成为x ,y

平衡线方程 y=αx/[1+(α-1)x]=4.6x/(1+3.6x) --------- (1)

q线方程 (q=2/(1+2)=2/3)则

y=[q/(q-1)]x-x

F

/(q-1)=-2x+1.35 ---------- (2)

联解(1),(2)两式,经整理得:

-2x+1.35=4.6x/(1+3.6x)

7.2x

2

+1.740x-1.35=0

解知,x=0.329

y=0.693

(2) Rmin=(x

D

-y

e

)/(y

e

-x

e

)=(0.95-0.693)/(0.693-0.329)=0.706

21解:

因为饱和液体进料,q=1

y

e

=αx

e

/[1+(α-1)x

e

]=2.47×0.6/(1+1.47×0.6)=0.788

R

min

=(x

D

-y

e

)/(ye-x

e

)=(0.98-0.788)/(0.788-0.6)=1.02

R=1.5×R

min

=1.53

N

min

=lg[(x

D

/(1-x

D

))((1-x

W

)/x

W

)]/lgα

=lg[(0.98/0.02)(0. 95/0. 05)]/lg2.47= 7.56

x=(R-R

min

)/(R+1)=(1.53-1.02)/(1.53+1)=0.202

Y=(N-N

min

)/(N+1) Y=0.75(1-x

0.567

)

∴(N-7.56)/(N+1)=0.75(1-0.202

0.567

) 解得N=14.5 取15块理论板(包括釜)

实际板数: N=(15-1)/0.7+1=21(包括釜)

求加料板位置,先求最小精馏板数

(N

min

)

=lg[x

D

/(1-x

D

)×(1-x

F

)/x

F

]/lgα

=lg[0.98/0.02·0.4/0.6]/lg2.47=3.85

N

/N=(N

min

)

/N

min

∴N

=N(N

min

)

/N

min

=14.5×3.85/7.56=7.4

则精馏段实际板数为 7.4/0.7=10.6

取11块 故实际加料板位置为第12块板上.

22解:

(1) 由 y=αx/[1+(α-1)x]=2.4x/(1+1.4x) 作y-x图

由于精馏段有侧线产品抽出,故精馏段被分为上,下两段, 抽出侧线以上的操作线方程式:

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)=2/3x

n

+0.3 ----------- (1)

侧线下操作线方程推导如下:

以虚线范围作物料衡算 V=L+D

1

+D

2

Vy

s+1

=Lx

s

+D

1

x

D1

+D

2

x

D2

;

y

s+1

=Lx

s

/V +(D

1

x

D1

+D

2

x

D2

)/V

=Lxs/(L+D

1

+D

2

)+(D

1

x

D

1

+D

2

x

D2

)/(L+D

1

+D

2

);

L=L

0

-D

2

, 则:

123

y

s+1

=(L

0

-D

2

)x

s

/(L

0

-D

2

+D

1

+D

2

)

+(D

1

x

D

1

+D

2

x

D

2

)/(L

0

-D

2

+D

1

+D

2

)

=(R-D

2

/D

1

)x

s

/(R+1)+(x

D1

+D

2

x

D2

/D

1

)/(R+1)

(R=L

0

/D

1

)

将已知条件代入上式,得到:

y

S+1

=0.5x+0.416

(2) 用图解法,求得理论塔板数

为(5-1)块,见附图.

22题附图

23解:

根据所给平衡数据作x-y图.

精馏段操作线

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=1.5x

n

/(1.5+1)+0.95/(1.5+1)

=0.6x

n

+0.38

q线方程与q线:

料液平均分子量:

M

m

=0.35×+0.65×18=22.9

甲醇分子汽化潜热:

r=252×32×4.2=33868.8[KJ/Kmol]

水的分子汽化潜热:

r=552×18×4.2=41731.2[KL/Kmol] 23题附图

料液的平均分子汽化潜热:

r=0.35×33868.8+0.65×41731.2=38979.4[KL/Kmol]

料液的平均分子比热

Cp=0.88×22.9×4.2=84.6[KL/Kmol·℃]

q=[r+Cp(ts-t

F

)]/r=[38979.4+84.6(78-20)]/38979.4=1.13

q线斜率 q/(q-1)=1/13/0.13=8.7

提馏段操作线方程与操作线:

由于塔釜用直接蒸汽加热,故提馏段操作线过横轴上(x

W

,0)一点,于是在x-y图上,作出三条线,

用图解法所得理论板数为7.6块,可取8块(包括釜).

24解:

对全塔进行物料衡算:

F

1

+F

2

=D+W ----------(1)

F

1

x

F1

+F

2

x

F2

=Dx

D

+Wx

W

100×0.6+200×0.2=D×0.8+W×0.02

124

100=0.8D+0.02W -----------(2)

由式(1) W=F

1

+F

2

-D=100+200-D=300-D

代入式(2)得:D=120.5Kmol/h

L=RD=2×120.5=241kmol/h

V=L+D=241+120.5=361.5Kmol/h

在两进料间和塔顶进行物料衡算,并设其间液汽流率为L",V",塔板序号为s.

V''+F

1

=D+L''

V''y

s+1

"+F

1

x

F1

=L''xs''+Dx

D

y

s+1

=(L''/V'')xs''+(Dx

D

-F

1

x

F1

)/V''

L''=L+q

1

F

1

=241+1×100=341Kmol/h

V''=V=361.5

y

s+1

"=(341/361.5)x

s

''+(120.5×0.8-100×0.6)/361.5

y

s+1

"=0.943x

s

''+0.1

25解:

对于给定的最大V',V=(R+1)D,回流比R愈小,塔顶产品量D愈大,但R 需满足产品的质量要

求x

D

》0.98, 故此题的关键是求得回流比R.

由题已知加料板为第14层,故精馏段实际板数为13层,精馏段板数为:

13×0.5=6.5

取苯-甲苯溶液相对挥发度为α=2.54

用捷算法求精馏段最小理论板数

(N

min

)

=ln[0.98/0.02-0.5/0.5]/ln2.54=4.175

y=[N

精馏段

-(N

min

)

]/(N

精馏段

+1)=(6.5-4.175)/(6.5+1)

=1.31

由y=0.75(1-x

0.567

)

x=(1-Y/0.75)

(1/0.567)

=0.392=(R-R

min

)/(R+1)

∴R=(0.392+R

min

)/(1-0.392)

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

对泡点进料x

e

=x

F

=0.5

y

e

=αx/[1+(α-1)x]

=2.54×0.5/(1+1.54×0.5)=1.27/1.77=0.72

∴R

min

=(0.98-0.72)/(0.72-0.5)=0.26/0.22=1.18

∴R=(0.392+1.18)/(1-0.392)=1.572/0.608=2.59

∴D=V/(R+L)=2.5/(2.59+1)=0.696[Kmol/h]

故最大馏出量为0.696[Kmol/h]

26解:

求n板效率: Emv =(y

n

-y

n+1

)/(y

n

*

-y

n+1

),

因全回流操作,故有y

n+1

=x

n

,y

n

=x

n-1

与x

n

成平衡的y

n

*

=αx

n

/[1+(α-1)x

n

]=2.43×0.285/(1+1.43×0.285)=0.492

125

于是: Emv=(x

n-1

-x

n

)/(y

n

*

-x

n

)=(0.43-0.285)/(0.492-0.285)=0.7

求n+1板板效率:

Emv=(y

n+1

-y

n+2

)/(y

n+1

*

-y

n+2

)=(x

n

-x

n+

)/(y

n+1

*

-x

n+1

)

y

n+1

=2.43×0.173/(1+1.43×0.173)=0.337

∴Emv=(0.285-0.173)/(0.337-0.173)=0.683

27解:

由图可知:该板的板效率为 Emv=(y

1

-y )/(y

1

*

-y

W

)

从图中看出,y

1

=x

D

=0.28,关键要求y

1

*

与y

W

.

由已知条件 Dx

D

/Fx

F

=0.8

∴D/F=0.8×0.2/0.28=0.57

作系统的物料衡算: Fx

F

=Dx

D

+Wx

W

F=D+W

联立求解: x

F

=Dx

D

/F+(1-D/F)x

W

0.2=0.57×0.28+(1-0.57)x

W

解得x

W

=0.093 习题27附图

因塔釜溶液处于平衡状态,故

y

W

=αx

W

/[1+(α-1)x

W

]=2.5×0.093/(1+1.5×0.093)=0.204

y

W

与x

1

是操作线关系.

y

n+1

=L'x

n

/V'-Wx

W

/V'

=Fx

n

/D-Wx

W

/D =Fx

n

/D-(F-D)x

W

/D=Fx

n

/D-(F/D-1)x

W

∴y

n+1

=x

n

/0.57-(1/0.57-1)0.093=1.75x

n

-0.07

当 y

n+1

=y

W

时,x

n

=x

1

∴x

1

=(y

W

+0.07)/1.75=(0.204+0.07)/1.75=0.157

与x

1

成平衡气相组成为y

1

*

y

1

*

=αx

1

/[1+(α-1)x

1

]=2.5×0.157/(1+1.5×0.157)=0.318

∴ Emv=(0.28-0.204)/(0.318-0.204)=66.8%

28解:

(1)精馏段有两层理论板,x

D

=0.85,x

F

=0.5,用试差法得精馏

段操作线ac,与x=x

F

=0.5线交于d.提馏段有两层理论板,从

点d开始再用试差法作图,得提馏段操作线bd,得:x

W

=0.17

x

D

/(R+1)=0.103R=0.85/0.103-1=7.25

F=D+W Fx

F

=Dx

D

+Wx

W

100=D+W

100×0.5=D×0.85+W×0.17

得 D=48.5Kmol/h

V'=V=(R+1)D=8.25×48.5=400Kmol/h

28题附图

(2)此时加入的料液全被气化而从塔顶排出,其组成与原料组成相同,相当于一个提馏塔.

29解:

(1) D=η,Fx

F

/x

D

=0.9×100×0.4/0.92

=39.13Kmol/h,W=60.9Kmol/h

126

x

W

=0.1Fx

F

/W=0.1×100×0.4/60.9=0.0656

∵q=1 ∴x

q

=0.4 查图得y

q

=0.61

R

min

=(x

D

-y

q

)/(y

q

-x

q

)=(0.92-0.61)/(0.61-0.4)=1.48

R=1.5×1.48=2.2 x

D

/(R+1)=0.92/3.2=0.29

在y-x图中绘图得

N

T

=15-1=14块(未包括釜),N加料=第6块理论板

N

p

=14/0.7=20块(不包括釜) N

p

=5/0.7=7.14,取8块,∴第九块

为实际加料板

(2) 可用措施:(1)加大回流比,x

D

↑,x

W

↓,η=↑

(2)改为冷液进料,N

T

T

' q=1, N

T

=const ∴x

D

q约为const,下移加料点,x

D

↑.

29题附图

30解:

(1) Dx

D

/Fx

F

=0.922; Dx

D

=0.922×150×0.4=55.32

Dx

D

=Fx

F

-Wx

W

=Fx

F

-(F-D)x

W

=55.32

150×0.4-(150-D)×0.05=55.32

D=56.4Kmol/h W=F-D=93.6Kmol/h

x

D

=55.32/56.4=0.981

(2) N

T

及N

F

(进料位置)

x

D

=0.981,x

W

=0.05,q=1,

x

D

/(R+1)=0.981/(2.43+1)=0.286

a(0.981,0.981), b(0.05,0.05)

q线: x

F

=0.4、q=1, q线为垂线。

作图得:N

T

=12-1=11,不含釜,N

F

=7

(3) 液气比

精馏段:

127

L/V=R/(R+1) =2.43/(2.43+1)=0.708

提馏段: L'/V'=(L+qF)/(L+qF-W)

或V'=V ,L=RD

L'/V'=(RD+F)/((R+1)D)

=(2.43×56.4+150)/(3.43

×56.4)=1.484

(4)由于再沸器结垢,

则Q

B

↓,V'↓,R↓∴x

D

若要求维持x

D

不变,应提高再沸器加热蒸汽

的压力p

s

,及时清除污垢

31解:

(1)R=0.8时,x

D

,x

W

各为多少?

由题知,当塔板为无穷时: R=R

min

=0.8, 30题附图

对泡点进料,

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

x

e

=x

F

=0.5,

y

e

=αx

e

/[1+(α-1)x

e

]=αx

F

/[1+(α-1)x

F

]=2×0.5/(1+0.5)=0.667

于是: (x

D

-0.667)/(0.667-0.5)=0.8

解得: x

D

=0.8

Fx

F

=Dx

D

+Wx

W

x

F

=Dx

D

/F+(1-D/F)x

W

由题知D/F=0.6代入上式,

解得x

W

=0.05,

(2)R=1.5时,求x

D

,x

W

.

由题知,当塔板为无穷多时,

R=R

min

=1.5

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

同理求得x

D

=0.917,代入物料衡算式

x

F

=Dx

D

/F+(1-D/F)x

W

0.5=0.6×0.917=(1-0.6)x

W

x

W

=-0.125,不成立. 31题附图

故操作线与平衡线应取x

W

=0处相交,即:

x

W

=0; Fx

F

=Dx

D

+Wx

W

∴x

D

=Fx

F

/D=0.5×1/0.6=0.83

此时精馏段与提馏段操作线示意图如上:

32解:

(1) x

F

=y

q

=0.5,; x

q

=y

q

/(α-(α-1)y

q

)=0.5/(3-2×0.5)=0.25

128

R

min

=(x

D

-y

q

)/(y

q

-x

q

)=(0.9-0.5)/(0.5-0.25)=1.6

R=2×1.6=3.2

F=D+W

Fx

F

=Dx

D

+Wx

W

0.5=0.9D+0.05W

D=0.529 W=0.471

L=RD=3.2×0.529=1.693 V=2.222

L'=L=1.693 V'=V-F=1.222

∴y'=1.385x'-0.0193

(2)精馏段操作线

y=(L/V)x+Dx

D

/V=(1.693/2.222)x+0.529×0.9/2.222

y=0.762x+0.214

或y=Rx/(R+1)+x

D

/(R+1)=3.2x/4.2+0.9/4.2=0.762x+0.214

y

1

=x

D

=0.9 x

1

=y

1

/(3-2×y

1

)=0.9/(3-2×0.9)=0.75

y

2

=0.762×0.75+0.214=0.7855

(3)应维持R不变,此时V=F=1

此时D=V/(R+1)=1/(3.2+1)=0.238

即D/F应改为0.238

x

W

=(Fx

F

-Dx

D

)/W=(0.5-0.238×0.9)/(1-0.238)=0.375

33解:

q=(r+(80-20)Cp)/r=(40000+60×100)/40000=1.15

W=L+qF=1.15×100=115

D=F+S-W=100+50-115=35

Fx

F

=Dx

D

+Wx

W

y=(L/s)x-(W/S)x

W

=2.3x-2.3x

W

y

2

与x

W

成平衡 ∴y

2

=3x

W

x

1

=y

2

/2.3+x

W

=2.304x

W

y

1

=3x

1

=6.913x

W

=x

D

100×0 2=35×6.913x

W

+115x

W

x

W

=0.056 x

D

=0.387

η=35×0.387/(1000×0.2)

=0.678

34解:

作精馏段物料衡算,得精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)

将 x

0

=0.5、y

1

=0.63、x

D

=0.9

代人上述方程:

0.63=(R/(R+1))0.5+0.9/(R+1)

解得: R=2.08

操作线: 截距 x

D

/(R+1)=0.9/(2.08*1)=0.292

129

作精馏段操作线ac

再就q=1,x

F

=0.4作进料线。

从y

1

、x

o

开始作梯级,共得6块理论板。

35解:

对第n块板:E

mL

=(x

n-1

-x

n

)/(x

n-1

-x

n

*

)=0.5;

x

n

=0.4-0.5(0.4-x

n

*

) y

n

=αx

n

*

/[1+(α-1)x

n

*

]=2x

n

*

/(1+x

n

*

)

对第n板作物料衡算:

100×0.3+100×0.4=100×(2x

n

*

/(1+x

n

*

))+100×[0.4-0.5(0.4- x

n

*

)]

解得:x

n

*

=0.263 x

n

=0.4-0.5(0.4- 0.263)=0.318

y

n

=2×0.263/(1+0.236)=0.382

36解:

作全塔总物料衡算: F=D+W ……… (1)

作全塔易挥发组分物料衡算: Fx

F

=Dx

D

+Wx

W

……… (2)

作分凝器易挥发组分物料衡算: Vy

1

=Dx

D

+Lx

L

… (3)

因为:V=2D L=D,(3)式:2y

1

=x

D

+x

L

………… (3)

相平衡方程:x

D

=αx

L

/[1+(α-1)x

L

] 即:0.8=2.46x

L

/[1+(2.46-1)x

L

解得:x

L

=0.619; 代人(3)式:2y

1

=0.8+0.619,得y

1

=0.71

y

1

=y

W

=0.71,代人平衡方程:0.71=2.46x

W

/[1+(2.46-1)x

W

解得:x

W

=0.5

代人(2)得:D=F(x

F

-x

W

)/(x

D

-x

W

)=66.7 Kmol/h, W=33.3Kmol/h

汽化量:V=2×66.7=133.4 Kmol/h

37解:

(1) 精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)

=(4/(4+1))x+0.7/(4+1)=0.8x+0.14

提馏段操作线方程:

y’=(L’/V’)x-(W/V’)x

W

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.3-x

W

)/(0.7-x

W

)=0.4 → x

W

=0.0333

因为 q=1,所以:

L’/V’=(L+F)/(R+1)D=[R×(D/F)+1]/[(R+1)D/F]

=(4×0.4+1)/[(4+1)×0.4]=1.3

(W/V’)x

W

=(F-D)/[(R+1)D×x

W

=(1-D/F)/[(R+1)D/F]×x

W

=[(1-0.4)/(5×0.4)]×0.0333=0.01

所以:y’=1.3x’-0.01

(2) y

q

=αx

F

/[1+(α-1) x

F

]=2×0.3/(1+(2-1)×0.3)=0.4615

若平衡点在进料口处:

Rm/(Rm*1)=4/(4+1)=(x

D

-y

q

)/(x

D

-x

F

)

=(x

D

-0.4615)/(x

D

-0.3) → x

D

=1.11

130

不可能在进料口平衡。

在塔顶平衡:即 x

D

=1

D/F=(x

F

-x

W

)/(x

D

-x

W

)=0.4; (0.3-x

W

)/(1-x

W

)=0.4

解得 x

W

=-0.167 故不可能。

在塔底平衡:即x

W

=0

x

Dmax

=F×x

F

/D=0.3/0.4=0.75

38解:

(1)饱和水蒸气用量S=V`=V=(R+1)D=2.5D,(∵q=1)

y

1

=x

D

=0.95

Emv=(y

1

-y

2

)/(y

1

*

-y

2

)=(0.95-y

2

)/(0.5x1+0.5-y

2

)=0.5

整理得: 0.5y

2

=0.7-0.25x

1

………… (1)

Vy

2

=Lx

1

+Dx

D

2.5D×y

2

=1.5D×x

1

+Dx

D

整理得: 2.5y

2

=1.5x

1

+0.95 ………… (2)

联解(1)、(2)式得:x

1

=0.927

(2) F+S=D+W; S=V’=2.5D; F+2.5D=D+W

即 F+1.5D=W (3)

F×x

F

=D×x

D

+W×x

W

(4)

式(3)代人(4)消去W得:

D/F=(x

F

-xW)/(x

D

+1.5xW)

=(0.5-0.1)/(0.95+1.5×0.1)=0.364

39解:

(1) η=Dx

D

/(Fx

F

)= x

D

(x

F

-x

W

)/( x

F

(x

D

-x

W

))

=x

D

(0.4-0.05)/(0.4(x

D

-0.05))=0.955 → x

D

=0.6

D/F=ηx

F

/x

D

=0.955×0.4/0.6=0.64

∴D=0.64F=64Kmol/h, W=36Kmol/h

(2) 该塔只有提馏段,又q=1,

∴L=F,V=D,故(L/V)=F/D

操作线方程:y

n+1

=(F/D)x

n

-(W/D)x

W

=(100/64)x

n

-(36/64)×0.05

=1.56x

n

-0.028

(3) 当N

T

→∞时,可获得x

Dmax

∵ q=1. q线是垂线交平衡线上y

e

y

e

=αx

F

/(1+(α-1)x

F

)=(3×0.4)/(1+2×0.4)=0.667,此值是否最大值必须校验,由于F,V不变,

∴D,W不变

x

W

=(x

F

-(D/F)x

D

)/ (W/F)=(0.4-0.64×0.667)/0.36=-0.0747<0

∴ 当x

W

=0,夹点在塔底

x

Dmax

=(F/D)x

F

=0.4/0.64=0.625

40解:

(1) F

1

x

F1

+F

2

x

F2

=Dx

D

+W x

W

1×0.6+0.5×0.4=0.99D+0.02W

131

F

1

+F

2

=D+W 1+0.5=D+W

∴D=0.794Kmol/s W=0.706Kmol/s

L=RD=0.794Kmol/s V=L+D=1.588Kmol/s

L″=L+q

1

F

1

=1.794Kmol/s V″=V=1.588Kmol/s

y″=(L″/V″)x″+(Dx

D

-F

1

x

F1

)/V″

=(1.794/1.588)x″+(0.794×0.99-1×0.6)/1.588

∴ y″=1.13x″+0.117

(2) 若夹紧点在第一进料口处(第一段操作线与q线交点落在平衡线上):

x

q1

=0.6 y

q1

=3×0.6/(1+2×0.6)=0.82

R’m=(x

D

-y

q1

)/(y

q1

-x

q1

)=(0.99-0.82)/(0.82-0.6)=0.773

若夹紧点在第二进料口处:

y

q2

=0.4 x

q2

=y

q2

/(α-(α-1)y

q2

)=0.4/(3-2×0.4)=0.182

提馏段操作线斜率:

L’/V’=(y

q2

-y

W

)/(x

q2

-x

W

)

=(0.4-0.02)/(0.182-0.02)=2.35

L’=2.35V’,代人L’-V’=W=0.706得:V’=0.523

而 V’=V″-F

2

=V-F

2

=(R

M

+1)D-F

2

=(R

M

+1)×0.794-0.5=0.523

解得: R

M

=0.288 ;

取R

min

=R

m

=0.773.

41解:

(1) D/F=(x

F

-x

W

)/(x

D

-x

W

)

=(0.5-0.2)/(0.8-0.2)=0.5,令F=1,∴D=0.5 W=0.5

R=L/D=(2V/3)/(V/3)=2 L=RD=2D=1 L’=L+qF=2

V’=V=3D=1.5

∴L’x’=V’y+Wx

W

x’=0.75y’+0.05……(1)

y=αx/(1+(α-1)x)=3x/(1+2x) ……(2)

由塔底开始计算:x

1

=x

W

=0.2 y

1

=0.429

x

2

=0.372 y

2

=0.64

x

3

=0.53 y

3

=0.77

x

4

=0.629 y

4

=0.836> x

D

共需四块理论板

(2)设操作线上端与平衡线相交 y=x

D

………(1)

x=0.75y+0.25x

W

…………(2)

x=y/(α-(α-1)y)=y/(3-2y) …………(3)

Fx

F

=Dx

D

+Wx

W

∴x

D

+x

W

=1 …… (4)

联立求得x

D

=0.866 即N

T

→∞,塔顶浓度为0.866

42解:

全回流条件下,操作线方程为 y

n+1

= x

n

∴ y

n

= x

n-1

=0.57 y

n+1

= x

n

=0.41 y

n+2

= x

n+1

=0.28

已知 x

n-1

=0.57 x

n

=0.41 x

n+1

=0.28

132

由平衡数据线性插值得到 x

n

*

= 0.356 x

n+1

*

=0.228

y

n

*

=

0.628

y

n+1

*

=0.475

E

n,v

=

(y

n

- y

n+1

)/(y

n

*

- y

n+1

) E

n,

L

=(x

n-1

- x

n

)/(x

n-1

- x

n

*

E

n+1

v

=

(y

n+1

- y

n+2

)/(y

n+1

*

- y

n+2

) E

n+1

L

=(x

n

- x

n+1

)/(x

n

- x

n+1

*

将已知数据带入上述相应公式,得到

E

n,v

=

0.826

E

n,L

=0.841

E

n+1

v

=

0.667

E

n+1

L

=0.592

1.43解:先由精馏段操作线方程求得R和x

D

,再任意假设原料液流量F,通过全塔物料衡

算求得D

W及x

W

,而后即可求出提馏段操作线方程。

E

mv1

可由默夫里效率定义式求得。

1.提馏段操作线方程

由精馏段操作线方程知

R

0.75

R1

解得 R=3.0

x

D

0.20

R1

解得 x

D

=0.8

设原料液流量F=100kmol/h

则 D=0.4×100=40kmol/h

W=60kmol/h

x

W

Fx

F

Dx

D

1000.35400.8

0.05

FD10040

因q=0,故

L′=L=RD=3×40=120kmol/h

V′=V

-(

1

q

F=

R+1

D

-(

1

q

F=4×40-100=60kmol/h

提馏段操作线方程为

L

L

12060

y

x

x

w

x

0.052x0.05

VW6060

2.板效率E

mv1

由默夫里板效率定义知:

yy

2

E

mv1

1

*

y

1

y

2

其中 y

1

=x

D

=0.8

y

2

=0.75×0.7+0.2=0.725

ax

1

2.50.7

*

y

1

0.854

1

a1

x

1

11.50.7

133

E

mv1

0.800.72

0.5858%

0.8540.725

思 考 题

42 [1]. y

6

=0.82 x

6

=0.70 y

7

=0.75 x

7

=0.62

[2]. a) y

n

,x

n-1

b)y

n

,x

n

c)y

n+1

,x

n

d)x

n-1

-x

n

e)y

n

-y

n+1

[3]. 0.7 0.4375 76.2% (x)

[4]. 冷液 t

F

最远 最少. x

[5].(1)对于具有共沸组成物系,组分间沸点差导仍存在,但相对挥发度α=1处不能分离;

(2)t

4

=t

3

>t

2

=t

1;

(3)增加被分离组分的相对挥发度

[6].D

1

2

, W

1

>W

2

, R

1

>R

2

[7].(1)R=∞, N=N

min

; (2)R=R

min

, n=∞

[8].∞; 0; 1.

[9]. y

n

=αx

n

/(1+(α-1)x

n

)=3×0.3/(1+2×0.3)=0.563

x

n-1

=y

n

=0.563; y

n-1

=3×0.563/(1+2×0.563)=0.794

[10]. =,>. [11]. <,<,>,=,>

[12].(1)下降 (2)下降 (3)下降 (4)不变 (5)上升

[13].(1)增大 则不变; (2)1 1 多

[14].(1)等于 无; (2)减少 增加 增加 增大

[15].增大 变小 上升 下降 [16].(1)<,> (2)>,>

[17].(1)减少,增加; (2)增加,减少,增加

[18].变小,变大,变小.

[19].L/V不变 N

T

增加 [20].变小 ,变小, 变小

[21].增大,增大,增大,减少. [22].解:减少,增加,增加,无法确定

[23].解:增加,减少,增加,增加 [24].解:增加,减少,不变,不变

[25].解:<,>,>.

[26].y=(L/V)x-Wx

W

/V,

∵D/F=0.5 x

W

=0, 又q=1

∴L/V=(R×(D/F)+1)/((R+1)×D/F)=(2×0.5+1)/(3×0.5)=4/3

x

D

=x

F

/(D/F)=0.4/0.5=0.8

[27].解:变大,变大,变大;

[28].变小,变小,变小; [29].见图

[30].见图;

[31].见图

[32].见图,粗线为新工况操作线,

134

29题附图

31题附图

[33].(C); [34].(1)C (2)A;

[35].(1)D (2)D; [36].(D) [37]. B

[38].(D); [39].(B)

[40].(1)C (2)B

30题附图

32题附图

135

2024年3月13日发(作者:堵秀雅)

五 蒸馏习题解答

1解:

(1)作x-y图及t-x(y)图,作图依据如下:

∵x

A

=(p-p

B

0

)/(p

A

0

-p

B

0

); y

A

=p

A

0

×x

A

/p

以t=90℃为例,x

A

=(760-208.4)/(1008-208.4)=0.6898

y

A

=1008×0.6898/760=0.9150

计算结果汇总:

t℃

x

y

4.612x/(1+

3.612x)

80.02

1

1

1

90

0.6898

0.9150

0.9112

100 110 120

0.3777

130

0.0195

0.0724

131.8

0

0

0

0.4483 0.2672 0.1287

0.7875 0.6118

0.7894 0.6271 0.4052 0.0840

(2)用相对挥发度计算x-y值:

y=αx/[1+(α-1)x]

式中α=α

M

=1/2(α

1

2

)

∵α=p

A

0

/p

B

0

α

1

=760/144.8=5.249 ;α

2

=3020/760=3.974

∴α

M

=1/2(α

1

2

)=1/2(5.249+3.974)=4.612

y=4.612x/(1+3.612x)

由此计算x-y值亦列于计算表中,y-x图,t-x(y) 图如下:

1 题 附 图

2解:

(1)求泡点:

在泡点下两组分的蒸汽分压之和等于总压P,即:p

A

+p

B

=p

A

0

x

A

+x

B

0

x

B

=p求泡点要用试差法,先

设泡点为87℃

lgp

A

0

=6.89740-1206.350/(87+220.237)=2.971

116

p

A

0

=10

2.971

=935.41[mmHg]

lgp

B

0

=6.95334-1343.943/(87+219.337)=2.566

p

B

0

=10

2.566

=368.13[mmHg]

935.41×0.4+368.13×0.6=595≈600mmHg

∴泡点为87℃,气相平衡组成为

y=p

A

/p=p

A

0

x

A

/P=935.41×0.4/600=0.624

(2)求露点:

露点时,液滴中参与甲苯组成应符合下列关系: x

A

+x

B

=1或p

A

/p

A

0

+p

B

/p

B

0

=1

式中 p

A

=0.4×760=304[mmHg]; p

B

=0.6×760=456[mmHg]

求露点亦要用试差法,先设露点为103℃,则:lgp

A

0

=6.8974-120.635/

(103+220.237)=3.165

∴p

A

0

=1462.2[mmHg]

lgp

B

0

=6.95334-1343.943/(103+219.337)=2.784

∴p

B

0

=608.14[mmHg]

于是 :

304/1462.2+456/608.14=0.96<1

再设露点为102℃,同时求得p

A

0

=1380.4; p

B

0

=588.84

304/1380.4+456/588.84=0.995≈1

故露点为102℃,平衡液相组成为

x

A

=p

A

/p

A

0

=304/1380.4=0.22

3解:

(1)x

A

=(p

-p

B

0

)/(p

A

0

-p

B

0

)

0.4=(p

-40)/(106.7-40)

∴p

=66.7KPa

y

A

=x

A

·p

A

0

/p=0.4×106.7/66.7=0.64

(2)α=p

A

0

/p

B

0

=106.7/40=2.67

4解:

(1) y

D

=?

α

D

=(y/x)

A

/(y/x)

B

=(y

D

/0.95)/((1-y

D

)/0.05)=2

y

D

=0.974

(2) L/V

D

=?

∵V=V

D

+L

(V/V

D

)=1+(L/V

D

)

V0.96=V

D

0.974+L0.95

(V/V

D

)0.96=0.974+(L/V

D

)0.95

(1+L/V

D

)0.96=0.974+(L/V

D

)0.95

(L/V

D

)=1.4

5解:

简单蒸馏计算:

117

lnW

1

/W

2

=

x1

x2

dx

yx

W

2

=(1-1/3)W

1

=2/3W

1

;y=0.46x+0.549,x

1

=0.6,代入上式积分解得:

釜液组成:x

2

=0.498,

馏出液组成:W

D

x

D

=W

1

x

1

-W

2

x

2

(1/3W

1

)x

D

=W

1

×0.6-(2/3W

1

)×0.498

∴x

D

=0.804

6解:

Fx

F

=Vy+Lx ∴0.4=0.5y+0.5x --------(1)

y=αx/(1+(α-1)x)=3x/(1+2x) --------(2)

(1),(2)联立求解,得y=0.528,x=0.272

回收率=(V·y)/(Fx

F

)=0.5×0.528/0.4=66%

7.解:

F=D+W

Fx

F

=Dx

D

+Wx

W

已知x

F

=0.24,x

D

=0.95,x

W

=0.03,解得:

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.24-0.03)/(0.95-0.03)=0.228

回收率 Dx

D

/Fx

F

=0.228×0.95/0.24=90.4%

残液量求取:

W/D=F/D-1=1/0.228-1=3.38

∴W=3.38D=3.38(V-L)=3.38(850-670)=608.6[kmol/h]

8解:

(1) 求D及W,全凝量V

F=D+W

Fx

F

=Dx

D

+Wx

W

x

F

=0.1,x

D

=0.95,x

W

=0.01(均为质量分率)

F=100[Kg/h],代入上两式解得:

D=9.57[Kg/h]; W=90.43[Kg/h]

由恒摩尔流得知:

F(0.1/78+0.9/92)=V(0.95/78+0.05/92)

[注意:如用质量百分数表示组成,平均分子量M

m

=1/(a

A

/M

A

+a

B

/M

B

)]

解得 V=87[Kg/h] 由 于塔顶为全凝器,故上升蒸汽量V即为冷凝量,

(2) 求回流比R

V=D+L ∴L=V-D=87-9.57=77.43[Kg/h]

R=L/D=77.43/9.57=8.09(因为L与D的组成相同,故8.09亦即为摩尔比)

(3) 操作线方程.

因塔只有精馏段,故精馏段操作线方程为

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

式中x

D

应为摩尔分率

118

x

D

=( x

D

/M

A

)/[x

D

/M

A

+(1-x

D

)/M

B

]

=(0.95/78)/(0.95/78+0.05/92)=0.961

∴y

n+1

=8.09x

n

/9.09+0.961/9.09=0.89x

n

+0.106

操作线方程为:y

n+1

=0.89x

n

+0.106

9解:

y=[R/(R+1)]x+x

D

/(R+1)

(1) R/(R+1)=0.75 R=0.75R+0.75 R=0.75/0.25=3

(2) x

D

/(R+1)=0.2075 x

D

/(3+1)=0.2079 x

D

=0.83

(3) q/(q-1)=-0.5 q=-0.5q+0.5 q=0.5/1.5=0.333

(4) 0.75x+0.2075=-0.5x+1.5x

F

0.75x

q

'+0.2075=-0.5x

q

'+1.5×0.44

1.25x

q

'=1.5×0.44-0.2075=0.4425 x

q

'=0.362

(5)0

10解:

(1) 求精馏段上升蒸汽量V和下降的液体量L,提馏段上升蒸汽量V'和下降的液体量L'.

进料平均分子量: Mm=0.4×78+0.6×92=86.4

F=1000/86.4=11.6[Kmol/h]

Fx

F

=Dx

D

+Wx

W

F=D+W

11.6×0.4=D×0.97+(11.6-D)0.02

∴D=4.64[Kmol/h]

W=6.96[Kmol/h]

R=L/D, ∴L=3.7×4.64=17.17[Kmol/h]

V=(R+1)D=4.7×4.64=21.8[Kmol/h]

平均气化潜热r=30807×0.4+33320×0.6=32313.6[KJ/Kmol]

从手册中查得x

F

=0.4时泡点为95℃,则:

q=[r+cp(95-20)]/r=(32313.6+159.2×75)/32313.6=1.37

∴L'=L+qF=17.17+1.37×11.6=33.1[Kmol/h]

V'=V-(1-q)F=21.8+0.37×11.6=26.1[Kmol/h]

(2) 求塔顶全凝器热负荷及每小时耗水量.

Qc=Vr

∴r=0.97×30804+33320×0.03=30879.5[KJ/Kmol]

∴Qc=21.8×30879.5=673172.7[KJ/h]

耗水量 Gc=673172.7/4.18(50-20)=5368.2[Kg/h]

(3) 求再沸器热负荷及蒸汽耗量.

塔的热量衡算

Q

B

+Q

F

+Q

R

=Q

v

+Q

W

+Q

L

Q

B

=Q

v

+Q

W

+Q

L

-Q

F

-Q

R

该式右边第一项是主要的,其它四项之总和通常只占很小比例,故通常有:

Q

B

≈Q

V

=V·I

v

Iv=(r+Cpt)=30879.5+159.2×8.2=43933.9[KJ/Kmol]

119

∴Q

B

=21.8×43933.9=957759.02[KJ/h]

2.5[KgF/cm

2

]下蒸汽潜热r=522Kcal/Kg=522×4.18×18=39275.3[KJ/Kmol]

∴蒸汽需量为G

v

G

v

=Q

B

/r=957759.02/39275.3=24.4Kmol/h

=24.4×18=39.04[Kg/h]

(4) 提馏段方程 y=L'x/(L'-W)-Wx

W

/(L'-W)=1.26x-0.005

11解:

提馏段: y

m+1

’=1.25x

M

’-0.0187---------(1)

=L'x

M

'/V'-Wx

W

/V',

L'=L+qF=RD+F

V'=(R+1)D

W=F-D,

精馏段: y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=0.75x

n

+0.25x

D

--------(2)

q线:x

F

=0.50 --------------(3)

将(3)代入(1)得出:

y

m+1

=1.25×0.5-0.0187=0.606,代入(2)

0.606=0.75×0.5+0.25x

D

,

x

D

=0.924

12解:

(1) y

1

=x

D

=0.84,

0.84=0.45x

1

+0.55

x

1

=0.64,

y

W

=3×0.64/(3+1)+0.84/(3+1)=0.69,

0.69=0.45×x

W

+0.55,x

W

=0.311,

(2) D=100(0.4-0.311)/(0.84-0.311)=16.8(Kmol/h),

W=100-16.8=83.2(Kmol/h)

13解:

(1) 求R,x

D

,x

W

精馏段操作线斜率为R/(R+1)=0.723 ∴R=2.61

提馏段方程 y=L'x/(L'-W)-Wx

W

/(L'-W)=1.25x-0.0187

精馏段操作线截距为

x

D

/(R+1)=0.263 ∴x

D

=0.95

提馏段操作线与对角线交点坐标为

y=x=x

W

x

W

=1.25 x

W

-0.0187 ∴x

W

=0.0748

(2)饱和蒸汽进料时,求取进料组成

将 y=0.723x+0.263

y=1.25x-0.0187

联立求解,得x=0.535,y=0.65

因饱和蒸汽进料,q线为水平线,可得原料组成y=x

F

=0.65

120

14解:

(1) y

1

=x

D

=0.9,x

1

=0.9/(4-3×0.9)=0.692,

(2) y

2

=1×0.692/(1+1)+0.9/2=0.796

(3) x

D

=x

F

=0.5, y

D

=0.5/2+0.9/2=0.7

15解:

(1) Fx

F

=Vy

q

+Lx

q

0.45=(1/3)y

q

+(2/3)x

q

y

q

=2.5x

q

/(1+1.5x

q

)

∴x

q

=0.375 y

q

=0.6

(2) Rmin=(x

D

-y

q

)/(y

q

-x

q

)

=(0.95-0.6)/(0.6-0.375)=1.56

R=1.5Rmin=2.34

D=0.95×0.45/0.95=0.45 W=1-0.45=0.55

x

W

=(Fx

F

-Dx

D

)/W=(0.45-0.45×0.95)/0.55=0.041

L=RD=2.34×0.45=1.053; V=(R+1)D=1.503

L'=L+qF=1.053+(2/3)×1=1.72; V'=V-(1-q)F=1.503-1/3=1.17

y'=(L'/V')x'-Wx

W

/V'=1.72/1.17x'-0.55×0.041/1.17

=1.47x'-0.0193

16解:

精馏段操作线方程

y

n+1

=3/4x

n

+0.24

平衡线方程 y=αx/[1+(α-1)x]=2.5x/(1+1.5x)

提馏段操作线方程

y=1.256x-0.01278

其计算结果如下:

N

0

x y

1 0.906 0.96

2 0.821 0.92

3 0.707 0.86

4 0.573 0.77

5 0.462 0.70

6 0.344 0.567

7 0.224 0.419

8 0.128 0.268

9 0.065 0.148

10 0.029 0.069

由计算结果得知:

理论板为10块(包括釜), 加料板位置在第五块;

17解:

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.52-x

W

)/(0.8-x

W

)=0.5

121

解得:x

W

=0.24

精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)=0.75x

n

+0.2 --------(1)

平衡线方程:y=αx/(1+(α-1)x)=3x/(1+2x)

或:x=y/(α-(α-1)y)=y/(3-2y) --------(2)

交替运用式(1),(2)逐板计算:

x

D

=y

1

=0.8 .x

1

=0.571;

y

2

=0.628,x

2

=0.360;

y

3

=0.470,x

3

=0.228

W

=0.24

∴共需N

T

=3块(包括釜).

18解:

q=0,x

D

=0.9,x

F

=0.5,

x

W

=0.1,R=5,

精馏段操作线方程:

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=5x

n

/(5+1)+0.9/(5+1)

=0.833x

n

+0.15

图解:

得理论板数为11块(不包括釜),包括釜为12

18题附图

19解:

(1) F=D+W

Fx

F

=Dx

D

+Wx

W

D=F(x

F

-x

W

)/(x

D

-x

W

)

=100(0.3-0.015)/(0.95-0.015)

=30.48 Kmol/h=30.5 Kmol/h

W=F-D=69.50 Kmol/h

(2) N

T

及N

F

=?

x

D

=0.95、x

W

=0.015、q=1、

R=1.5;x

D

/(R+1)=0.38

作图得:N

T

=9-1=8(不含釜)

进料位置: N

F

=6

(3)L’,V’,y

W

及x

W-1

19题附图

∵q=1,V'=V=(R+1)D

V'=30.5(1.5+1)=76.25Kmol/h

L'=L+qF=RD+F=1.5×30.5+100=145.8Kmol/h

由图读得:y

W

=0.06, x

W-1

=0.03

20解:

122

(1) 原料为汽液混合物,成平衡的汽液相组成为x ,y

平衡线方程 y=αx/[1+(α-1)x]=4.6x/(1+3.6x) --------- (1)

q线方程 (q=2/(1+2)=2/3)则

y=[q/(q-1)]x-x

F

/(q-1)=-2x+1.35 ---------- (2)

联解(1),(2)两式,经整理得:

-2x+1.35=4.6x/(1+3.6x)

7.2x

2

+1.740x-1.35=0

解知,x=0.329

y=0.693

(2) Rmin=(x

D

-y

e

)/(y

e

-x

e

)=(0.95-0.693)/(0.693-0.329)=0.706

21解:

因为饱和液体进料,q=1

y

e

=αx

e

/[1+(α-1)x

e

]=2.47×0.6/(1+1.47×0.6)=0.788

R

min

=(x

D

-y

e

)/(ye-x

e

)=(0.98-0.788)/(0.788-0.6)=1.02

R=1.5×R

min

=1.53

N

min

=lg[(x

D

/(1-x

D

))((1-x

W

)/x

W

)]/lgα

=lg[(0.98/0.02)(0. 95/0. 05)]/lg2.47= 7.56

x=(R-R

min

)/(R+1)=(1.53-1.02)/(1.53+1)=0.202

Y=(N-N

min

)/(N+1) Y=0.75(1-x

0.567

)

∴(N-7.56)/(N+1)=0.75(1-0.202

0.567

) 解得N=14.5 取15块理论板(包括釜)

实际板数: N=(15-1)/0.7+1=21(包括釜)

求加料板位置,先求最小精馏板数

(N

min

)

=lg[x

D

/(1-x

D

)×(1-x

F

)/x

F

]/lgα

=lg[0.98/0.02·0.4/0.6]/lg2.47=3.85

N

/N=(N

min

)

/N

min

∴N

=N(N

min

)

/N

min

=14.5×3.85/7.56=7.4

则精馏段实际板数为 7.4/0.7=10.6

取11块 故实际加料板位置为第12块板上.

22解:

(1) 由 y=αx/[1+(α-1)x]=2.4x/(1+1.4x) 作y-x图

由于精馏段有侧线产品抽出,故精馏段被分为上,下两段, 抽出侧线以上的操作线方程式:

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)=2/3x

n

+0.3 ----------- (1)

侧线下操作线方程推导如下:

以虚线范围作物料衡算 V=L+D

1

+D

2

Vy

s+1

=Lx

s

+D

1

x

D1

+D

2

x

D2

;

y

s+1

=Lx

s

/V +(D

1

x

D1

+D

2

x

D2

)/V

=Lxs/(L+D

1

+D

2

)+(D

1

x

D

1

+D

2

x

D2

)/(L+D

1

+D

2

);

L=L

0

-D

2

, 则:

123

y

s+1

=(L

0

-D

2

)x

s

/(L

0

-D

2

+D

1

+D

2

)

+(D

1

x

D

1

+D

2

x

D

2

)/(L

0

-D

2

+D

1

+D

2

)

=(R-D

2

/D

1

)x

s

/(R+1)+(x

D1

+D

2

x

D2

/D

1

)/(R+1)

(R=L

0

/D

1

)

将已知条件代入上式,得到:

y

S+1

=0.5x+0.416

(2) 用图解法,求得理论塔板数

为(5-1)块,见附图.

22题附图

23解:

根据所给平衡数据作x-y图.

精馏段操作线

y

n+1

=Rx

n

/(R+1)+x

D

/(R+1)

=1.5x

n

/(1.5+1)+0.95/(1.5+1)

=0.6x

n

+0.38

q线方程与q线:

料液平均分子量:

M

m

=0.35×+0.65×18=22.9

甲醇分子汽化潜热:

r=252×32×4.2=33868.8[KJ/Kmol]

水的分子汽化潜热:

r=552×18×4.2=41731.2[KL/Kmol] 23题附图

料液的平均分子汽化潜热:

r=0.35×33868.8+0.65×41731.2=38979.4[KL/Kmol]

料液的平均分子比热

Cp=0.88×22.9×4.2=84.6[KL/Kmol·℃]

q=[r+Cp(ts-t

F

)]/r=[38979.4+84.6(78-20)]/38979.4=1.13

q线斜率 q/(q-1)=1/13/0.13=8.7

提馏段操作线方程与操作线:

由于塔釜用直接蒸汽加热,故提馏段操作线过横轴上(x

W

,0)一点,于是在x-y图上,作出三条线,

用图解法所得理论板数为7.6块,可取8块(包括釜).

24解:

对全塔进行物料衡算:

F

1

+F

2

=D+W ----------(1)

F

1

x

F1

+F

2

x

F2

=Dx

D

+Wx

W

100×0.6+200×0.2=D×0.8+W×0.02

124

100=0.8D+0.02W -----------(2)

由式(1) W=F

1

+F

2

-D=100+200-D=300-D

代入式(2)得:D=120.5Kmol/h

L=RD=2×120.5=241kmol/h

V=L+D=241+120.5=361.5Kmol/h

在两进料间和塔顶进行物料衡算,并设其间液汽流率为L",V",塔板序号为s.

V''+F

1

=D+L''

V''y

s+1

"+F

1

x

F1

=L''xs''+Dx

D

y

s+1

=(L''/V'')xs''+(Dx

D

-F

1

x

F1

)/V''

L''=L+q

1

F

1

=241+1×100=341Kmol/h

V''=V=361.5

y

s+1

"=(341/361.5)x

s

''+(120.5×0.8-100×0.6)/361.5

y

s+1

"=0.943x

s

''+0.1

25解:

对于给定的最大V',V=(R+1)D,回流比R愈小,塔顶产品量D愈大,但R 需满足产品的质量要

求x

D

》0.98, 故此题的关键是求得回流比R.

由题已知加料板为第14层,故精馏段实际板数为13层,精馏段板数为:

13×0.5=6.5

取苯-甲苯溶液相对挥发度为α=2.54

用捷算法求精馏段最小理论板数

(N

min

)

=ln[0.98/0.02-0.5/0.5]/ln2.54=4.175

y=[N

精馏段

-(N

min

)

]/(N

精馏段

+1)=(6.5-4.175)/(6.5+1)

=1.31

由y=0.75(1-x

0.567

)

x=(1-Y/0.75)

(1/0.567)

=0.392=(R-R

min

)/(R+1)

∴R=(0.392+R

min

)/(1-0.392)

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

对泡点进料x

e

=x

F

=0.5

y

e

=αx/[1+(α-1)x]

=2.54×0.5/(1+1.54×0.5)=1.27/1.77=0.72

∴R

min

=(0.98-0.72)/(0.72-0.5)=0.26/0.22=1.18

∴R=(0.392+1.18)/(1-0.392)=1.572/0.608=2.59

∴D=V/(R+L)=2.5/(2.59+1)=0.696[Kmol/h]

故最大馏出量为0.696[Kmol/h]

26解:

求n板效率: Emv =(y

n

-y

n+1

)/(y

n

*

-y

n+1

),

因全回流操作,故有y

n+1

=x

n

,y

n

=x

n-1

与x

n

成平衡的y

n

*

=αx

n

/[1+(α-1)x

n

]=2.43×0.285/(1+1.43×0.285)=0.492

125

于是: Emv=(x

n-1

-x

n

)/(y

n

*

-x

n

)=(0.43-0.285)/(0.492-0.285)=0.7

求n+1板板效率:

Emv=(y

n+1

-y

n+2

)/(y

n+1

*

-y

n+2

)=(x

n

-x

n+

)/(y

n+1

*

-x

n+1

)

y

n+1

=2.43×0.173/(1+1.43×0.173)=0.337

∴Emv=(0.285-0.173)/(0.337-0.173)=0.683

27解:

由图可知:该板的板效率为 Emv=(y

1

-y )/(y

1

*

-y

W

)

从图中看出,y

1

=x

D

=0.28,关键要求y

1

*

与y

W

.

由已知条件 Dx

D

/Fx

F

=0.8

∴D/F=0.8×0.2/0.28=0.57

作系统的物料衡算: Fx

F

=Dx

D

+Wx

W

F=D+W

联立求解: x

F

=Dx

D

/F+(1-D/F)x

W

0.2=0.57×0.28+(1-0.57)x

W

解得x

W

=0.093 习题27附图

因塔釜溶液处于平衡状态,故

y

W

=αx

W

/[1+(α-1)x

W

]=2.5×0.093/(1+1.5×0.093)=0.204

y

W

与x

1

是操作线关系.

y

n+1

=L'x

n

/V'-Wx

W

/V'

=Fx

n

/D-Wx

W

/D =Fx

n

/D-(F-D)x

W

/D=Fx

n

/D-(F/D-1)x

W

∴y

n+1

=x

n

/0.57-(1/0.57-1)0.093=1.75x

n

-0.07

当 y

n+1

=y

W

时,x

n

=x

1

∴x

1

=(y

W

+0.07)/1.75=(0.204+0.07)/1.75=0.157

与x

1

成平衡气相组成为y

1

*

y

1

*

=αx

1

/[1+(α-1)x

1

]=2.5×0.157/(1+1.5×0.157)=0.318

∴ Emv=(0.28-0.204)/(0.318-0.204)=66.8%

28解:

(1)精馏段有两层理论板,x

D

=0.85,x

F

=0.5,用试差法得精馏

段操作线ac,与x=x

F

=0.5线交于d.提馏段有两层理论板,从

点d开始再用试差法作图,得提馏段操作线bd,得:x

W

=0.17

x

D

/(R+1)=0.103R=0.85/0.103-1=7.25

F=D+W Fx

F

=Dx

D

+Wx

W

100=D+W

100×0.5=D×0.85+W×0.17

得 D=48.5Kmol/h

V'=V=(R+1)D=8.25×48.5=400Kmol/h

28题附图

(2)此时加入的料液全被气化而从塔顶排出,其组成与原料组成相同,相当于一个提馏塔.

29解:

(1) D=η,Fx

F

/x

D

=0.9×100×0.4/0.92

=39.13Kmol/h,W=60.9Kmol/h

126

x

W

=0.1Fx

F

/W=0.1×100×0.4/60.9=0.0656

∵q=1 ∴x

q

=0.4 查图得y

q

=0.61

R

min

=(x

D

-y

q

)/(y

q

-x

q

)=(0.92-0.61)/(0.61-0.4)=1.48

R=1.5×1.48=2.2 x

D

/(R+1)=0.92/3.2=0.29

在y-x图中绘图得

N

T

=15-1=14块(未包括釜),N加料=第6块理论板

N

p

=14/0.7=20块(不包括釜) N

p

=5/0.7=7.14,取8块,∴第九块

为实际加料板

(2) 可用措施:(1)加大回流比,x

D

↑,x

W

↓,η=↑

(2)改为冷液进料,N

T

T

' q=1, N

T

=const ∴x

D

q约为const,下移加料点,x

D

↑.

29题附图

30解:

(1) Dx

D

/Fx

F

=0.922; Dx

D

=0.922×150×0.4=55.32

Dx

D

=Fx

F

-Wx

W

=Fx

F

-(F-D)x

W

=55.32

150×0.4-(150-D)×0.05=55.32

D=56.4Kmol/h W=F-D=93.6Kmol/h

x

D

=55.32/56.4=0.981

(2) N

T

及N

F

(进料位置)

x

D

=0.981,x

W

=0.05,q=1,

x

D

/(R+1)=0.981/(2.43+1)=0.286

a(0.981,0.981), b(0.05,0.05)

q线: x

F

=0.4、q=1, q线为垂线。

作图得:N

T

=12-1=11,不含釜,N

F

=7

(3) 液气比

精馏段:

127

L/V=R/(R+1) =2.43/(2.43+1)=0.708

提馏段: L'/V'=(L+qF)/(L+qF-W)

或V'=V ,L=RD

L'/V'=(RD+F)/((R+1)D)

=(2.43×56.4+150)/(3.43

×56.4)=1.484

(4)由于再沸器结垢,

则Q

B

↓,V'↓,R↓∴x

D

若要求维持x

D

不变,应提高再沸器加热蒸汽

的压力p

s

,及时清除污垢

31解:

(1)R=0.8时,x

D

,x

W

各为多少?

由题知,当塔板为无穷时: R=R

min

=0.8, 30题附图

对泡点进料,

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

x

e

=x

F

=0.5,

y

e

=αx

e

/[1+(α-1)x

e

]=αx

F

/[1+(α-1)x

F

]=2×0.5/(1+0.5)=0.667

于是: (x

D

-0.667)/(0.667-0.5)=0.8

解得: x

D

=0.8

Fx

F

=Dx

D

+Wx

W

x

F

=Dx

D

/F+(1-D/F)x

W

由题知D/F=0.6代入上式,

解得x

W

=0.05,

(2)R=1.5时,求x

D

,x

W

.

由题知,当塔板为无穷多时,

R=R

min

=1.5

R

min

=(x

D

-y

e

)/(y

e

-x

e

)

同理求得x

D

=0.917,代入物料衡算式

x

F

=Dx

D

/F+(1-D/F)x

W

0.5=0.6×0.917=(1-0.6)x

W

x

W

=-0.125,不成立. 31题附图

故操作线与平衡线应取x

W

=0处相交,即:

x

W

=0; Fx

F

=Dx

D

+Wx

W

∴x

D

=Fx

F

/D=0.5×1/0.6=0.83

此时精馏段与提馏段操作线示意图如上:

32解:

(1) x

F

=y

q

=0.5,; x

q

=y

q

/(α-(α-1)y

q

)=0.5/(3-2×0.5)=0.25

128

R

min

=(x

D

-y

q

)/(y

q

-x

q

)=(0.9-0.5)/(0.5-0.25)=1.6

R=2×1.6=3.2

F=D+W

Fx

F

=Dx

D

+Wx

W

0.5=0.9D+0.05W

D=0.529 W=0.471

L=RD=3.2×0.529=1.693 V=2.222

L'=L=1.693 V'=V-F=1.222

∴y'=1.385x'-0.0193

(2)精馏段操作线

y=(L/V)x+Dx

D

/V=(1.693/2.222)x+0.529×0.9/2.222

y=0.762x+0.214

或y=Rx/(R+1)+x

D

/(R+1)=3.2x/4.2+0.9/4.2=0.762x+0.214

y

1

=x

D

=0.9 x

1

=y

1

/(3-2×y

1

)=0.9/(3-2×0.9)=0.75

y

2

=0.762×0.75+0.214=0.7855

(3)应维持R不变,此时V=F=1

此时D=V/(R+1)=1/(3.2+1)=0.238

即D/F应改为0.238

x

W

=(Fx

F

-Dx

D

)/W=(0.5-0.238×0.9)/(1-0.238)=0.375

33解:

q=(r+(80-20)Cp)/r=(40000+60×100)/40000=1.15

W=L+qF=1.15×100=115

D=F+S-W=100+50-115=35

Fx

F

=Dx

D

+Wx

W

y=(L/s)x-(W/S)x

W

=2.3x-2.3x

W

y

2

与x

W

成平衡 ∴y

2

=3x

W

x

1

=y

2

/2.3+x

W

=2.304x

W

y

1

=3x

1

=6.913x

W

=x

D

100×0 2=35×6.913x

W

+115x

W

x

W

=0.056 x

D

=0.387

η=35×0.387/(1000×0.2)

=0.678

34解:

作精馏段物料衡算,得精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)

将 x

0

=0.5、y

1

=0.63、x

D

=0.9

代人上述方程:

0.63=(R/(R+1))0.5+0.9/(R+1)

解得: R=2.08

操作线: 截距 x

D

/(R+1)=0.9/(2.08*1)=0.292

129

作精馏段操作线ac

再就q=1,x

F

=0.4作进料线。

从y

1

、x

o

开始作梯级,共得6块理论板。

35解:

对第n块板:E

mL

=(x

n-1

-x

n

)/(x

n-1

-x

n

*

)=0.5;

x

n

=0.4-0.5(0.4-x

n

*

) y

n

=αx

n

*

/[1+(α-1)x

n

*

]=2x

n

*

/(1+x

n

*

)

对第n板作物料衡算:

100×0.3+100×0.4=100×(2x

n

*

/(1+x

n

*

))+100×[0.4-0.5(0.4- x

n

*

)]

解得:x

n

*

=0.263 x

n

=0.4-0.5(0.4- 0.263)=0.318

y

n

=2×0.263/(1+0.236)=0.382

36解:

作全塔总物料衡算: F=D+W ……… (1)

作全塔易挥发组分物料衡算: Fx

F

=Dx

D

+Wx

W

……… (2)

作分凝器易挥发组分物料衡算: Vy

1

=Dx

D

+Lx

L

… (3)

因为:V=2D L=D,(3)式:2y

1

=x

D

+x

L

………… (3)

相平衡方程:x

D

=αx

L

/[1+(α-1)x

L

] 即:0.8=2.46x

L

/[1+(2.46-1)x

L

解得:x

L

=0.619; 代人(3)式:2y

1

=0.8+0.619,得y

1

=0.71

y

1

=y

W

=0.71,代人平衡方程:0.71=2.46x

W

/[1+(2.46-1)x

W

解得:x

W

=0.5

代人(2)得:D=F(x

F

-x

W

)/(x

D

-x

W

)=66.7 Kmol/h, W=33.3Kmol/h

汽化量:V=2×66.7=133.4 Kmol/h

37解:

(1) 精馏段操作线方程:

y

n+1

=(R/(R+1))x

n

+x

D

/(R+1)

=(4/(4+1))x+0.7/(4+1)=0.8x+0.14

提馏段操作线方程:

y’=(L’/V’)x-(W/V’)x

W

D/F=(x

F

-x

W

)/(x

D

-x

W

)=(0.3-x

W

)/(0.7-x

W

)=0.4 → x

W

=0.0333

因为 q=1,所以:

L’/V’=(L+F)/(R+1)D=[R×(D/F)+1]/[(R+1)D/F]

=(4×0.4+1)/[(4+1)×0.4]=1.3

(W/V’)x

W

=(F-D)/[(R+1)D×x

W

=(1-D/F)/[(R+1)D/F]×x

W

=[(1-0.4)/(5×0.4)]×0.0333=0.01

所以:y’=1.3x’-0.01

(2) y

q

=αx

F

/[1+(α-1) x

F

]=2×0.3/(1+(2-1)×0.3)=0.4615

若平衡点在进料口处:

Rm/(Rm*1)=4/(4+1)=(x

D

-y

q

)/(x

D

-x

F

)

=(x

D

-0.4615)/(x

D

-0.3) → x

D

=1.11

130

不可能在进料口平衡。

在塔顶平衡:即 x

D

=1

D/F=(x

F

-x

W

)/(x

D

-x

W

)=0.4; (0.3-x

W

)/(1-x

W

)=0.4

解得 x

W

=-0.167 故不可能。

在塔底平衡:即x

W

=0

x

Dmax

=F×x

F

/D=0.3/0.4=0.75

38解:

(1)饱和水蒸气用量S=V`=V=(R+1)D=2.5D,(∵q=1)

y

1

=x

D

=0.95

Emv=(y

1

-y

2

)/(y

1

*

-y

2

)=(0.95-y

2

)/(0.5x1+0.5-y

2

)=0.5

整理得: 0.5y

2

=0.7-0.25x

1

………… (1)

Vy

2

=Lx

1

+Dx

D

2.5D×y

2

=1.5D×x

1

+Dx

D

整理得: 2.5y

2

=1.5x

1

+0.95 ………… (2)

联解(1)、(2)式得:x

1

=0.927

(2) F+S=D+W; S=V’=2.5D; F+2.5D=D+W

即 F+1.5D=W (3)

F×x

F

=D×x

D

+W×x

W

(4)

式(3)代人(4)消去W得:

D/F=(x

F

-xW)/(x

D

+1.5xW)

=(0.5-0.1)/(0.95+1.5×0.1)=0.364

39解:

(1) η=Dx

D

/(Fx

F

)= x

D

(x

F

-x

W

)/( x

F

(x

D

-x

W

))

=x

D

(0.4-0.05)/(0.4(x

D

-0.05))=0.955 → x

D

=0.6

D/F=ηx

F

/x

D

=0.955×0.4/0.6=0.64

∴D=0.64F=64Kmol/h, W=36Kmol/h

(2) 该塔只有提馏段,又q=1,

∴L=F,V=D,故(L/V)=F/D

操作线方程:y

n+1

=(F/D)x

n

-(W/D)x

W

=(100/64)x

n

-(36/64)×0.05

=1.56x

n

-0.028

(3) 当N

T

→∞时,可获得x

Dmax

∵ q=1. q线是垂线交平衡线上y

e

y

e

=αx

F

/(1+(α-1)x

F

)=(3×0.4)/(1+2×0.4)=0.667,此值是否最大值必须校验,由于F,V不变,

∴D,W不变

x

W

=(x

F

-(D/F)x

D

)/ (W/F)=(0.4-0.64×0.667)/0.36=-0.0747<0

∴ 当x

W

=0,夹点在塔底

x

Dmax

=(F/D)x

F

=0.4/0.64=0.625

40解:

(1) F

1

x

F1

+F

2

x

F2

=Dx

D

+W x

W

1×0.6+0.5×0.4=0.99D+0.02W

131

F

1

+F

2

=D+W 1+0.5=D+W

∴D=0.794Kmol/s W=0.706Kmol/s

L=RD=0.794Kmol/s V=L+D=1.588Kmol/s

L″=L+q

1

F

1

=1.794Kmol/s V″=V=1.588Kmol/s

y″=(L″/V″)x″+(Dx

D

-F

1

x

F1

)/V″

=(1.794/1.588)x″+(0.794×0.99-1×0.6)/1.588

∴ y″=1.13x″+0.117

(2) 若夹紧点在第一进料口处(第一段操作线与q线交点落在平衡线上):

x

q1

=0.6 y

q1

=3×0.6/(1+2×0.6)=0.82

R’m=(x

D

-y

q1

)/(y

q1

-x

q1

)=(0.99-0.82)/(0.82-0.6)=0.773

若夹紧点在第二进料口处:

y

q2

=0.4 x

q2

=y

q2

/(α-(α-1)y

q2

)=0.4/(3-2×0.4)=0.182

提馏段操作线斜率:

L’/V’=(y

q2

-y

W

)/(x

q2

-x

W

)

=(0.4-0.02)/(0.182-0.02)=2.35

L’=2.35V’,代人L’-V’=W=0.706得:V’=0.523

而 V’=V″-F

2

=V-F

2

=(R

M

+1)D-F

2

=(R

M

+1)×0.794-0.5=0.523

解得: R

M

=0.288 ;

取R

min

=R

m

=0.773.

41解:

(1) D/F=(x

F

-x

W

)/(x

D

-x

W

)

=(0.5-0.2)/(0.8-0.2)=0.5,令F=1,∴D=0.5 W=0.5

R=L/D=(2V/3)/(V/3)=2 L=RD=2D=1 L’=L+qF=2

V’=V=3D=1.5

∴L’x’=V’y+Wx

W

x’=0.75y’+0.05……(1)

y=αx/(1+(α-1)x)=3x/(1+2x) ……(2)

由塔底开始计算:x

1

=x

W

=0.2 y

1

=0.429

x

2

=0.372 y

2

=0.64

x

3

=0.53 y

3

=0.77

x

4

=0.629 y

4

=0.836> x

D

共需四块理论板

(2)设操作线上端与平衡线相交 y=x

D

………(1)

x=0.75y+0.25x

W

…………(2)

x=y/(α-(α-1)y)=y/(3-2y) …………(3)

Fx

F

=Dx

D

+Wx

W

∴x

D

+x

W

=1 …… (4)

联立求得x

D

=0.866 即N

T

→∞,塔顶浓度为0.866

42解:

全回流条件下,操作线方程为 y

n+1

= x

n

∴ y

n

= x

n-1

=0.57 y

n+1

= x

n

=0.41 y

n+2

= x

n+1

=0.28

已知 x

n-1

=0.57 x

n

=0.41 x

n+1

=0.28

132

由平衡数据线性插值得到 x

n

*

= 0.356 x

n+1

*

=0.228

y

n

*

=

0.628

y

n+1

*

=0.475

E

n,v

=

(y

n

- y

n+1

)/(y

n

*

- y

n+1

) E

n,

L

=(x

n-1

- x

n

)/(x

n-1

- x

n

*

E

n+1

v

=

(y

n+1

- y

n+2

)/(y

n+1

*

- y

n+2

) E

n+1

L

=(x

n

- x

n+1

)/(x

n

- x

n+1

*

将已知数据带入上述相应公式,得到

E

n,v

=

0.826

E

n,L

=0.841

E

n+1

v

=

0.667

E

n+1

L

=0.592

1.43解:先由精馏段操作线方程求得R和x

D

,再任意假设原料液流量F,通过全塔物料衡

算求得D

W及x

W

,而后即可求出提馏段操作线方程。

E

mv1

可由默夫里效率定义式求得。

1.提馏段操作线方程

由精馏段操作线方程知

R

0.75

R1

解得 R=3.0

x

D

0.20

R1

解得 x

D

=0.8

设原料液流量F=100kmol/h

则 D=0.4×100=40kmol/h

W=60kmol/h

x

W

Fx

F

Dx

D

1000.35400.8

0.05

FD10040

因q=0,故

L′=L=RD=3×40=120kmol/h

V′=V

-(

1

q

F=

R+1

D

-(

1

q

F=4×40-100=60kmol/h

提馏段操作线方程为

L

L

12060

y

x

x

w

x

0.052x0.05

VW6060

2.板效率E

mv1

由默夫里板效率定义知:

yy

2

E

mv1

1

*

y

1

y

2

其中 y

1

=x

D

=0.8

y

2

=0.75×0.7+0.2=0.725

ax

1

2.50.7

*

y

1

0.854

1

a1

x

1

11.50.7

133

E

mv1

0.800.72

0.5858%

0.8540.725

思 考 题

42 [1]. y

6

=0.82 x

6

=0.70 y

7

=0.75 x

7

=0.62

[2]. a) y

n

,x

n-1

b)y

n

,x

n

c)y

n+1

,x

n

d)x

n-1

-x

n

e)y

n

-y

n+1

[3]. 0.7 0.4375 76.2% (x)

[4]. 冷液 t

F

最远 最少. x

[5].(1)对于具有共沸组成物系,组分间沸点差导仍存在,但相对挥发度α=1处不能分离;

(2)t

4

=t

3

>t

2

=t

1;

(3)增加被分离组分的相对挥发度

[6].D

1

2

, W

1

>W

2

, R

1

>R

2

[7].(1)R=∞, N=N

min

; (2)R=R

min

, n=∞

[8].∞; 0; 1.

[9]. y

n

=αx

n

/(1+(α-1)x

n

)=3×0.3/(1+2×0.3)=0.563

x

n-1

=y

n

=0.563; y

n-1

=3×0.563/(1+2×0.563)=0.794

[10]. =,>. [11]. <,<,>,=,>

[12].(1)下降 (2)下降 (3)下降 (4)不变 (5)上升

[13].(1)增大 则不变; (2)1 1 多

[14].(1)等于 无; (2)减少 增加 增加 增大

[15].增大 变小 上升 下降 [16].(1)<,> (2)>,>

[17].(1)减少,增加; (2)增加,减少,增加

[18].变小,变大,变小.

[19].L/V不变 N

T

增加 [20].变小 ,变小, 变小

[21].增大,增大,增大,减少. [22].解:减少,增加,增加,无法确定

[23].解:增加,减少,增加,增加 [24].解:增加,减少,不变,不变

[25].解:<,>,>.

[26].y=(L/V)x-Wx

W

/V,

∵D/F=0.5 x

W

=0, 又q=1

∴L/V=(R×(D/F)+1)/((R+1)×D/F)=(2×0.5+1)/(3×0.5)=4/3

x

D

=x

F

/(D/F)=0.4/0.5=0.8

[27].解:变大,变大,变大;

[28].变小,变小,变小; [29].见图

[30].见图;

[31].见图

[32].见图,粗线为新工况操作线,

134

29题附图

31题附图

[33].(C); [34].(1)C (2)A;

[35].(1)D (2)D; [36].(D) [37]. B

[38].(D); [39].(B)

[40].(1)C (2)B

30题附图

32题附图

135

发布评论

评论列表 (0)

  1. 暂无评论