2024年3月20日发(作者:东门高)
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
D
Meet or Exceed the Requirements of
D
D
D
D
D
D
TIA/EIA-422-B and ITU Recommendation
V.11
Low Power, I
CC
= 100 µA Typ
Operate From a Single 5-V Supply
High Speed, t
PLH
= t
PHL
= 7 ns Typ
Low Pulse Distortion, t
sk(p)
= 0.5 ns Typ
High Output Impedance in Power-Off
Conditions
Improved Replacement for AM26LS31
AM26C31C, D, DB
†
, OR N PACKAGE
J OR W PACKAGE
(TOP VIEW)
1A
1Y
1Z
G
2Z
2Y
2A
GND
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
CC
4A
4Y
4Z
G
3Z
3Y
3A
description
The AM26C31C, AM26C31I, and AM26C31M are
four complementary-output line drivers designed
to meet the requirements of TIA/EIA-422-B and
ITU (formerly CCITT). The 3-state outputs have
high-current capability for driving balanced lines,
such as twisted-pair or parallel-wire transmission
lines, and they provide the high-impedance state
in the power-off condition. The enable function is
common to all four drivers and offers the choice of
an active-high or active-low enable input.
BiCMOS circuitry reduces power consumption
without sacrificing speed.
The AM26C31C is characterized for operation
from 0°C to 70°C, the AM26C31I is characterized
for operation from –40°C to 85°C, and the
AM26C31M is characterized for operation from
–55°C to 125°C.
FUNCTION TABLE
(each driver)
INPUT
A
H
L
H
L
X
ENABLES
G
H
H
X
X
L
G
X
X
L
L
H
†
The DB package is only available left-ended taped
(order AM26C31IDBLE or AM26C31CDBLE).
FK PACKAGE
(TOP VIEW)
1
Y
1
A
N
C
V
C
C
4
A
1Z
G
NC
2Z
2Y
4
5
6
7
8
3212019
18
17
16
15
14
910111213
4Y
4Z
NC
G
3Z
NC – No internal connection
OUTPUTS
Y
H
L
H
L
Z
Z
L
H
L
H
Z
H = high level, L = low level, X = irrelevant,
Z = high impedance (off)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Copyright © 1998, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
2
A
G
N
D
N
C
3
A
3
Y
1
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
logic symbol
†
4
12
≥ 1
EN
logic diagram (positive logic)
G
G
1A
2
3
6
5
10
11
14
13
1Y
1Z
2Y
2Z
3Y
3Z
4Y
4Z
4A
15
2A
4
12
1
2
3
6
5
10
11
14
13
G
G
1Y
1Z
2Y
2Z
3Y
3Z
4Y
4Z
1A
1
7
2A
7
3A
9
3A
9
4A
15
†
This symbol is in accordance with ANSI/IEEE Std 91-1984
and IEC Publication 617-12.
The terminal numbers shown are for the D, DB, J, N, and W packages.
schematics of inputs and outputs
EQUIVALENT OF EACH INPUT
V
CC
TYPICAL OF ALL OUTPUTS
V
CC
Input
Output
GND
GND
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
†
Supply voltage range, V
CC
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, V
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V
CC
+ 0.5 V
Differential input voltage range, V
ID
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –14 V to 14 V
Output voltage range, V
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input or output clamp current, I
IK
or I
OK
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output current, I
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±150 mA
V
CC
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA
GND current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –200 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Storage temperature range, T
stg
–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . °C
to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1:All voltage values, except differential output voltage (V
OD
), are with respect to the network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
D
DB
N
FK
J
W
T
A
≤ 25°C
POWER RATING
950 mW
781 mW
1150 mW
1375 mW
1375 mW
1000 mW
DERATING FACTOR
ABOVE T
A
= 25°C
7.6 mW/°C
6.2 mW/°C
9.2 mW/°C
11 mW/°C
11 mW/°C
8.0 mW/°C
T
A
= 70°C
POWER RATING
608 mW
502 mW
736 mW
—
—
—
T
A
= 85°C
POWER RATING
494 mW
409 mW
598 mW
—
—
—
T
A
= 125°C
POWER RATING
—
—
—
275 mW
275 mW
200 mW
recommended operating conditions
MIN
Supply voltage, V
CC
Differential input voltage, V
ID
High-level input voltage, V
IH
Low-level input voltage, V
IL
High-level output current, I
OH
Low-level output current, I
OL
AM26C31C
Operating free-air temperature, T
A
AM26C31I
AM26C31M
0
–40
–55
4.5
2
0.8
–20
20
70
85
125
°C
NOM
5
±7
MAX
5.5
UNIT
V
V
V
V
mA
mA
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
3
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
V
OH
V
OL
|V
OD
|
∆|V
OD
|
V
OC
∆|V
OC
|
I
I
I
O(O(off)ff)
I
OS
I
OZ
High-level output voltage
Low-level output voltage
Differential output voltage magnitude
Change in magnitude of differential output voltage
‡
Common-mode output voltage
Change in magnitude of common-mode output voltage
‡
Input current
DriveroutputcurrentwithpoweroffDriver output current with power off
Driver output short-circuit current
HighimpedanceoffstateoutputcurrentHigh-impedance off-state output current
V
I
= V
CC
or GND
V
CC
= 0,V
O
= 6 V
V
CC
= 0,
V
O
= 0
V
O
= 2.5 V
V
O
= 0.5 V
I
O
= 0,
I
CC
Quiescent supply current
I
O
= 0,
,
See Note 2
V
I
= 0 V or 5 V
V
I
= 2.4 V or 0.5 V,
,
151.5
V
O
= –0.25 V
–30
R
L
= 100 =100ΩΩ,SeeFigure1See Figure 1
TEST CONDITIONS
I
O
= –20 mA
I
O
= 20 mA
AM26C31C
AM26C31I
MIN
2.4
2
TYP
†
3.4
0.2
3.1
±0.4
3
±0.4
±1
100
–100
–150
20
–20
100
3
0.4
MAX
V
V
V
V
V
V
µA
µA
mA
µA
µA
µA
mA
UNIT
C
i
Input capacitance6pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
‡
∆|V
OD
| and ∆|V
OC
| are the changes in magnitude of V
OD
and V
OC
, respectively, that occur when the input is changed from a high level to a low
level.
NOTE 2:This parameter is measured per input. All other inputs are at 0 or 5 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
t
PLH
t
PHL
t
sk(p)
t
r(OD)
, t
f(OD)
t
PZH
t
PZL
t
PHZ
t
PLZ
C
pd
Propagation delay time, low- to high-level output
Propagation delay time, high- to low-level output
Pulse skew time (|t
PLH
– t
PHL
|)
Differential output rise and fall times
Output enable time to high level
Output enable time to low level
Output disable time from high level
Output disable time from low level
Power dissipation capacitance (each driver) (see
Note 3)
S1 is open,See Figure 2
S1isclosedS1 is closed,SeeFigure4See Figure 4
S1 is open,See Figure 3
S1 is open,See Figure 2
TEST CONDITIONS
AM26C31C
AM26C31I
MIN
3
3
TYP
†
7
7
0.5
5
10
10
7
7
170
MAX
12
12
4
10
19
19
16
16
ns
ns
ns
ns
ns
ns
ns
ns
pF
UNIT
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
NOTE 3:C
pd
is used to estimate the switching losses according to P
D
= C
pd
× V
CC
2
× f, where f is the switching frequency.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
V
OH
V
OL
|V
OD
|
∆|V
OD
|
V
OC
∆|V
OC
|
I
I
I
O(ff)
O(off)
I
OS
I
OZ
I
CC
High-level output voltage
Low-level output voltage
Differential output voltage magnitude
Change in magnitude of differential
output voltage
‡
Common-mode output voltage
Change in magnitude of common-mode
output voltage
‡
Input current
DriveroutputcurrentwithpoweroffDriver output current with power off
Driver output short-circuit current
HighimpedanceoffstateoutputcurrentHigh-impedance off-state output current
QuiescentsupplycurrentQuiescent supply current
V
I
= V
CC
or GND
V
CC
= 0,V
O
= 6 V
V
CC
= 0,
V
O
= 0
V
O
= 2.5 V
V
O
= 0.5 V
I
O
= 0,
I
O
= 0,
V
I
= 0 V or 5 V
V
I
= 2.4 V or 0.5 V,See Note 2
V
O
= –0.25 V
I
O
= –20 mA
I
O
= 20 mA
TESTCONDITIONSTEST CONDITIONS
AM26C31M
MINTYP
†
MAX
2.2
2
3.4
0.2
3.1
±0.4
R
L
= 100 =100ΩΩ,SeeFigure1See Figure 1
3
±0.4
±1
100
–100
–170
20
–20
100
3.2
0.4
UNIT
V
V
V
V
V
V
µA
µA
mA
µA
µA
µA
mA
C
i
Input capacitance6pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
‡
∆|V
OD
| and ∆|V
OC
| are the changes in magnitude of V
OD
and V
OC
, respectively, that occur when the input is changed from a high level to a low
level.
NOTE 2:This parameter is measured per input. All other inputs are at 0 V or 5 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
t
PLH
t
PHL
t
sk(p)
t
r(OD)
, t
f(OD)
t
PZH
t
PZL
t
PHZ
t
PLZ
C
pd
Propagation delay time, low- to high-level output
Propagation delay time, high- to low-level output
Pulse skew time (|t
PLH
– t
PHL
|)
Differential output rise and fall times
Output enable time to high level
Output enable time to low level
Output disable time from high level
Output disable time from low level
Power dissipation capacitance (each driver) (see
Note 3)
S1 is open,See Figure 2
S1isclosedS1 is closed,SeeFigure4See Figure 4
S1 is open,See Figure 3
S1 is open,See Figure 2
TESTCONDITIONSTEST CONDITIONS
AM26C31M
MINTYP
†
MAX
7
6.5
0.5
5
10
10
7
7
100
12
12
4
12
19
19
16
16
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
NOTE 3:C
pd
is used to estimate the switching losses according to P
D
= C
pd
× V
CC
2
× f, where f is the switching frequency.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
5
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
PARAMETER MEASUREMENT INFORMATION
R
L
/2
V
OD2
R
L
/2
V
OC
Figure 1. Differential and Common-Mode Output Voltages
Input
C1
40 pF
C2
40 pF
C3
40 pF
R
L
/2
500 Ω
1.5 V
S1
R
L
/2
See Note A
TEST CIRCUIT
Input A
(see Note B)
t
PLH
Output Y
50%
t
PHL
50%
1.3 V
t
sk(p)
Output Z
50%50%
1.3 V
t
PHL
t
PLH
t
sk(p)
3 V
1.3 V
0 V
NOTES:A.C1, C2, and C3 include probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, and t
r
t
f
≤ 6 ns.
Figure 2. Propagation Delay Time and Skew Waveforms and Test Circuit
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
PARAMETER MEASUREMENT INFORMATION
Input
C1
40 pF
C2
40 pF
C3
40 pF
R
L
/2
500 Ω
1.5 V
S1
R
L
/2
See Note A
TEST CIRCUIT
Input A
(see Note B)
3 V
0 V
90%
10%
t
r(OD)
VOLTAGE WAVEFORMS
NOTES:A.C1, C2, and C3 include probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, and t
r
, t
f
≤ 6 ns.
90%
10%
t
f(OD)
Differential
Output
Figure 3. Differential Output Rise and Fall Time Waveforms and Test Circuit
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
7
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
PARAMETER MEASUREMENT INFORMATION
Output
C2
40 pF
Input A
C1
40 pF
C3
40 pF
50 Ω
500 Ω
1.5 V
S1
50 Ω
Output
See Note A
TEST CIRCUIT
Enable G Input
(see Note C)
Enable G Input
3 V
1.3 V
1.3 V
0 V
1.5 V
V
OL
+ 0.3 V
t
PLZ
Output WIth
3 V to A Input
t
PHZ
V
OH
– 0.3 V
0.8 V
V
OL
t
PZL
V
OH
2 V
1.5 V
t
PZH
0 V
3 V
Inputs
(see Note B)
G
G
Output WIth
0 V to A Input
VOLTAGE WAVEFORMS
NOTES:A.C1, C2, and C3 includes probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, t
r
< 6 ns, and
t
f
< 6 ns.
enable is tested separately.
Figure 4. Output Enable and Disable Time Waveforms and Test Circuit
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
SWITCHING FREQUENCY
300
250
D
C
D
–
S
u
p
p
l
y
C
u
r
r
e
n
t
–
m
A
I
I
C
200
150
100
50
V
CC
= 5 V
T
A
= 25°C
See Figure 2
S1 Open
All Four Channels Switching Simultaneously
N Package
303540
0
f – Switching Frequency – MHz
Figure 5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
9
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright © 1998, Texas Instruments Incorporated
2024年3月20日发(作者:东门高)
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
D
Meet or Exceed the Requirements of
D
D
D
D
D
D
TIA/EIA-422-B and ITU Recommendation
V.11
Low Power, I
CC
= 100 µA Typ
Operate From a Single 5-V Supply
High Speed, t
PLH
= t
PHL
= 7 ns Typ
Low Pulse Distortion, t
sk(p)
= 0.5 ns Typ
High Output Impedance in Power-Off
Conditions
Improved Replacement for AM26LS31
AM26C31C, D, DB
†
, OR N PACKAGE
J OR W PACKAGE
(TOP VIEW)
1A
1Y
1Z
G
2Z
2Y
2A
GND
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
CC
4A
4Y
4Z
G
3Z
3Y
3A
description
The AM26C31C, AM26C31I, and AM26C31M are
four complementary-output line drivers designed
to meet the requirements of TIA/EIA-422-B and
ITU (formerly CCITT). The 3-state outputs have
high-current capability for driving balanced lines,
such as twisted-pair or parallel-wire transmission
lines, and they provide the high-impedance state
in the power-off condition. The enable function is
common to all four drivers and offers the choice of
an active-high or active-low enable input.
BiCMOS circuitry reduces power consumption
without sacrificing speed.
The AM26C31C is characterized for operation
from 0°C to 70°C, the AM26C31I is characterized
for operation from –40°C to 85°C, and the
AM26C31M is characterized for operation from
–55°C to 125°C.
FUNCTION TABLE
(each driver)
INPUT
A
H
L
H
L
X
ENABLES
G
H
H
X
X
L
G
X
X
L
L
H
†
The DB package is only available left-ended taped
(order AM26C31IDBLE or AM26C31CDBLE).
FK PACKAGE
(TOP VIEW)
1
Y
1
A
N
C
V
C
C
4
A
1Z
G
NC
2Z
2Y
4
5
6
7
8
3212019
18
17
16
15
14
910111213
4Y
4Z
NC
G
3Z
NC – No internal connection
OUTPUTS
Y
H
L
H
L
Z
Z
L
H
L
H
Z
H = high level, L = low level, X = irrelevant,
Z = high impedance (off)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Copyright © 1998, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
2
A
G
N
D
N
C
3
A
3
Y
1
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
logic symbol
†
4
12
≥ 1
EN
logic diagram (positive logic)
G
G
1A
2
3
6
5
10
11
14
13
1Y
1Z
2Y
2Z
3Y
3Z
4Y
4Z
4A
15
2A
4
12
1
2
3
6
5
10
11
14
13
G
G
1Y
1Z
2Y
2Z
3Y
3Z
4Y
4Z
1A
1
7
2A
7
3A
9
3A
9
4A
15
†
This symbol is in accordance with ANSI/IEEE Std 91-1984
and IEC Publication 617-12.
The terminal numbers shown are for the D, DB, J, N, and W packages.
schematics of inputs and outputs
EQUIVALENT OF EACH INPUT
V
CC
TYPICAL OF ALL OUTPUTS
V
CC
Input
Output
GND
GND
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
†
Supply voltage range, V
CC
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, V
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V
CC
+ 0.5 V
Differential input voltage range, V
ID
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –14 V to 14 V
Output voltage range, V
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input or output clamp current, I
IK
or I
OK
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output current, I
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±150 mA
V
CC
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA
GND current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –200 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Storage temperature range, T
stg
–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . °C
to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1:All voltage values, except differential output voltage (V
OD
), are with respect to the network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
D
DB
N
FK
J
W
T
A
≤ 25°C
POWER RATING
950 mW
781 mW
1150 mW
1375 mW
1375 mW
1000 mW
DERATING FACTOR
ABOVE T
A
= 25°C
7.6 mW/°C
6.2 mW/°C
9.2 mW/°C
11 mW/°C
11 mW/°C
8.0 mW/°C
T
A
= 70°C
POWER RATING
608 mW
502 mW
736 mW
—
—
—
T
A
= 85°C
POWER RATING
494 mW
409 mW
598 mW
—
—
—
T
A
= 125°C
POWER RATING
—
—
—
275 mW
275 mW
200 mW
recommended operating conditions
MIN
Supply voltage, V
CC
Differential input voltage, V
ID
High-level input voltage, V
IH
Low-level input voltage, V
IL
High-level output current, I
OH
Low-level output current, I
OL
AM26C31C
Operating free-air temperature, T
A
AM26C31I
AM26C31M
0
–40
–55
4.5
2
0.8
–20
20
70
85
125
°C
NOM
5
±7
MAX
5.5
UNIT
V
V
V
V
mA
mA
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
3
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
V
OH
V
OL
|V
OD
|
∆|V
OD
|
V
OC
∆|V
OC
|
I
I
I
O(O(off)ff)
I
OS
I
OZ
High-level output voltage
Low-level output voltage
Differential output voltage magnitude
Change in magnitude of differential output voltage
‡
Common-mode output voltage
Change in magnitude of common-mode output voltage
‡
Input current
DriveroutputcurrentwithpoweroffDriver output current with power off
Driver output short-circuit current
HighimpedanceoffstateoutputcurrentHigh-impedance off-state output current
V
I
= V
CC
or GND
V
CC
= 0,V
O
= 6 V
V
CC
= 0,
V
O
= 0
V
O
= 2.5 V
V
O
= 0.5 V
I
O
= 0,
I
CC
Quiescent supply current
I
O
= 0,
,
See Note 2
V
I
= 0 V or 5 V
V
I
= 2.4 V or 0.5 V,
,
151.5
V
O
= –0.25 V
–30
R
L
= 100 =100ΩΩ,SeeFigure1See Figure 1
TEST CONDITIONS
I
O
= –20 mA
I
O
= 20 mA
AM26C31C
AM26C31I
MIN
2.4
2
TYP
†
3.4
0.2
3.1
±0.4
3
±0.4
±1
100
–100
–150
20
–20
100
3
0.4
MAX
V
V
V
V
V
V
µA
µA
mA
µA
µA
µA
mA
UNIT
C
i
Input capacitance6pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
‡
∆|V
OD
| and ∆|V
OC
| are the changes in magnitude of V
OD
and V
OC
, respectively, that occur when the input is changed from a high level to a low
level.
NOTE 2:This parameter is measured per input. All other inputs are at 0 or 5 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
t
PLH
t
PHL
t
sk(p)
t
r(OD)
, t
f(OD)
t
PZH
t
PZL
t
PHZ
t
PLZ
C
pd
Propagation delay time, low- to high-level output
Propagation delay time, high- to low-level output
Pulse skew time (|t
PLH
– t
PHL
|)
Differential output rise and fall times
Output enable time to high level
Output enable time to low level
Output disable time from high level
Output disable time from low level
Power dissipation capacitance (each driver) (see
Note 3)
S1 is open,See Figure 2
S1isclosedS1 is closed,SeeFigure4See Figure 4
S1 is open,See Figure 3
S1 is open,See Figure 2
TEST CONDITIONS
AM26C31C
AM26C31I
MIN
3
3
TYP
†
7
7
0.5
5
10
10
7
7
170
MAX
12
12
4
10
19
19
16
16
ns
ns
ns
ns
ns
ns
ns
ns
pF
UNIT
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
NOTE 3:C
pd
is used to estimate the switching losses according to P
D
= C
pd
× V
CC
2
× f, where f is the switching frequency.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
V
OH
V
OL
|V
OD
|
∆|V
OD
|
V
OC
∆|V
OC
|
I
I
I
O(ff)
O(off)
I
OS
I
OZ
I
CC
High-level output voltage
Low-level output voltage
Differential output voltage magnitude
Change in magnitude of differential
output voltage
‡
Common-mode output voltage
Change in magnitude of common-mode
output voltage
‡
Input current
DriveroutputcurrentwithpoweroffDriver output current with power off
Driver output short-circuit current
HighimpedanceoffstateoutputcurrentHigh-impedance off-state output current
QuiescentsupplycurrentQuiescent supply current
V
I
= V
CC
or GND
V
CC
= 0,V
O
= 6 V
V
CC
= 0,
V
O
= 0
V
O
= 2.5 V
V
O
= 0.5 V
I
O
= 0,
I
O
= 0,
V
I
= 0 V or 5 V
V
I
= 2.4 V or 0.5 V,See Note 2
V
O
= –0.25 V
I
O
= –20 mA
I
O
= 20 mA
TESTCONDITIONSTEST CONDITIONS
AM26C31M
MINTYP
†
MAX
2.2
2
3.4
0.2
3.1
±0.4
R
L
= 100 =100ΩΩ,SeeFigure1See Figure 1
3
±0.4
±1
100
–100
–170
20
–20
100
3.2
0.4
UNIT
V
V
V
V
V
V
µA
µA
mA
µA
µA
µA
mA
C
i
Input capacitance6pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
‡
∆|V
OD
| and ∆|V
OC
| are the changes in magnitude of V
OD
and V
OC
, respectively, that occur when the input is changed from a high level to a low
level.
NOTE 2:This parameter is measured per input. All other inputs are at 0 V or 5 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
t
PLH
t
PHL
t
sk(p)
t
r(OD)
, t
f(OD)
t
PZH
t
PZL
t
PHZ
t
PLZ
C
pd
Propagation delay time, low- to high-level output
Propagation delay time, high- to low-level output
Pulse skew time (|t
PLH
– t
PHL
|)
Differential output rise and fall times
Output enable time to high level
Output enable time to low level
Output disable time from high level
Output disable time from low level
Power dissipation capacitance (each driver) (see
Note 3)
S1 is open,See Figure 2
S1isclosedS1 is closed,SeeFigure4See Figure 4
S1 is open,See Figure 3
S1 is open,See Figure 2
TESTCONDITIONSTEST CONDITIONS
AM26C31M
MINTYP
†
MAX
7
6.5
0.5
5
10
10
7
7
100
12
12
4
12
19
19
16
16
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
pF
†
All typical values are at V
CC
= 5 V and T
A
= 25°C.
NOTE 3:C
pd
is used to estimate the switching losses according to P
D
= C
pd
× V
CC
2
× f, where f is the switching frequency.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
5
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
PARAMETER MEASUREMENT INFORMATION
R
L
/2
V
OD2
R
L
/2
V
OC
Figure 1. Differential and Common-Mode Output Voltages
Input
C1
40 pF
C2
40 pF
C3
40 pF
R
L
/2
500 Ω
1.5 V
S1
R
L
/2
See Note A
TEST CIRCUIT
Input A
(see Note B)
t
PLH
Output Y
50%
t
PHL
50%
1.3 V
t
sk(p)
Output Z
50%50%
1.3 V
t
PHL
t
PLH
t
sk(p)
3 V
1.3 V
0 V
NOTES:A.C1, C2, and C3 include probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, and t
r
t
f
≤ 6 ns.
Figure 2. Propagation Delay Time and Skew Waveforms and Test Circuit
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
PARAMETER MEASUREMENT INFORMATION
Input
C1
40 pF
C2
40 pF
C3
40 pF
R
L
/2
500 Ω
1.5 V
S1
R
L
/2
See Note A
TEST CIRCUIT
Input A
(see Note B)
3 V
0 V
90%
10%
t
r(OD)
VOLTAGE WAVEFORMS
NOTES:A.C1, C2, and C3 include probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, and t
r
, t
f
≤ 6 ns.
90%
10%
t
f(OD)
Differential
Output
Figure 3. Differential Output Rise and Fall Time Waveforms and Test Circuit
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
7
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
PARAMETER MEASUREMENT INFORMATION
Output
C2
40 pF
Input A
C1
40 pF
C3
40 pF
50 Ω
500 Ω
1.5 V
S1
50 Ω
Output
See Note A
TEST CIRCUIT
Enable G Input
(see Note C)
Enable G Input
3 V
1.3 V
1.3 V
0 V
1.5 V
V
OL
+ 0.3 V
t
PLZ
Output WIth
3 V to A Input
t
PHZ
V
OH
– 0.3 V
0.8 V
V
OL
t
PZL
V
OH
2 V
1.5 V
t
PZH
0 V
3 V
Inputs
(see Note B)
G
G
Output WIth
0 V to A Input
VOLTAGE WAVEFORMS
NOTES:A.C1, C2, and C3 includes probe and jig capacitance.
input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, duty cycle ≤ 50%, t
r
< 6 ns, and
t
f
< 6 ns.
enable is tested separately.
Figure 4. Output Enable and Disable Time Waveforms and Test Circuit
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
AM26C31C, AM26C31I, AM26C31M
QUADRUPLE DIFFERENTIAL LINE DRIVERS
SLLS103G – DECEMBER 1990 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
SWITCHING FREQUENCY
300
250
D
C
D
–
S
u
p
p
l
y
C
u
r
r
e
n
t
–
m
A
I
I
C
200
150
100
50
V
CC
= 5 V
T
A
= 25°C
See Figure 2
S1 Open
All Four Channels Switching Simultaneously
N Package
303540
0
f – Switching Frequency – MHz
Figure 5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
9
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright © 1998, Texas Instruments Incorporated