2024年5月8日发(作者:巩文心)
长沙理工大学
2005年攻读硕士学位研究生入学考试试题
(答案必须写在答题纸上,答题纸和试卷一并装入试题袋中,否则无效)
考试科目名称及代码:电路44141341
学科、专业:电力系统及其自动化、高电压与绝缘技术
一、图1所示电路中,用结点电压法求9V电流源发出的功率。(l5分)
二、图2所示电路中,当开关S闭合时,求电流I;当开关S打开,求电压
U
S
。
三、图3所示电路中,N
C
为含源线性电阻网络,已知S闭合情况下,R
L
=∞时,
U=30V;
R
L
=3
Ω
时,
R
L
为获得最大功率,求开关S断开时,
R
L
取何值才能获得最大
功率,并求此最大功率。
1
四、图4所示电路原已达稳态,开关S在t=0时闭合,求t≥0时的响应u
C
(t)。
五、图5所示正弦稳态电路中,端口2-2开路,已知输入端口电压
U
S
与
I
S
同相位,
电路消耗功率为1000W,U
S
=400V,R
1
=20Ω,R
2
=R
L
,R
3
=10Ω,求:
1)电流有效值I、I
L
、I
C
和电压
u
2
的瞬时表达式;
2)
R
2
、
X
L
、
X
C
;
3)作电路的向量图。
1
六、图6所示电路中,N为不含独立电源的线性时不变网络,u
S
(t)为激励,
u(t)
为响应,已知其零输入响应为
e
-t
V
(
t>0
),设初
始条件不变,
u
S
(t)=δ(t)V
时,全响应为
3
e
-t
V(t>0),试求:
1
)
u
S
(t)=ε
(t-1)
V
时的全响应;
2)u
S
(t)=
10
2
cos(t+60
o
)
V
时的正弦稳态响应。
2
七、图7所示电路中,N为无源线性电阻网络,其传输参数为A=5,B=6,C=1.5,
D=2,求
R
L
获得最大功率时,10V电压源提供的功率。
八、图8所示电路中,已知非线性电阻伏安特性为:i=g(u)=0.25u
2
(u>0)A
直流电压源
U
S
=12V,小信号电压源
u
S
(t)=20cosωt
,
mV
,试求电压
u
和电流
i
。
九、列写图9所示电路状态方程的矩阵形式。
十、图10所示对称三相电路中,线电压为380V,对称三
相负载阻抗Z
1
=60+j80Ω,
单相负载R=200
Ω
,求线电流
I
A
、
I
B
、
I
C
和中线电流
I
N
。
3
长沙理工大学
2006年研究生入学考试试题
考试科目:电路考试科目代码:442
注意:所有答案(含选择题、填空题、判断题、作图题等)一律答在答题纸上;写
在试卷纸上或其他地点一律不给分、作图题可以在原试卷题图上作答,然后
将“图”撕下来贴在答题纸上的响应位置。
一、图1所示电路中,用结点电压法求电流I
1
及电压源发出的功率。(l5分)
二、图2所示电路中,网络N仅由电阻构成,图a中,当R=5Ω时,I
2
=2A;
I
2
RI
A
当=0时,
2
=4。求图b中电流
和
I
1
。
三、图3所示电路原已达稳态,开关S在t=0时闭合,求t≥0时的响应u
C
(t)和i
L
(t)。
4
四、图4所示正弦稳态电路中,
u
S
(t)=
50
2
cosωtV
,
ωM=10Ω
,
ωL
1
=2
0Ω
,
111
ωL
2
=4
0Ω
,
==10
Ω
,=30
Ω
,
R
1
=3
Ω
,
R
2
=2
Ω
。求电压源
C
1
C
2
C
3
发出的有功功率和无功功率。(15分)
Z
1
=2+j1
Ω
,
五、图5所示三相电路中,
对称三相负载
Z
=18+j15
Ω
,单相负载
R
=10
Ω
,
线电压为380V,求负载相电流
I
AB
、
I
A’B’
及三相电源供给的总有功功率P。(15分)
六、图6所示虚线框内为一无源线性二端口网络,求:1)网络的Z参数。
2)若在1-1端口加电压U
1
=50V,2-2
端口接R
L
=5.5Ω时,求电压源发出的功率和
R
L
吸收的功率。(15分)
11
5
七、图7所示电路中,
u
S
(
t
)=10+90
2
cos
(
ωt+30
o
)
+
18
2
cos
(
3ωt
)V,
R
=18
Ω
,
ωL
=
3Ω
,
1
=27
Ω
,求:
C
1)电流i和电压u的有效值;
2)功率表的读数;
3)i的瞬时值。(15分)
八、列写图8所示电路状态的矩阵形式,已知:
R
1
=
R
2
=
R
3
=2
Ω
,
C
3
=1
F
,
L
4
=1H,L
5
=2H。(15分)
6
九、图9所示电路中,N
0
为无源线性时不变网络,已知单位阶跃响应
u
0
(
t
)=
(2.5
-
e
-t
-
1.5
e
-2t
).ε
(
t
)
V
,求当
i
S
(
t
)
=
(40
2
cos2t).ε
(
t
)
A
时,u
0
(t)的稳态响应。(15分)
十、图10所示电路原已达稳态,t=0时开关S闭合,已知:u
S
(t)=0.1
e
-5t
V,
R
1
=1
Ω
,
R
2
=2
Ω
,
L
=0.1
H
,
C
=0.5
F
,用复频域分析法求
t>0
时的电流
i
2
(
t
)。
7
长沙理工大学
2007年研究生入学考试试题
考试科目:电路考试科目代码:444
注意:所有答案(含选择题、填空题、判断题、作图题等)一律答在答题纸上;写
在试卷纸上或其他地点一律不给分、作图题可以在原试卷题图上作答,然后
将“图”撕下来贴在答题纸上的响应位置。
一、图1所示电路中,用结点电压法求电流I及电流源发出的功率。(l5分)
二、用叠加定理求图2所示电路中的电流I和电压U。(15分)
三、图1所示电路中,N
S
为有源线性一端口,已知:
图a中,U
OC
=30V,图b中U
ab
=0。试求图c所示电路中的电流I。(15分)
8
2024年5月8日发(作者:巩文心)
长沙理工大学
2005年攻读硕士学位研究生入学考试试题
(答案必须写在答题纸上,答题纸和试卷一并装入试题袋中,否则无效)
考试科目名称及代码:电路44141341
学科、专业:电力系统及其自动化、高电压与绝缘技术
一、图1所示电路中,用结点电压法求9V电流源发出的功率。(l5分)
二、图2所示电路中,当开关S闭合时,求电流I;当开关S打开,求电压
U
S
。
三、图3所示电路中,N
C
为含源线性电阻网络,已知S闭合情况下,R
L
=∞时,
U=30V;
R
L
=3
Ω
时,
R
L
为获得最大功率,求开关S断开时,
R
L
取何值才能获得最大
功率,并求此最大功率。
1
四、图4所示电路原已达稳态,开关S在t=0时闭合,求t≥0时的响应u
C
(t)。
五、图5所示正弦稳态电路中,端口2-2开路,已知输入端口电压
U
S
与
I
S
同相位,
电路消耗功率为1000W,U
S
=400V,R
1
=20Ω,R
2
=R
L
,R
3
=10Ω,求:
1)电流有效值I、I
L
、I
C
和电压
u
2
的瞬时表达式;
2)
R
2
、
X
L
、
X
C
;
3)作电路的向量图。
1
六、图6所示电路中,N为不含独立电源的线性时不变网络,u
S
(t)为激励,
u(t)
为响应,已知其零输入响应为
e
-t
V
(
t>0
),设初
始条件不变,
u
S
(t)=δ(t)V
时,全响应为
3
e
-t
V(t>0),试求:
1
)
u
S
(t)=ε
(t-1)
V
时的全响应;
2)u
S
(t)=
10
2
cos(t+60
o
)
V
时的正弦稳态响应。
2
七、图7所示电路中,N为无源线性电阻网络,其传输参数为A=5,B=6,C=1.5,
D=2,求
R
L
获得最大功率时,10V电压源提供的功率。
八、图8所示电路中,已知非线性电阻伏安特性为:i=g(u)=0.25u
2
(u>0)A
直流电压源
U
S
=12V,小信号电压源
u
S
(t)=20cosωt
,
mV
,试求电压
u
和电流
i
。
九、列写图9所示电路状态方程的矩阵形式。
十、图10所示对称三相电路中,线电压为380V,对称三
相负载阻抗Z
1
=60+j80Ω,
单相负载R=200
Ω
,求线电流
I
A
、
I
B
、
I
C
和中线电流
I
N
。
3
长沙理工大学
2006年研究生入学考试试题
考试科目:电路考试科目代码:442
注意:所有答案(含选择题、填空题、判断题、作图题等)一律答在答题纸上;写
在试卷纸上或其他地点一律不给分、作图题可以在原试卷题图上作答,然后
将“图”撕下来贴在答题纸上的响应位置。
一、图1所示电路中,用结点电压法求电流I
1
及电压源发出的功率。(l5分)
二、图2所示电路中,网络N仅由电阻构成,图a中,当R=5Ω时,I
2
=2A;
I
2
RI
A
当=0时,
2
=4。求图b中电流
和
I
1
。
三、图3所示电路原已达稳态,开关S在t=0时闭合,求t≥0时的响应u
C
(t)和i
L
(t)。
4
四、图4所示正弦稳态电路中,
u
S
(t)=
50
2
cosωtV
,
ωM=10Ω
,
ωL
1
=2
0Ω
,
111
ωL
2
=4
0Ω
,
==10
Ω
,=30
Ω
,
R
1
=3
Ω
,
R
2
=2
Ω
。求电压源
C
1
C
2
C
3
发出的有功功率和无功功率。(15分)
Z
1
=2+j1
Ω
,
五、图5所示三相电路中,
对称三相负载
Z
=18+j15
Ω
,单相负载
R
=10
Ω
,
线电压为380V,求负载相电流
I
AB
、
I
A’B’
及三相电源供给的总有功功率P。(15分)
六、图6所示虚线框内为一无源线性二端口网络,求:1)网络的Z参数。
2)若在1-1端口加电压U
1
=50V,2-2
端口接R
L
=5.5Ω时,求电压源发出的功率和
R
L
吸收的功率。(15分)
11
5
七、图7所示电路中,
u
S
(
t
)=10+90
2
cos
(
ωt+30
o
)
+
18
2
cos
(
3ωt
)V,
R
=18
Ω
,
ωL
=
3Ω
,
1
=27
Ω
,求:
C
1)电流i和电压u的有效值;
2)功率表的读数;
3)i的瞬时值。(15分)
八、列写图8所示电路状态的矩阵形式,已知:
R
1
=
R
2
=
R
3
=2
Ω
,
C
3
=1
F
,
L
4
=1H,L
5
=2H。(15分)
6
九、图9所示电路中,N
0
为无源线性时不变网络,已知单位阶跃响应
u
0
(
t
)=
(2.5
-
e
-t
-
1.5
e
-2t
).ε
(
t
)
V
,求当
i
S
(
t
)
=
(40
2
cos2t).ε
(
t
)
A
时,u
0
(t)的稳态响应。(15分)
十、图10所示电路原已达稳态,t=0时开关S闭合,已知:u
S
(t)=0.1
e
-5t
V,
R
1
=1
Ω
,
R
2
=2
Ω
,
L
=0.1
H
,
C
=0.5
F
,用复频域分析法求
t>0
时的电流
i
2
(
t
)。
7
长沙理工大学
2007年研究生入学考试试题
考试科目:电路考试科目代码:444
注意:所有答案(含选择题、填空题、判断题、作图题等)一律答在答题纸上;写
在试卷纸上或其他地点一律不给分、作图题可以在原试卷题图上作答,然后
将“图”撕下来贴在答题纸上的响应位置。
一、图1所示电路中,用结点电压法求电流I及电流源发出的功率。(l5分)
二、用叠加定理求图2所示电路中的电流I和电压U。(15分)
三、图1所示电路中,N
S
为有源线性一端口,已知:
图a中,U
OC
=30V,图b中U
ab
=0。试求图c所示电路中的电流I。(15分)
8