2024年3月20日发(作者:呼延冷雪)
4Fouriertransformationanddata
processing
数据处理
Inthepreviouschapterwehaveseenhowtheprecessingmagnetizationcan
bedetectedtogiveasignalwhichoscillatesattheLarmorfrequency–the
commentedthatthissignalwilleventually
decayawayduetotheactionofrelaxation;thesignalisthereforeoftencalled
stionishowdoweturnthissignal,
whichdependsontime,intotheaspectrum,inwhichthehorizontalaxisis
frequency.
ThisconversionismadeusingamathematicalprocessknownasFourier
ocesstakesthetimedomainfunction(theFID)and
convertsitintoafrequencydomainfunction(thespectrum);thisisshownin
chapterwewillstartoutbyexploringsomefeaturesofthe
spectrum,suchasphaseandlineshapes,whicharecloselyassociatedwith
theFouriertransformandthengoontoexploresomeusefulmanipulationsof
NMRdatasuchassensitivityandresolutionenhancement.
4.1TheFID
time
Fourier
transformation
Insection3.6wesawthatthexandycomponentsofthefreeinductionsig-
nalcouldbecomputedbythinkingabouttheevolutionofthemagnetization
discussionweassumedthatthemagneti-
zationstartedoutalongthe−yaxisasthisiswhereitwouldberotatedtoby
a90
◦
purposesofthischapterwearegoingtoassumethatthe
magnetizationstartsoutalongx;wewillseelaterthatthischoiceofstarting
positionisessentiallyarbitrary.
y
x
frequency
Fig.4.1Fouriertransformation
isthemathematicalprocess
whichtakesusfromafunction
oftime(thetimedomain)–such
asaFID–toafunctionof
frequency–thespectrum.
M
x
M
y
time
Fig.4.2Evolutionofthemagnetizationovertime;theoffsetisassumedtobepositiveandthemagnetization
startsoutalongthe
x
axis.
c
JamesKeeler,2002Chapter4“Fouriertransformationanddataprocessing”
2024年3月20日发(作者:呼延冷雪)
4Fouriertransformationanddata
processing
数据处理
Inthepreviouschapterwehaveseenhowtheprecessingmagnetizationcan
bedetectedtogiveasignalwhichoscillatesattheLarmorfrequency–the
commentedthatthissignalwilleventually
decayawayduetotheactionofrelaxation;thesignalisthereforeoftencalled
stionishowdoweturnthissignal,
whichdependsontime,intotheaspectrum,inwhichthehorizontalaxisis
frequency.
ThisconversionismadeusingamathematicalprocessknownasFourier
ocesstakesthetimedomainfunction(theFID)and
convertsitintoafrequencydomainfunction(thespectrum);thisisshownin
chapterwewillstartoutbyexploringsomefeaturesofthe
spectrum,suchasphaseandlineshapes,whicharecloselyassociatedwith
theFouriertransformandthengoontoexploresomeusefulmanipulationsof
NMRdatasuchassensitivityandresolutionenhancement.
4.1TheFID
time
Fourier
transformation
Insection3.6wesawthatthexandycomponentsofthefreeinductionsig-
nalcouldbecomputedbythinkingabouttheevolutionofthemagnetization
discussionweassumedthatthemagneti-
zationstartedoutalongthe−yaxisasthisiswhereitwouldberotatedtoby
a90
◦
purposesofthischapterwearegoingtoassumethatthe
magnetizationstartsoutalongx;wewillseelaterthatthischoiceofstarting
positionisessentiallyarbitrary.
y
x
frequency
Fig.4.1Fouriertransformation
isthemathematicalprocess
whichtakesusfromafunction
oftime(thetimedomain)–such
asaFID–toafunctionof
frequency–thespectrum.
M
x
M
y
time
Fig.4.2Evolutionofthemagnetizationovertime;theoffsetisassumedtobepositiveandthemagnetization
startsoutalongthe
x
axis.
c
JamesKeeler,2002Chapter4“Fouriertransformationanddataprocessing”