最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

DS9986A-00技术文档_图文

IT圈 admin 30浏览 0评论

2024年10月6日发(作者:堵书兰)

RT9986A

7-CH DC/DC Converter for DSC

General Description

The RT9986A is a complete power supply solution for

digital still cameras and other handheld devices. It includes

one synchronous step-up DC/DC converter with load

disconnect, one selectable synchronous step-up/step-

down DC/DC converter, two synchronous step-down DC/

DC converters, one synchronous high voltage step-up DC/

DC converter, one inverting DC/DC converter, and one

selectable synchronous high voltage step-up/current-

source for WLED. In addition, the RT9986A also includes

one RTC_LDO, one voltage detector, and one System

Reset. All power MOSFETs are integrated in the RT9986A.

The RT9986A is designed to fulfill the applications for DSC

as follows :

CH1 is a synchronous step-up output for motor or DSC

system I/O power

CH2 is a selectable synchronous step-up/step-down

output for motor or DSC system I/O power

CH3 and CH4 are synchronous step-down outputs for DSP

core and memory power supply

CH5 is a synchronous high voltage step-up output for CCD

bias power supply

CH6 is an inverting output for negative CCD bias power

supply

CH7 is a selectable synchronous high voltage step-up/

current source for driving WLED

The selectable step-up/step-down converter can be auto

selected by external component topology. For the

RT9986A, all 7-CHs have built in internal compensation.

The RT9986A also provides a transformerless inverting

converter for supplying CCD power. For the low voltage

synchronous step-up and step down converters, efficiency

can be up to 95%.

The RT9986A provides comprehensive protection features

including over current protection, thermal shutdown

protection, over voltage protection, overload protection,

and under voltage protection.

z

Features

z

CH2 Step-Up/Step-Down Auto-Selected by External

Topology

Preset On/Off Sequence of CH1, CH2, CH3, CH4

(1

3

4

2)

Preset On/Off Sequence of CH5, CH6 (5

6)

All Channels with Internal Compensation

All Power Switches Integrated

All Step-Up Converter with Load Disconnect

Step-Down DC/DC Converter

`

Up to 95% Efficiency

`

100% (max) Duty Cycle

Low Voltage Step-Up DC/DC Converter

`

Adjustable Output Voltage

`

Up to 95% Efficiency

WLED Driver

`

Auto-Selected by External Topology

`

Current Source Mode with 30mA DC Current

`

Step-Up Mode with LED Open Protection (OVP7)

`

Direct PWM Dimming Control

Fixed 2MHz Switching Frequency for CH1/2/3/4,

Fixed 1MHz Switching Frequency for CH5/6/7

Small 32-Lead WQFN Package

RoHS Compliant and Halogen Free

z

z

z

z

z

z

z

z

z

z

Applications

z

z

z

Digital Still Camera

PDA

Portable Devices

Marking Information

EZ= : Product Code

EZ=YM

DNN

YMDNN : Date Code

DS9986A-00 May

1

RT9986A

Ordering Information

RT9986A

Package Type

QW : WQFN-32L 4x4 (W-Type)

Lead Plating System

G : Green (Halogen Free and Pb

Free)

Note :

Richtek products are :

`

RoHS compliant and compatible with the current require-

Pin Configurations

(TOP VIEW)

E

N

5

6

L

X

1

P

V

D

D

1

B

A

T

L

X

6

P

V

D

D

2

L

X

2

E

N

1

2

3

4

32313

FB1

VREF

FB6

VOUT6

FB7

PVDD7

LX7

EN7

1

2

3

4

5

6

7

8

916

24

23

22

GND

33

21

20

19

18

17

FB2

SYSR

RTCPWR

VDDM

LX5

PVDD5

FB5

RST

`

Suitable for use in SnPb or Pb-free soldering processes.

2

L

X

4

P

V

D

D

4

F

B

4

V

C

H

K

V

N

E

G

F

B

3

P

V

D

D

3

L

X

3

ments of IPC/JEDEC J-STD-020.

WQFN-32L 4x4

DS9986A-00 May 2011

RT9986A

Typical Application Circuit

For 2AA

21

C1

1µF

V

BAT

29

C2

4.7µF

L5

10µH

V

BAT

C14

4.7µF

VDDM

PVDD1

FB1

RT9986A

30

1

C21

4.7pF

R1

470k

R2

88.7k

C4

10µF x 2

5V

BAT

20

LX5

LX1

31

L1

2.2µH

C3

4.7µF

V

BAT

15V

C13

10µF x 2

R9

287k

R10

26.1k

C12

27pF

19

PVDD5

PVDD2

27

24

C22

4.7pF

R3

470k

R4

150k

C6

10µF x 2

3.3V

18

FB5

FB2

4

VOUT6

D1

-7V

C18

10µF x 2

C15

1nF

R11

66.5k

R12

10.5k

C16

0.1µF

L6

10µH

28

LX6

LX2

26

L2

2.2µH

C5

4.7µF

C7

4.7µF

V

BAT

PVDD3

15

LX3

16

14

L3

2.2µH

5V

3

2

13

C17

0.1µF

FB6

2.5V

R5

768k

R6

360k

C8

10µF

VREF

VNEG

FB3

7

LX7

6

PVDD7

5

FB7

PVDD4

10

L4

2.2µH

C9

10µF

5V or V

BAT

D5

5V

LX4

9

FB4

11

1.8V

R7

470k

R8

374k

C10

10µF

8

EN7

ON

OFF

RTCPWR

R14

10k

3.3V

R15

100k

25

EN1234

32

EN56

12

VCHK

17

23

RST

RTCPWR

22

C11

Super Cap

33 (Exposed Pad)

GND

SYSR

DS9986A-00 May

3

RT9986A

For Li-ion

21

C1

1µF

V

BAT

29

C2

4.7µF

L5

10µH

V

BAT

C14

4.7µF

VDDM

PVDD1

FB1

RT9986A

LX1

31

L1

2.2µH

C4

4.7µF

V

BAT

30

1

C21

4.7pF

R1

470k

R2

88.7k

5V

C3

10µF x 2

BAT

20

LX5

15V

C13

10µF x 2

R9

287k

R10

26.1k

C12

27pF

19

PVDD5

LX2

26

24

L2

2.2µH

C22

10pF

R3

470k

R4

150k

C5

10µF

3.3V

18

FB5

FB2

4

VOUT6

D1

-7V

C18

10µF x 2

C15

1nF

R11

66.5k

R12

10.5k

C16

0.1µF

L6

10µH

28

LX6

PVDD2

27

C6

4.7µF

C7

4.7µF

V

BAT

PVDD3

15

LX3

16

14

L3

2.2µH

V

BAT

3

2

13

C17

0.1µF

L7

10µH

V

BAT

C19

1µF

D2

D3

D4

R13

10

C20

1µF

5

FB6

1.8V

R5

470k

R6

374k

C8

10µF

VREF

VNEG

FB3

PVDD4

10

7

LX7

LX4

9

6

PVDD7

FB4

11

FB7

RTCPWR

8

EN7

22

C11

Super Cap

33 (Exposed Pad)

L4

2.2µH

C9

4.7µF

5V or V

BAT

1V

R7

23.2k

R8

93.1k

C10

10µF

ON

OFF

RTCPWR

R14

10k

3.3V

R15

100k

25

EN1234

32

EN56

12

17

23

VCHK

RST

SYSR

GND

4

DS9986A-00 May 2011

RT9986A

Timing Diagram

Timing Diagram for CH1 to CH4

VDDM = Max

(BAT, PVDD1)

EN1234

CH1 VOUT

CH3 VOUT

CH4 VOUT

CH2 VOUT

User define

3.5ms

3.5ms

3.5ms

3.5ms

Wait until FB3 < 0.1V

Wait until FB4 < 0.1V

Wait until FB2 < 0.1V

CH5 and CH6 Power Sequence

The power on sequence is :

When EN56 goes high, CH5 will turn on first. After 10ms, CH6 will turn on.

The power off sequence is :

When EN56 goes low, CH6 will turn off first and VOUT6 will be internally pulled to GND.

When VOUT6 > −0.12V, CH6 discharging completes and then CH5 turns off. Finally, the whole IC shuts down.

Power On Sequence : CH5 HV Step-Up 15V

CH6 INV −7V

Power Off Sequence : CH6 INV −7V

CH5 HV Step-Up 15V

EN56

10ms

Constant Current

Pre-Charge.

10ms

Discharge by internal N-MOSFET

CH5

VOUT

CH6

VOUT

Wait until VOUT6 close to 0V

DS9986A-00 May

5

RT9986A

Functional Pin Description

Pin No.

1

2

3

4

Pin Name

FB1

VREF

FB6

VOUT6

Feedback Input Pin of CH1.

1.8V Reference Output Pin.

Feedback Input Pin of CH6.

Pin Function

Sense Input Pin of CH6 Inverting Output Node.

Feedback input pin of CH7 in step-up mode or current sink pin of CH7 in current

5 FB7

source mode.

6 PVDD7 Power Output Pin of CH7.

Switch Node of CH7 in Step-Up Mode. LX7 initial voltage determines CH7

7 LX7

operation mode.

8 EN7 Enable Pin of CH7 and PWM Dimming Signal Input Pin.

9

10

11

12

13

14

15

16

17

18

19

20

21

LX4

PVDD4

FB4

VCHK

VNEG

FB3

PVDD3

LX3

RST

FB5

PVDD5

LX5

VDDM

Switch Node of CH4.

Power Input Pin of CH4.

Feedback Input Pin of CH4.

Sense Pin of Voltage Detector.

Output Pin of Negative Regulator.

Feedback Input Pin of CH3.

Power Input Pin of CH3.

Switch Node of CH3.

Voltage Detector Open Drain Output Pin.

Feedback Input Pin of CH5.

Power Output Pin of CH5.

Switch Node of CH5.

IC Analog Power Pin.

Internal Control Circuit Power Pin. That must connect to a bypass capacitor for

22 RTCPWR

better noise rejection.

23 SYSR System Reset Open-Drain Output Pin.

24

25

26

FB2

EN1234

LX2

Feedback Input Pin of CH2.

Enable Pin of CH1, CH2, CH3, CH4.

Switch Node of CH2.

Power Input Pin for Step-Down of CH2.

27 PVDD2

Power Output Pin for Step-Up of CH2.

28 LX6 Switch Node of CH6.

29 BAT Battery Power Pin.

30

31

32

PVDD1

LX1

EN56

Power Output Pin of CH1.

Switch Node of CH1.

Enable Pin of CH5, CH6.

Ground. The exposed pad must be soldered to a large PCB and connected to

GND for maximum thermal dissipation.

33 (Exposed pad) GND

6

DS9986A-00 May 2011

RT9986A

Function Block Diagram

VDDM

PVDD5

Body

Diode

Control

BAT

VDDM

BAT

LX5

UVLOUVLO

CH5

C-Mode

Step-Up

PWM

Soft-Start

VDDI

VDDM

PVDD1

Body

Diode

Control

FB5

1.25V

REF

-

+

BAT

VDDM

CH1

C-Mode

Step-Up

BAT

LX1

CH6

Inverting

LX6

VNEG

-

+

0.8V

REF

VDDM

FB1

VOUT6

FB6

1.8V

REF

VDDM

CH7 C-Mode

Step-Up or

Current Source

+

PWM Dimming

+

Mode Selector

-

+

PVDD2

Body

Diode

Control

BAT

LX2

+

0.6V

REF

-

CH2

C-Mode

Step-Up or

Step-Down

VREF

PVDD7

BAT

LX7

Body

Diode

Control

-

+

0.8V

REF

VDDM

FB2

PVDD3

FB7

0.25V

REF

30mA(max.)

CH3

C-Mode

Step-Down

LX3

EN7

EN1234

EN56

Power On/Off

Sequence Control

Logic Block

VDDM

RTCPWR

VCHK

RST

Voltage

Detector

CH4

C-Mode

Step-Down

-

+

0.8V

REF

PVDD4

FB3

LX4

VDDM

SYSR

SYS_Reset

GND

FB2

VDDI

-

+

0.8V

REF

FB4

RTC_LDO

W/ Body Diode

Control

RTCPWR

DS9986A-00 May

7

RT9986A

Absolute Maximum Ratings

(Note 1)

z

z

z

z

z

z

z

z

z

z

z

z

z

Supply Input Voltage, VDDM, BAT---------------------------------------------------------------------−0.3V to 6V

VOUT6--------------------------------------------------------------------------------------------------------−10V to 0.3V

LX1, LX2, LX3, LX4-----------------------------------------------------------------------------------------−0.3V to 6V

PVDD5, LX5-------------------------------------------------------------------------------------------------−0.3V to 24V

PVDD7, LX7-------------------------------------------------------------------------------------------------−0.3V to 17V

LX6-------------------------------------------------------------------------------------------------------------(BAT − 14V) to (BAT + 0.3V)

Other Pins----------------------------------------------------------------------------------------------------−0.3V to 6V

Power Dissipation, P

D

@ T

A

= 25°C

WQFN 32L 4x4----------------------------------------------------------------------------------------------3.590W

Package Thermal Resistance (Note 2)

WQFN 32L 4x4, θ

JA

----------------------------------------------------------------------------------------27.8°C/W

WQFN 32L 4x4, θ

JC

----------------------------------------------------------------------------------------7°C/W

Junction Temperature--------------------------------------------------------------------------------------150°C

Lead Temperature (Soldering, 10 sec.)----------------------------------------------------------------260°C

Storage Temperature Range-----------------------------------------------------------------------------−65°C to 150°C

ESD Susceptibility (Note 3)

HBM (Human Body Mode)-------------------------------------------------------------------------------2kV

MM (Machine Mode)---------------------------------------------------------------------------------------200V

Recommended Operating Conditions

(Note 4)

z

z

z

VDDM---------------------------------------------------------------------------------------------------------2.7V to 5.8V

Junction Temperature Range-----------------------------------------------------------------------------

40°C to 125°C

Ambient Temperature Range-----------------------------------------------------------------------------

40°C to 85°C

Electrical Characteristics

Supply Input Voltage

BAT Startup Voltage

BAT UVLO Threshold

BAT UVLO Hysteresis

VDDM OVP Threshold

VDDM OVP Hysteresis

VDDM UVLO Threshold

VDDM UVLO Hysteresis

Supply

Current

(V

DDM

= V

BAT

= 3.3V, T

A

= 25°C, unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

V

ST

BAT Falling

VDDM Rising

VDDM Rising

1.5 -- -- V

-- 1.3 -- V

-- 0.2 -- V

5.85

--

2.2

--

6 6.15 V

−0.25 -- V

2.4

0.3

2.6

--

V

V

Shutdown Supply Current

(I

BAT

+ I

VDDM

)

CH1 Synchronous Step-Up Supply

Current into VDDM

CH2 Synchronous Step-Up or

Step-Down Supply Current into VDDM

I

OFF

All EN pins = 0, V

BAT

= 3.3V --

--

--

--

10

--

--

--

20

800

800

800

μA

μA

μA

μA

I

Q1

Non switching, V

EN1234

= 3.3V

I

Q2

Non switching, V

EN1234

= 3.3V

V

EN1234

= 3.3V

CH3 Synchronous Step-Down Supply

I

Q3

Current into VDDM

8

To be continued

DS9986A-00 May 2011

RT9986A

Parameter Symbol Test Conditions Min Typ Max Unit

CH4 Synchronous Step-Down

Non switching, V

EN1234

= 3.3V -- -- 800 μA

I

Q4

Supply Current into VDDM

CH5 Synchronous Step-Up Supply

Non switching, V

EN56

= 3.3V -- -- 800 μA

I

Q5

Current into VDDM

CH6 (Inverting)

I

Q6

Non switching, V

EN56

= 3.3V -- -- 800 μA

Supply Current into VDDM

CH7 (WLED) in Step-Up Mode

Non switching, V

EN7

= 3.3V -- -- 800 μA

I

Q7b

Supply Current into VDDM

CH7 (WLED) in Current Source

V

EN7

= 3.3V, V

LX7

= 0V -- -- 800 μA

I

Q7c

Mode Supply Current into VDDM

Oscillator

CH1, 2, 3, 4 Operation Frequency

CH5, 6, 7 Operation Frequency

CH2 Maximum Duty Cycle (Step-Up)

CH2 Maximum Duty Cycle

(Step-Down)

CH3 Maximum Duty Cycle

(Step-Down)

CH4 Maximum Duty Cycle

(Step-Down)

CH5 Maximum Duty Cycle (Step-Up)

f

OSC

f

OSC2

CH7 in Step-Up mode

V

FB1

= 0.75V

V

FB2

= 0.75V

V

FB2

= 0.75V

V

FB3

= 0.75V

V

FB4

= 0.75V

V

FB5

= 1.15V

V

FB6

= 0.7V

V

FB7

= 0.15V

1800 2000 2200 kHz

900

80

80

--

--

--

91

91

91

1000

83

83

--

--

--

93

93

93

1100

86

86

100

100

100

97

97

97

kHz

%

%

%

%

%

%

%

%

CH1 Maximum Duty Cycle (Step-Up)

CH6 Maximum Duty Cycle (Inverting)

CH7 Maximum Duty Cycle (Step-Up)

Feedback, Regulation Voltage

Feedback Regulation Voltage @

FB1, FB2, FB3, FB4

Feedback Regulation Voltage @ FB5

Feedback Regulation Voltage @ FB6

(Inverting)

Feedback Regulation Voltage @ FB7

Output Current (CS Mode)

Dropout Voltage @ FB7 (CS Mode)

VREF Output Voltage

VREF Load Regulation

PowerSwitch

V

FB5

V

FB6

V

FB7

V

LX7

= 0V

0.788 0.8 0.812 V

1.237 1.25 1.263 V

0.59 0.6 0.61 V

0.237 0.25 0.263 V

28.5

--

30

--

31.5

0.3

mA

V

V

REF

1.782 1.8 1.818 V

0μA < I

REF

< 200μA -- -- 10 mV

-- 200 300 P-MOSFET V

PVDD1

= 3.3V

R

DS(ON)1

N-MOSFET V

PVDD1

= 3.3V

CH1 Current Limitation (Step-Up) I

LIM1

P-MOSFET V

PVDD2

= 3.3V

CH2 On Resistance R

DS(ON)2

N-MOSFET V

PVDD2

= 3.3V

CH1 On-Resistance

CH2 Current Limitation (Step-Down) I

LIM2_D

CH2 Current Limitation (Step-Up)

DS9986A-00 May 2011

-- 150 250

2.2 3 4 A

-- 200 300

-- 150 250

1.2 1.6 2 A

2.2 3 4 A

To be continued

9

I

LIM2_U

RT9986A

CH3 On Resistance

P-MOSFET V

PVDD3

= 3.3V

R

DS(ON)3

N-MOSFET V

PVDD3

= 3.3V

P-MOSFET V

PVDD4

= 3.3V

R

DS(ON)4

N-MOSFET V

PVDD4

= 3.3V

--

--

--

--

300

300

300

300

400

400

400

400

Parameter Symbol Test Conditions Min Typ Max Unit

CH3 Current Limitation (Step-Down) I

LIM3

CH4 On Resistance

1.2 1.6 2 A

CH4 Current Limitation (Step-Down) I

LIM4

P-MOSFET V

PVDD5

= 16V

R

DS(ON)5

N-MOSFET V

PVDD5

= 3.3V

CH5 Current Limitation of

I

LIM5

N-MOSFET

CH6 On Resistance of P-MOSFET R

DS(ON)6

CH6 Current Limitation of

I

LIM6

P-MOSFET

P-MOSFET V

PVDD7

= 10V

CH7 On Resistance R

DS(ON)7

N-MOSFET V

PVDD7

= 3.3V

CH7 Current Limitation of

I

LIM7

N-MOSFET

Protection

Over Voltage Protection of PVDD1

and PVDD2

Over Voltage Protection of PVDD5

CH5 On Resistance

1.2 1.6 2 A

-- 0.8 1

-- 0.6 0.8

Ω

0.9 1.2 1.6 A

-- 0.5 0.7 Ω

1 1.5 2 A

-- 3 --

Ω

-- 0.9 1.1

0.6 0.8 1 A

5.85 6 6.15 V

20

--

21 22 V

Over Voltage Protection of VOUT6

Over Voltage Protection of PVDD7

(Step-Up Mode)

CH1, CH2 Step-Up Under Voltage

Protection of PVDD1 and PVDD2

CH1/2/3/4 Under Voltage Protection

CH5 Under Voltage Protection

CH6 Under Voltage Protection

CH1/2/3/4 Over Load Protection

CH5 Over Load Protection

CH6 Over Load Protection

Protection Fault Delay

Control

−13 -- V

At V

FBx

< 0.4V after soft-start

ends

At V

FB5

< 0.6V after soft-start

ends

At V

FB6

> 1.2V after soft-start

end

At V

FBx

< 0.7V after fault delay

(100ms)

At V

FB5

< 1.1V after fault delay

(100ms)

At V

FB6

> 0.74V after fault

delay (100ms)

High to Select Step-Up Mode

Low to Select CS Mode

14.3 15 16 V

V

BAT

-- V --

−0.8V

0.35 0.4 0.45 V

0.5 0.6 0.7 V

1.1 1.2 1.3 V

0.65 0.7 0.75 V

1.05 1.1 1.15 V

0.69 0.74 0.79 V

--

1.3

--

1

--

--

100

--

--

--

0.25

2

--

--

0.4

--

--

6

ms

Logic-High

EN1234, EN56, EN7

Input Threshold Voltage

Logic-Low

LX7 Input Threshold

Voltage

Logic-High

Logic-Low

V

V

μA EN1234, EN56, EN7 Sink Current

EN7 Low Time for Shutdown

10

t

SHDN

-- 32 -- ms

To be continued

DS9986A-00 May 2011

RT9986A

Thermal Protection

Thermal Shutdown

Thermal Shutdown Hysteresis

System Reset

SYSR, FB2 Regulation Threshold

SYSR, FB2 Hysteresis

SYSR Rising Delay Time

SYSR Sink Capability

Voltage Detector

Voltage Detector Reset Threshold

(VCHK

<

Threshold Æ RST = L)

Voltage Detector Reset Hysteresis

Standby Current

RST Rising Delay Time

RST Sink Capability

RTC LDO

for SYSR to go low

V

SYSR

= 0.5V

0.709 0.72 0.731

--

--

4

40

10

--

--

--

--

V

mV

ms

mA

T

SD

ΔT

SD

125 160 -- °C

-- 20 -- °C

Parameter Symbol Test Conditions Min Typ Max Unit

VCHK Falling

V

VCHK

= 3V

V

RST

= 0.5V, V

VCHK

= 1.5V

V

DDM

= 4.2V

I

OUT

= 0mA

V

DDM

= 4.2V

I

OUT

= 50mA

I

OUT

= 10mA

I

OUT

= 3mA

1.57 1.6 1.63 V

--

--

4

--

3.1

60

--

--

--

16

2

--

5

3.2

130

--

--

--

--

4

--

8

3.3

200

1000

150

60

mV

mV

μA

mA

μA

V

mA

35 55 75 ms

Standby Current

Regulated Output Voltage @

RTCPWR

Max Output Current (Current Limit)

Dropout Voltage

Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for

stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational

sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may

remain possibility to affect device reliability.

Note 2. θ

JA

is measured in natural convection at T

A

= 25°C on a high-effective thermal conductivity four-layer test board of JEDEC

51-7 thermal measurement standard. The measurement case position of θ

JC

is on the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

DS9986A-00 May

11

RT9986A

Typical Operating Characteristics

CH1 Step-Up Efficiency vs. Output Current

100

90

80

CH1 Step-Up Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

60

50

40

30

20

10

0

10

E

f

f

i

c

i

e

n

c

y

(

%

)

70

V

BAT

= 4.5V

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

80

70

60

50

40

30

20

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

BAT

= 1.8V

V

OUT

= 5V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

10

0

10

V

OUT

= 3.3V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

Output Current (mA)Output Current (mA)

CH2 Step-Up Efficiency vs. Output Current

100

90

80

CH2 Step-Down Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

60

50

40

30

20

10

0

10

E

f

f

i

c

i

e

n

c

y

(

%

)

70

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 1.8V

80

70

60

50

40

30

20

V

BAT

= 3.4V

V

BAT

= 3.7V

V

BAT

= 3.9V

V

BAT

= 4.2V

V

BAT

= 4.5V

V

BAT

= 5V

V

OUT

= 5V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

10

0

10

V

OUT

= 3.3V, L = 2.2μH, C

OUT

= 10μF

1001000

Output Current (mA)Output Current (mA)

CH 3 Step-Down Efficiency vs. Output Current

100

90

80

CH4 Step-Down Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

10

V

BAT

= 2.7V

V

BAT

= 3V

V

BAT

= 3.3V

V

BAT

= 3.6V

V

BAT

= 3.9V

V

BAT

= 4.2V

V

BAT

= 4.5V

80

70

60

50

40

30

20

V

BAT

= 1.8V

V

BAT

= 2.5V

V

BAT

= 3V

V

BAT

= 3.3V

V

BAT

= 3.6V

V

BAT

= 4.2V

V

BAT

= 4.5V

V

OUT

= 1.8V, L = 2.2μH, C

OUT

= 10μF

1001000

10

0

10

V

OUT

= 1V, L = 2.2μH, C

OUT

= 10μF

1001000

Output Current (mA)Output Current (mA)

12

DS9986A-00 May 2011

RT9986A

CH5 Step-Up Efficiency vs. Output Current

100

90

CH6 Inverting Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

0.001

V

BAT

= 4.5V

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

OUT

= 16V, L = 10μH, C

OUT

= 10μF x 2

0.010.1

I

n

v

e

r

t

i

n

g

E

f

f

i

c

i

e

n

c

y

(

%

)

8080

70

60

50

40

30

20

10

0

1

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 4.5V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

OUT

= −8V, L = 10μH, C

OUT

= 10μF x 2

10100

Output Current (A)Output Current (mA)

CH7 Efficiency vs. Input Voltage

100

90

80

CH1 Step-Up Output Voltage vs. Output Current

5.20

5.15

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

1.82.12.42.733.33.63.94.24.5

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

5.10

5.05

5.00

4.95

4.90

4.85

V

BAT

= 3V

V

BAT

= 4.5V

I

OUT

= 25mA, L = 10μH, C

OUT

= 1μF

4.80

0

V

OUT

= 5V

500600

Input Voltage (V)Output Current (mA)

CH1 Step-Up Output Voltage vs. Output Current

3.35

CH2 Step-Up Output Voltage vs. Output Current

5.10

3.33

V

BAT

= 1.8V

5.08

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

V

BAT

= 3V

5.06

3.31

V

BAT

= 3.2V

V

BAT

= 4.2V

5.04

3.29

3.27

5.02

V

OUT

= 3.3V

3.25

0500600

5.00

0

V

OUT

= 5V

500600

Output Current (mA)Output Current (mA)

DS9986A-00 May

13

RT9986A

CH2 Step-Down Output Voltage vs. Output Current

3.36

CH3 Step-Down Output Voltage vs. Output Current

1.830

1.825

3.34

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

3.32

V

BAT

= 4.5V

V

BAT

= 5V

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.820

1.815

1.810

1.805

3.30

V

BAT

= 3V

V

BAT

= 4.5V

3.28

V

OUT

= 3.3V

3.26

0500600

1.800

0

V

OUT

= 1.8V

500600

Output Current (mA)Output Current (mA)

CH4 Step-Down Output Voltage vs. Output Current

1.006

1.004

CH5 Step-Up Output Voltage vs. Output Current

16.3

16.2

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.002

1.000

0.998

0.996

0.994

0.992

V

BAT

= 4.5V

V

BAT

= 2.7V

V

BA

T

= 3V

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

16.1

V

BAT

= 3.4V

V

BAT

= 4.5V

16.0

15.9

V

OUT

= 1V

15.8

400500600

0204060

V

OUT

= 16V

80100

Output Current (mA)

Output Current (mA)

CH6 Inverting Efficiency vs. Output Current

-8.190

Power On Sequence

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

-8.195

V

BAT

= 2.7V

V

BAT

= 3.4V

V

BAT

= 4.5V

V

OUT_CH1

(5V/Div)

V

OUT_CH2

(2V/Div)

V

OUT_CH3

(2V/Div)

V

OUT_CH4

(2V/Div)

Time (2.5ms/Div)

-8.200

-8.205

V

OUT

= −8V

-8.210

V

BAT

=

3.7V

Output Current (mA)

14

DS9986A-00 May 2011

RT9986A

Power Off Sequence

V

OUT_CH1

(5V/Div)

V

OUT_CH2

(2V/Div)

V

OUT_CH3

(2V/Div)

V

OUT_CH4

(2V/Div)

Time (1ms/Div)

Power On Sequence

V

OUT_CH5

(10V/Div)

V

OUT_CH6

(5V/Div)

V

BAT

=

3.7VV

BAT

=

3.7V

Time (5ms/Div)

Power Off SequenceCH1 Output Voltage Ripple

V

OUT_CH5

(10V/Div)

V

OUT_CH6

(5V/Div)

LX1

(2V/Div)

V

OUT_CH1_ac

(10mV/Div)

V

BAT

=

3.7V

V

BAT

= 3.7V, V

OUT

= 5V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF x 2

Time (2.5ms/Div)Time (500ns/Div)

CH2 Output Voltage RippleCH3 Output Voltage Ripple

LX2

(2V/Div)

LX3

(2V/Div)

V

OUT_CH2_ac

(2mV/Div)

V

BAT

= 3.7V, V

OUT

= 3.3V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

V

OUT_CH3_ac

(5mV/Div)

V

BAT

= 3.7V, V

OUT

= 1.8V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

Time (500ns/Div)Time (500ns/Div)

DS9986A-00 May

15

RT9986A

CH4 Output Voltage Ripple

CH5 Output Voltage Ripple

LX4

(2V/Div)

LX5

(10V/Div)

V

OUT_CH4_ac

(5mV/Div)

V

BAT

= 3.7V, V

OUT

= 1V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

V

OUT_CH5_ac

(10mV/Div)

V

BAT

= 3.7V, V

OUT

= 16V,

I

OUT

= 30mA, L = 10μH, C

OUT

= 10μF

Time (500ns/Div)Time (1μs/Div)

CH6 Output Voltage RippleCH1 Load Transient Response

LX6

(10V/Div)

I

OUT

(100mA/Div)

V

OUT_CH1_ac

(100mV/Div)

V

BAT

= 3.7V, V

OUT

= −8V,

I

OUT

= 50mA, L = 10μH, C

OUT

= 10μF x 2

V

BAT

= 3.7V, V

OUT

= 5V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF x 2

V

OUT_CH6_ac

(10mV/Div)

Time (1μs/Div)Time (1ms/Div)

CH2 Load Transient ResponseCH3 Load Transient Response

I

OUT

(100mA/Div)

V

OUT_CH2_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 3.3V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

I

OUT

(100mA/Div)

V

OUT_CH3_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 1.8V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

Time (1ms/Div)Time (1ms/Div)

16

DS9986A-00 May 2011

RT9986A

CH4 Load Transient Response

CH5 Load Transient Response

I

OUT

(100mA/Div)

V

OUT_CH4_ac

(20mV/Div)

V

BAT

= 3.7V, V

OUT

= 1V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

I

OUT

(20mA/Div)

V

OUT_CH5_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 16V,

I

OUT

= 10 to 30mA, C

OUT

= 10μF

Time (1ms/Div)Time (1ms/Div)

CH6 Load Transient Response

I

OUT

(20mA/Div)

V

OUT_CH6_ac

(20mV/Div)

V

BAT

= 3.7V, V

OUT

= −8V,

I

OUT

= 15 to 50mA, C

OUT

= 10μF x 2

Time (1ms/Div)

DS9986A-00 May

17

RT9986A

Application Information

The RT9986A is a multiple output power supply system

for digital still cameras and other small handheld devices.

It includes six DC/DC converters as well as one WLED

driver, one RTC LDO, one voltage detector, and one

system reset. The WLED works in either current source

mode or step-up mode.

CH1 : Step-up synchronous current mode DC/DC converter

with internal power MOSFETs and compensation network.

The P-MOSFET body can be controlled to disconnect the

load.

CH2 : Step-up or step-down synchronous current mode

DC/DC converter with internal power MOSFETs and

compensation network. External circuit topology

automatically determines whether CH2 is in step-up or

step-down mode. During step-up mode, the P-MOSFET

body can be controlled to disconnect the load if input

voltage is not higher than the V

BAT

.

CH3 : Step-down synchronous current mode DC/DC

converter with internal power MOSFETs and

compensation network.

CH4 : Step-down synchronous current mode DC/DC

converter with internal power MOSFETs and

compensation network.

CH5 : Step-up synchronous current mode DC/DC converter

with internal power MOSFET and compensation network.

The P-MOSFET body can be controlled to disconnect the

load.

CH6 : Asynchronous inverting current mode DC/DC

converter with internal power MOSFET and compensation

network.

CH7 : A WLED driver operating in either current source

mode or synchronous step-up mode with internal power

MOSFET and compensation network. Operation mode is

determined by LX7 initial voltage The P-MOSFET body in

step-up mode can be controlled to disconnect the load

disconnected.

CH1 to CH4 operate in PWM mode with 2MHz, while

CH5 to CH7 operate in PWM mode with 1MHz switching

frequency.

RTC_LDO : A 3.1V output LDO with low quiescent current

and high output voltage accuracy.

18

DS9986A-00 May 2011

System Reset : Accurate voltage detector for checking

CH2 output voltage status.

Voltage Detector : A general, low quiescent current voltage

detector for monitoring status of a node voltage such as

for RTC_LDO output or others.

CH1 : Synchronous Step-Up DC/DC Converter

CH1 is a synchronous step-up converter which can be

used for motor power. The converter operates at fixed

frequency and PWM current mode. The converter

integrates internal MOSFETs, compensation network and

synchronous rectifier for up to 95% efficiency.

The output voltage can be set by the following equation :

V

OUT_CH1

= (1 + R1 / R2) x V

FB1

where V

FB1

is 0.8V typically.

CH2 : Synchronous Step-Up / Step-Down

Selectable DC/DC Converter

CH2 is a synchronous step-up / step-down auto-select

converter, typically for system I/O power. In either step-

up or step-down, the converter operates in fixed frequency

PWM mode, Continuous Current Mode (CCM), and

Discontinuous Current Mode (DCM) with internal

MOSFETs, compensation network and synchronous

rectifiers for up to 95% efficiency.

Step-Up :

In step-up mode, CH2 also disconnects the load from its

input power node and discharges output node of CH2 when

it is turned off.

Step-Down :

In step-down mode, the CH2 converter can be operated

at 100% maximum duty cycle to extend the input

operating voltage range. When the input voltage is close

to the output voltage, the converter enters low dropout

mode.

The output voltage can be set by the following equation :

V

OUT_CH2

= (1 + R3 / R4) x V

FB2

where V

FB2

is 0.8V typically.

RT9986A

CH3 : Synchronous Step-Down DC/DC Converter

CH3 operates in fixed frequency PWM mode with

integrated internal MOSFETs and compensation network.

The CH3 step-down converter can be operated at 100%

maximum duty cycle to extend battery operating voltage

range. When the input voltage is close to the output

voltage, the converter enters low dropout mode with low

output ripple.

The output voltage can be set by the following equation :

V

OUT_CH3

= (1 + R5 / R6) x V

FB3

where V

FB3

is 0.8V typically.

CH4 : Synchronous Step-Down DC/DC Converter

CH4 operates at fixed frequency PWM mode with

integrated internal MOSFETs and compensation network.

The CH4 step-down converter can be operated at 100%

maximum duty cycle to extend battery operating voltage

range. When the input voltage is close to the output

voltage, the converter enters low dropout mode with low

output ripple.

The output voltage can be set by the following equation:

V

OUT_CH4

= (1 + R7 / R8) x V

FB4

where V

FB4

is 0.8V typically.

CH5 : Synchronous Step-Up DC/DC Converter

CH5 is a high voltage synchronous step-up converter for

CCD positive power. The converter operates at fixed

frequency PWM mode, CCM, DCM, and PSM (pulse skip

mode) with integrated internal MOSFETs, compensation

network and load disconnect function.

The output voltage can be set by the following equation:

V

OUT_CH5

= (1 + R9 / R10) x V

FB5

where V

FB5

is 1.25V typically.

CH6 : INV DC/DC Converter

This converter integrates an internal P-MOSFET with

internal compensation and needs an external Schottky

diode to provide CCD negative power supply.

The output voltage can be set by the following equation :

V

OUT_CH6

= −(R11 / R12) x (1.2V) + 0.6V

where R11 and R12 are the feedback resistors connected

DS9986A-00 May 2011

to FB6, 1.2V equals to (V

REF

− V

FB6

) and 0.6V is V

FB6

typical.

Reference Voltage

The RT9986A provides a precise 1.8V reference voltage,

V

REF

, with souring capability of 100µA. Connect a 0.1µF

ceramic capacitor from the VREF pin to GND. Reference

voltage is enabled by pulling EN6 to logic-high.

Furthermore, this reference voltage is internally pulled to

GND at shutdown.

CH7 : WLED Driver

CH7 is a WLED driver that can operate in either current

source mode or synchronous step-up mode, as determined

by LX7

'

s initial voltage level.

Table 1. CH7 WLED setting

CH7 Operating Mode

Current Source

Synchronous Step-Up

LX7

< 0.25V

> 1V

When CH7 works in current source mode, it sinks an

accurate LED current modulated by EN7 high duty such

that it is easily dimmed from 0mA to 30mA. If CH7 works

in synchronous step-up mode, it integrates synchronous

step-up mode with an internal MOSFET and internal

compensation to output a voltage up to 15V. The LED

current is set via an external resistor and controlled via

the PWM duty on the EN7 pin. Regardless of the mode,

holding EN7 low for more than 32ms will turn off CH7.

In addition, CH7 will be turned on until the CH2 soft-start

is finished.

CH7 WLED Current Dimming Control

If CH7 is in synchronous step-up mode, the WLED current

is set by an external resistor. If CH7 is in current source

mode, the sink current into the FB7 pin is 30mA typically

when EN7 is high. Regardless of the mode, dimming is

always controlled by the duty of pulse-width modulated

signal on the EN7 pin. The PWM dimming duty must be

over 10%.

The average current through WLED can be set by the

following equations :

I

LED

(mA) = [250mV / R (W)] x Duty (%) (for step-up mode)

or I

LED

(mA) = 30mA x Duty (%) (for current source mode)

19

RT9986A

R is the current sense resistor from FB7 to GND and Duty

is the duty of the PWM dimming signal into EN7 pin.

Dimming frequency range is from 1kHz to 100kHz but

2kHz to 20kHz should be avoided to prevent distraction

from audio noise.

VDDM Bootstrap

To support bootstrap function, the RT9986A includes a

power selection circuit which selects between BAT and

PVDD1 to create the internal node voltage VDDI and VDDM.

VDDM is the power of all the RT9986A control circuits

and must be connected to an external decoupling capacitor

by way of the VDDM pin. The VDDI is the power input of

the RTC LDO. The output PVDD1 of CH1 can bootstrap

VDDM and VDDI. The RT9986A includes UVLO circuits

to monitor VDDM and BAT voltage status.

RTC LDO

The RT9986A provides a 3.1V output LDO for real time

clock. The LDO features low quiescent current (5µA) and

high output voltage accuracy. This LDO is always on, even

when the system is shut down. For better stability, is it

recommended to connect a 0.1µF to the RTCPWR pin.

The RTC LDO includes pass transistor body diode control

to avoid the RTCPWR node from back-charging into the

input node VDDI.

System Reset

The RT9986A also provides a system voltage detector to

monitor system power status via FB2. If FB2 level is lower

than 90% setting, the open drain output pin SYSR will

pull down. When FB2 level is higher than 95% setting,

the SYSR pin will go high after 10ms.

Voltage Detector

The RT9986A provides a voltage detector to detect the

voltage status at the VCHK pin. The input power of the

voltage detector is RTCPWR and the detector is always

on. 55ms after VCHK voltage > 1.616V, the open drain

output /RST will be pulled high. If VCHK < 1.6V, the /RST

pin will be pulled down to GND immediately.

Power On/Off Sequence for CH1 to CH4

EN1234 will turn on/off CH1 to CH4 in preset sequence.

CH1 to CH4 Power On Sequence is:

20

When EN1234 goes high, CH1 will turn on first. 3.5ms

after CH1 is turned on, CH3 will turn on. 3.5ms after CH3

is turned on, CH4 will turn on. 3.5ms after CH4 is turned

on, CH2 will turn on.

CH1 to CH4 Power-Off Sequence is :

When EN1234 goes low, CH2 will turn off first and internally

discharge output.

When FB2 < 0.1V, CH4 will turn off and also internally

discharge output via the LX4 pin. When FB4 < 0.1V, CH3

will turn off and internally discharge output via the LX3

pin. Likewise, when FB3 < 0.1V, CH1 will turn off and

discharge output. After FB1 < 0.1V, CH1 to 4 shutdown

sequence will be completed.

Thermal Considerations

For continuous operation, do not exceed absolute

maximum junction temperature. The maximum power

dissipation depends on the thermal resistance of the IC

package, PCB layout, rate of surrounding airflow, and

difference between junction and ambient temperature. The

maximum power dissipation can be calculated by the

following formula :

P

D(MAX)

= (T

J(MAX)

− T

A

) / θ

JA

where T

J(MAX)

is the maximum junction temperature, T

A

is

the ambient temperature, and θ

JA

is the junction to ambient

thermal resistance.

For recommended operating condition specifications of

the RT9986A, the maximum junction temperature is 125°C

and T

A

is the ambient temperature. The junction to ambient

thermal resistance, θ

JA

, is layout dependent. For WQFN-

32L 4x4 packages, the thermal resistance, θ

JA

, is 27.8°C/

W on a standard JEDEC 51-7 four-layer thermal test board.

The maximum power dissipation at T

A

= 25°C can be

calculated by the following formula :

P

D(MAX)

= (125°C − 25°C) / (27.8°C/W) = 3.59W for

WQFN-32L 4x4 package

The maximum power dissipation depends on the operating

ambient temperature for fixed T

J(MAX)

and thermal

resistance,θ

JA

. For the RT9986A package, the derating

curve in Figure 1 allows the designer to see the effect of

rising ambient temperature on the maximum power

dissipation.

DS9986A-00 May 2011

RT9986A

4.0

M

a

x

i

m

u

m

P

o

w

e

r

D

i

s

s

i

p

a

t

i

o

n

(

W

)

3.6

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

0255075

Four-Layers PCB

Layout Consideration

For the best performance of the RT9986A, the following

PCB layout guidelines must be strictly followed.

}

Place the input and output capacitors as close as

possible to the input and output pins respectively for

good filtering.

Keep the main power traces as wide and short as

possible.

The switching node area connected to LX and inductor

should be minimized for lower EMI.

Place the feedback components as close as possible

to the FB pin and keep these components away from

the noisy devices.

Connect the GND and Exposed Pad to a strong ground

plane for maximum thermal dissipation and noise

protection.

V

OUT_CH2

C5

GND

R3

R4

}

}

100125

}

Ambient Temperature (°C)

Figure 1. Derating Curves for RT9986A Packages

}

Place the feedback components as close as possible to

the FB pin and keep away from noisy devices.

C3

V

OUT_CH1

GND

C21

R2

V

BAT

C4

GND

C16

FB1

D1C18

C15

V

OUT_CH6

D4D3D2

R11

R12

VREF

FB6

VOUT6

FB7

PVDD7

L7

R13

GND

L4

C10

R8

GND

C20C19

LX7

EN7

1

2

3

4

V

BAT

C6

C2

GND

GND

LX6

R1

L1

E

N

5

6

P

V

D

D

1

B

A

T

323

E

N

1

2

3

4

L6

P

V

D

D

2

L

X

1

L

X

6

L2

L

X

2

C22

Connect the

Exposed Pad to

a ground plane.

25

24

23

22

21

20

19

18

17

FB2

SYSR

RTCPWR

VDDM

LX5

PVDD5

FB5

RST

R10

L5

V

BAT

GND

C1

C14

V

OUT_CH5

C12

R9

C13

GND

5

6

33

7

8

916

P

V

D

D

4

F

B

4

V

C

H

K

L

X

4

V

N

E

G

F

B

3

P

V

D

D

3

L

X

3

V

OUT_CH4

R7

L3

V

OUT_CH3

C8

GND

R6

R5

C9

V

BAT

C7

Input/Output capacitors must be placed as

close as possible to the Input/Output pins.

LX should be connected to Inductor by wide and short

trace, keep sensitive components away from this trace

Figure 2. PCB Layout Guide

DS9986A-00 May

21

RT9986A

Table 2. Protection Items

Threshold (typical)

Protection

Refer to Electrical Protection methods

type

spec

UVLO BAT < 1.3V IC Shutdown.

Automatic reset at VDDM <

5.75V

IC Shutdown.

IC

Shutdown

Delay time

No-delay

Reset method

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power

reset or all enable

pins set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

BAT

OVP

VDDM

UVLO

Current

Limit

PVDD1

OVP

CH1

PVDD1

Step-Up

UVP

VDDM > 6V 100ms

VDDM < 2.4V

N-MOSFET

Current > 3A

PVDD1 > 6V

No-delay

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock 100ms

cycle.

N-MOSFET off, P-MOSFET off. No-delay

PVDD1 < (BAT − 0.8V)

or PVDD1 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms

soft-start end.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

FB1 < 0.4V after

FB1 UVP

soft-start end.

FB1 Over

FB1 < 0.7V

Load (OL)

Current

Limit

PVDD2

OVP

CH2

Step-Up

PVDD2

UVP

FB2 UVP

100ms

N-MOSFET off, P-MOSFET off.

N-MOSFET Current >

Automatic reset at next clock 100ms

3A

cycle.

PVDD2 > 6V N-MOSFET off, P-MOSFET off. No-delay

PVDD2 < (BAT − 0.8V)

or PVDD2 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms

soft-start end.

FB2 < 0.4V after

soft-start end.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

FB2 Over

FB2 < 0.7V

Load

Current

Limit

P-MOSFET

Current > 1.6A

100ms

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock 100ms

cycle.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

CH2 FB2 < 0.4V after

FB2 UVP

Step-Down soft-start end.

FB2 Over

FB2 < 0.7V

Load

100ms

22

To be continued

DS9986A-00 May 2011

RT9986A

Threshold (typical)

Protection

Refer to Electrical

type

spec

Current

Limit

CH3

FB3 UVP

Step-Down

FB3 Over

Load

Current

Limit

CH4

FB4 UVP

Step-Down

FB4 Over

Load

Current

Limit

PVDD5

OVP

FB5 UVP

FB5 Over

Load

Current

Limit

VOUT6

OVP

FB6 UVP

FB6 Over

Load

Current

Limit

PVDD7

OVP

P-MOSFET

Current > 1.6A

FB3 < 0.4V after

soft-start end.

FB3 < 0.7V

P-MOSFET

Current > 1.6A

FB4 < 0.4V after

soft-start end.

FB4 < 0.7V

N-MOSFET

Current > 1.2A

PVDD5 > 21V

FB5 < 0.6V after

soft-start end.

FB5 < 1.1V

P-MOSFET

Current > 1.5A

VOUT6 < −13V

Protection methods

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC

Shutdown

Delay time

Reset method

CH5

Step-Up

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

P-MOSFET off. Automatic reset

at next clock cycle.

P-MOSFET off.

CH6

Inverter

FB6 >1.2V P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

Shutdown CH7

FB6 > 0.74V

N-MOSFET

Current > 0.8A

PVDD7 > 15V

CH7

WLED

Thermal

Thermal Temperature >

Shutdown 160°C

All channels stop switching

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

Not

reset or all enable

applicable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

23

DS9986A-00 May 2011

RT9986A

Outline Dimension

1

2

1

2

DETAIL A

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional,

but must be located within the zone indicated.

Symbol

A

A1

A3

b

D

D2

E

E2

e

L

Dimensions In Millimeters

Min

0.700

0.000

0.175

0.150

3.900

2.650

3.900

2.650

0.400

0.300 0.400

Max

0.800

0.050

0.250

0.250

4.100

2.750

4.100

2.750

Dimensions In Inches

Min

0.028

0.000

0.007

0.006

0.154

0.104

0.154

0.104

0.016

0.012 0.016

Max

0.031

0.002

0.010

0.010

0.161

0.108

0.161

0.108

W-Type 32L QFN 4x4 Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email: marketing@

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit

design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be

guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

24

DS9986A-00 May 2011

2024年10月6日发(作者:堵书兰)

RT9986A

7-CH DC/DC Converter for DSC

General Description

The RT9986A is a complete power supply solution for

digital still cameras and other handheld devices. It includes

one synchronous step-up DC/DC converter with load

disconnect, one selectable synchronous step-up/step-

down DC/DC converter, two synchronous step-down DC/

DC converters, one synchronous high voltage step-up DC/

DC converter, one inverting DC/DC converter, and one

selectable synchronous high voltage step-up/current-

source for WLED. In addition, the RT9986A also includes

one RTC_LDO, one voltage detector, and one System

Reset. All power MOSFETs are integrated in the RT9986A.

The RT9986A is designed to fulfill the applications for DSC

as follows :

CH1 is a synchronous step-up output for motor or DSC

system I/O power

CH2 is a selectable synchronous step-up/step-down

output for motor or DSC system I/O power

CH3 and CH4 are synchronous step-down outputs for DSP

core and memory power supply

CH5 is a synchronous high voltage step-up output for CCD

bias power supply

CH6 is an inverting output for negative CCD bias power

supply

CH7 is a selectable synchronous high voltage step-up/

current source for driving WLED

The selectable step-up/step-down converter can be auto

selected by external component topology. For the

RT9986A, all 7-CHs have built in internal compensation.

The RT9986A also provides a transformerless inverting

converter for supplying CCD power. For the low voltage

synchronous step-up and step down converters, efficiency

can be up to 95%.

The RT9986A provides comprehensive protection features

including over current protection, thermal shutdown

protection, over voltage protection, overload protection,

and under voltage protection.

z

Features

z

CH2 Step-Up/Step-Down Auto-Selected by External

Topology

Preset On/Off Sequence of CH1, CH2, CH3, CH4

(1

3

4

2)

Preset On/Off Sequence of CH5, CH6 (5

6)

All Channels with Internal Compensation

All Power Switches Integrated

All Step-Up Converter with Load Disconnect

Step-Down DC/DC Converter

`

Up to 95% Efficiency

`

100% (max) Duty Cycle

Low Voltage Step-Up DC/DC Converter

`

Adjustable Output Voltage

`

Up to 95% Efficiency

WLED Driver

`

Auto-Selected by External Topology

`

Current Source Mode with 30mA DC Current

`

Step-Up Mode with LED Open Protection (OVP7)

`

Direct PWM Dimming Control

Fixed 2MHz Switching Frequency for CH1/2/3/4,

Fixed 1MHz Switching Frequency for CH5/6/7

Small 32-Lead WQFN Package

RoHS Compliant and Halogen Free

z

z

z

z

z

z

z

z

z

z

Applications

z

z

z

Digital Still Camera

PDA

Portable Devices

Marking Information

EZ= : Product Code

EZ=YM

DNN

YMDNN : Date Code

DS9986A-00 May

1

RT9986A

Ordering Information

RT9986A

Package Type

QW : WQFN-32L 4x4 (W-Type)

Lead Plating System

G : Green (Halogen Free and Pb

Free)

Note :

Richtek products are :

`

RoHS compliant and compatible with the current require-

Pin Configurations

(TOP VIEW)

E

N

5

6

L

X

1

P

V

D

D

1

B

A

T

L

X

6

P

V

D

D

2

L

X

2

E

N

1

2

3

4

32313

FB1

VREF

FB6

VOUT6

FB7

PVDD7

LX7

EN7

1

2

3

4

5

6

7

8

916

24

23

22

GND

33

21

20

19

18

17

FB2

SYSR

RTCPWR

VDDM

LX5

PVDD5

FB5

RST

`

Suitable for use in SnPb or Pb-free soldering processes.

2

L

X

4

P

V

D

D

4

F

B

4

V

C

H

K

V

N

E

G

F

B

3

P

V

D

D

3

L

X

3

ments of IPC/JEDEC J-STD-020.

WQFN-32L 4x4

DS9986A-00 May 2011

RT9986A

Typical Application Circuit

For 2AA

21

C1

1µF

V

BAT

29

C2

4.7µF

L5

10µH

V

BAT

C14

4.7µF

VDDM

PVDD1

FB1

RT9986A

30

1

C21

4.7pF

R1

470k

R2

88.7k

C4

10µF x 2

5V

BAT

20

LX5

LX1

31

L1

2.2µH

C3

4.7µF

V

BAT

15V

C13

10µF x 2

R9

287k

R10

26.1k

C12

27pF

19

PVDD5

PVDD2

27

24

C22

4.7pF

R3

470k

R4

150k

C6

10µF x 2

3.3V

18

FB5

FB2

4

VOUT6

D1

-7V

C18

10µF x 2

C15

1nF

R11

66.5k

R12

10.5k

C16

0.1µF

L6

10µH

28

LX6

LX2

26

L2

2.2µH

C5

4.7µF

C7

4.7µF

V

BAT

PVDD3

15

LX3

16

14

L3

2.2µH

5V

3

2

13

C17

0.1µF

FB6

2.5V

R5

768k

R6

360k

C8

10µF

VREF

VNEG

FB3

7

LX7

6

PVDD7

5

FB7

PVDD4

10

L4

2.2µH

C9

10µF

5V or V

BAT

D5

5V

LX4

9

FB4

11

1.8V

R7

470k

R8

374k

C10

10µF

8

EN7

ON

OFF

RTCPWR

R14

10k

3.3V

R15

100k

25

EN1234

32

EN56

12

VCHK

17

23

RST

RTCPWR

22

C11

Super Cap

33 (Exposed Pad)

GND

SYSR

DS9986A-00 May

3

RT9986A

For Li-ion

21

C1

1µF

V

BAT

29

C2

4.7µF

L5

10µH

V

BAT

C14

4.7µF

VDDM

PVDD1

FB1

RT9986A

LX1

31

L1

2.2µH

C4

4.7µF

V

BAT

30

1

C21

4.7pF

R1

470k

R2

88.7k

5V

C3

10µF x 2

BAT

20

LX5

15V

C13

10µF x 2

R9

287k

R10

26.1k

C12

27pF

19

PVDD5

LX2

26

24

L2

2.2µH

C22

10pF

R3

470k

R4

150k

C5

10µF

3.3V

18

FB5

FB2

4

VOUT6

D1

-7V

C18

10µF x 2

C15

1nF

R11

66.5k

R12

10.5k

C16

0.1µF

L6

10µH

28

LX6

PVDD2

27

C6

4.7µF

C7

4.7µF

V

BAT

PVDD3

15

LX3

16

14

L3

2.2µH

V

BAT

3

2

13

C17

0.1µF

L7

10µH

V

BAT

C19

1µF

D2

D3

D4

R13

10

C20

1µF

5

FB6

1.8V

R5

470k

R6

374k

C8

10µF

VREF

VNEG

FB3

PVDD4

10

7

LX7

LX4

9

6

PVDD7

FB4

11

FB7

RTCPWR

8

EN7

22

C11

Super Cap

33 (Exposed Pad)

L4

2.2µH

C9

4.7µF

5V or V

BAT

1V

R7

23.2k

R8

93.1k

C10

10µF

ON

OFF

RTCPWR

R14

10k

3.3V

R15

100k

25

EN1234

32

EN56

12

17

23

VCHK

RST

SYSR

GND

4

DS9986A-00 May 2011

RT9986A

Timing Diagram

Timing Diagram for CH1 to CH4

VDDM = Max

(BAT, PVDD1)

EN1234

CH1 VOUT

CH3 VOUT

CH4 VOUT

CH2 VOUT

User define

3.5ms

3.5ms

3.5ms

3.5ms

Wait until FB3 < 0.1V

Wait until FB4 < 0.1V

Wait until FB2 < 0.1V

CH5 and CH6 Power Sequence

The power on sequence is :

When EN56 goes high, CH5 will turn on first. After 10ms, CH6 will turn on.

The power off sequence is :

When EN56 goes low, CH6 will turn off first and VOUT6 will be internally pulled to GND.

When VOUT6 > −0.12V, CH6 discharging completes and then CH5 turns off. Finally, the whole IC shuts down.

Power On Sequence : CH5 HV Step-Up 15V

CH6 INV −7V

Power Off Sequence : CH6 INV −7V

CH5 HV Step-Up 15V

EN56

10ms

Constant Current

Pre-Charge.

10ms

Discharge by internal N-MOSFET

CH5

VOUT

CH6

VOUT

Wait until VOUT6 close to 0V

DS9986A-00 May

5

RT9986A

Functional Pin Description

Pin No.

1

2

3

4

Pin Name

FB1

VREF

FB6

VOUT6

Feedback Input Pin of CH1.

1.8V Reference Output Pin.

Feedback Input Pin of CH6.

Pin Function

Sense Input Pin of CH6 Inverting Output Node.

Feedback input pin of CH7 in step-up mode or current sink pin of CH7 in current

5 FB7

source mode.

6 PVDD7 Power Output Pin of CH7.

Switch Node of CH7 in Step-Up Mode. LX7 initial voltage determines CH7

7 LX7

operation mode.

8 EN7 Enable Pin of CH7 and PWM Dimming Signal Input Pin.

9

10

11

12

13

14

15

16

17

18

19

20

21

LX4

PVDD4

FB4

VCHK

VNEG

FB3

PVDD3

LX3

RST

FB5

PVDD5

LX5

VDDM

Switch Node of CH4.

Power Input Pin of CH4.

Feedback Input Pin of CH4.

Sense Pin of Voltage Detector.

Output Pin of Negative Regulator.

Feedback Input Pin of CH3.

Power Input Pin of CH3.

Switch Node of CH3.

Voltage Detector Open Drain Output Pin.

Feedback Input Pin of CH5.

Power Output Pin of CH5.

Switch Node of CH5.

IC Analog Power Pin.

Internal Control Circuit Power Pin. That must connect to a bypass capacitor for

22 RTCPWR

better noise rejection.

23 SYSR System Reset Open-Drain Output Pin.

24

25

26

FB2

EN1234

LX2

Feedback Input Pin of CH2.

Enable Pin of CH1, CH2, CH3, CH4.

Switch Node of CH2.

Power Input Pin for Step-Down of CH2.

27 PVDD2

Power Output Pin for Step-Up of CH2.

28 LX6 Switch Node of CH6.

29 BAT Battery Power Pin.

30

31

32

PVDD1

LX1

EN56

Power Output Pin of CH1.

Switch Node of CH1.

Enable Pin of CH5, CH6.

Ground. The exposed pad must be soldered to a large PCB and connected to

GND for maximum thermal dissipation.

33 (Exposed pad) GND

6

DS9986A-00 May 2011

RT9986A

Function Block Diagram

VDDM

PVDD5

Body

Diode

Control

BAT

VDDM

BAT

LX5

UVLOUVLO

CH5

C-Mode

Step-Up

PWM

Soft-Start

VDDI

VDDM

PVDD1

Body

Diode

Control

FB5

1.25V

REF

-

+

BAT

VDDM

CH1

C-Mode

Step-Up

BAT

LX1

CH6

Inverting

LX6

VNEG

-

+

0.8V

REF

VDDM

FB1

VOUT6

FB6

1.8V

REF

VDDM

CH7 C-Mode

Step-Up or

Current Source

+

PWM Dimming

+

Mode Selector

-

+

PVDD2

Body

Diode

Control

BAT

LX2

+

0.6V

REF

-

CH2

C-Mode

Step-Up or

Step-Down

VREF

PVDD7

BAT

LX7

Body

Diode

Control

-

+

0.8V

REF

VDDM

FB2

PVDD3

FB7

0.25V

REF

30mA(max.)

CH3

C-Mode

Step-Down

LX3

EN7

EN1234

EN56

Power On/Off

Sequence Control

Logic Block

VDDM

RTCPWR

VCHK

RST

Voltage

Detector

CH4

C-Mode

Step-Down

-

+

0.8V

REF

PVDD4

FB3

LX4

VDDM

SYSR

SYS_Reset

GND

FB2

VDDI

-

+

0.8V

REF

FB4

RTC_LDO

W/ Body Diode

Control

RTCPWR

DS9986A-00 May

7

RT9986A

Absolute Maximum Ratings

(Note 1)

z

z

z

z

z

z

z

z

z

z

z

z

z

Supply Input Voltage, VDDM, BAT---------------------------------------------------------------------−0.3V to 6V

VOUT6--------------------------------------------------------------------------------------------------------−10V to 0.3V

LX1, LX2, LX3, LX4-----------------------------------------------------------------------------------------−0.3V to 6V

PVDD5, LX5-------------------------------------------------------------------------------------------------−0.3V to 24V

PVDD7, LX7-------------------------------------------------------------------------------------------------−0.3V to 17V

LX6-------------------------------------------------------------------------------------------------------------(BAT − 14V) to (BAT + 0.3V)

Other Pins----------------------------------------------------------------------------------------------------−0.3V to 6V

Power Dissipation, P

D

@ T

A

= 25°C

WQFN 32L 4x4----------------------------------------------------------------------------------------------3.590W

Package Thermal Resistance (Note 2)

WQFN 32L 4x4, θ

JA

----------------------------------------------------------------------------------------27.8°C/W

WQFN 32L 4x4, θ

JC

----------------------------------------------------------------------------------------7°C/W

Junction Temperature--------------------------------------------------------------------------------------150°C

Lead Temperature (Soldering, 10 sec.)----------------------------------------------------------------260°C

Storage Temperature Range-----------------------------------------------------------------------------−65°C to 150°C

ESD Susceptibility (Note 3)

HBM (Human Body Mode)-------------------------------------------------------------------------------2kV

MM (Machine Mode)---------------------------------------------------------------------------------------200V

Recommended Operating Conditions

(Note 4)

z

z

z

VDDM---------------------------------------------------------------------------------------------------------2.7V to 5.8V

Junction Temperature Range-----------------------------------------------------------------------------

40°C to 125°C

Ambient Temperature Range-----------------------------------------------------------------------------

40°C to 85°C

Electrical Characteristics

Supply Input Voltage

BAT Startup Voltage

BAT UVLO Threshold

BAT UVLO Hysteresis

VDDM OVP Threshold

VDDM OVP Hysteresis

VDDM UVLO Threshold

VDDM UVLO Hysteresis

Supply

Current

(V

DDM

= V

BAT

= 3.3V, T

A

= 25°C, unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

V

ST

BAT Falling

VDDM Rising

VDDM Rising

1.5 -- -- V

-- 1.3 -- V

-- 0.2 -- V

5.85

--

2.2

--

6 6.15 V

−0.25 -- V

2.4

0.3

2.6

--

V

V

Shutdown Supply Current

(I

BAT

+ I

VDDM

)

CH1 Synchronous Step-Up Supply

Current into VDDM

CH2 Synchronous Step-Up or

Step-Down Supply Current into VDDM

I

OFF

All EN pins = 0, V

BAT

= 3.3V --

--

--

--

10

--

--

--

20

800

800

800

μA

μA

μA

μA

I

Q1

Non switching, V

EN1234

= 3.3V

I

Q2

Non switching, V

EN1234

= 3.3V

V

EN1234

= 3.3V

CH3 Synchronous Step-Down Supply

I

Q3

Current into VDDM

8

To be continued

DS9986A-00 May 2011

RT9986A

Parameter Symbol Test Conditions Min Typ Max Unit

CH4 Synchronous Step-Down

Non switching, V

EN1234

= 3.3V -- -- 800 μA

I

Q4

Supply Current into VDDM

CH5 Synchronous Step-Up Supply

Non switching, V

EN56

= 3.3V -- -- 800 μA

I

Q5

Current into VDDM

CH6 (Inverting)

I

Q6

Non switching, V

EN56

= 3.3V -- -- 800 μA

Supply Current into VDDM

CH7 (WLED) in Step-Up Mode

Non switching, V

EN7

= 3.3V -- -- 800 μA

I

Q7b

Supply Current into VDDM

CH7 (WLED) in Current Source

V

EN7

= 3.3V, V

LX7

= 0V -- -- 800 μA

I

Q7c

Mode Supply Current into VDDM

Oscillator

CH1, 2, 3, 4 Operation Frequency

CH5, 6, 7 Operation Frequency

CH2 Maximum Duty Cycle (Step-Up)

CH2 Maximum Duty Cycle

(Step-Down)

CH3 Maximum Duty Cycle

(Step-Down)

CH4 Maximum Duty Cycle

(Step-Down)

CH5 Maximum Duty Cycle (Step-Up)

f

OSC

f

OSC2

CH7 in Step-Up mode

V

FB1

= 0.75V

V

FB2

= 0.75V

V

FB2

= 0.75V

V

FB3

= 0.75V

V

FB4

= 0.75V

V

FB5

= 1.15V

V

FB6

= 0.7V

V

FB7

= 0.15V

1800 2000 2200 kHz

900

80

80

--

--

--

91

91

91

1000

83

83

--

--

--

93

93

93

1100

86

86

100

100

100

97

97

97

kHz

%

%

%

%

%

%

%

%

CH1 Maximum Duty Cycle (Step-Up)

CH6 Maximum Duty Cycle (Inverting)

CH7 Maximum Duty Cycle (Step-Up)

Feedback, Regulation Voltage

Feedback Regulation Voltage @

FB1, FB2, FB3, FB4

Feedback Regulation Voltage @ FB5

Feedback Regulation Voltage @ FB6

(Inverting)

Feedback Regulation Voltage @ FB7

Output Current (CS Mode)

Dropout Voltage @ FB7 (CS Mode)

VREF Output Voltage

VREF Load Regulation

PowerSwitch

V

FB5

V

FB6

V

FB7

V

LX7

= 0V

0.788 0.8 0.812 V

1.237 1.25 1.263 V

0.59 0.6 0.61 V

0.237 0.25 0.263 V

28.5

--

30

--

31.5

0.3

mA

V

V

REF

1.782 1.8 1.818 V

0μA < I

REF

< 200μA -- -- 10 mV

-- 200 300 P-MOSFET V

PVDD1

= 3.3V

R

DS(ON)1

N-MOSFET V

PVDD1

= 3.3V

CH1 Current Limitation (Step-Up) I

LIM1

P-MOSFET V

PVDD2

= 3.3V

CH2 On Resistance R

DS(ON)2

N-MOSFET V

PVDD2

= 3.3V

CH1 On-Resistance

CH2 Current Limitation (Step-Down) I

LIM2_D

CH2 Current Limitation (Step-Up)

DS9986A-00 May 2011

-- 150 250

2.2 3 4 A

-- 200 300

-- 150 250

1.2 1.6 2 A

2.2 3 4 A

To be continued

9

I

LIM2_U

RT9986A

CH3 On Resistance

P-MOSFET V

PVDD3

= 3.3V

R

DS(ON)3

N-MOSFET V

PVDD3

= 3.3V

P-MOSFET V

PVDD4

= 3.3V

R

DS(ON)4

N-MOSFET V

PVDD4

= 3.3V

--

--

--

--

300

300

300

300

400

400

400

400

Parameter Symbol Test Conditions Min Typ Max Unit

CH3 Current Limitation (Step-Down) I

LIM3

CH4 On Resistance

1.2 1.6 2 A

CH4 Current Limitation (Step-Down) I

LIM4

P-MOSFET V

PVDD5

= 16V

R

DS(ON)5

N-MOSFET V

PVDD5

= 3.3V

CH5 Current Limitation of

I

LIM5

N-MOSFET

CH6 On Resistance of P-MOSFET R

DS(ON)6

CH6 Current Limitation of

I

LIM6

P-MOSFET

P-MOSFET V

PVDD7

= 10V

CH7 On Resistance R

DS(ON)7

N-MOSFET V

PVDD7

= 3.3V

CH7 Current Limitation of

I

LIM7

N-MOSFET

Protection

Over Voltage Protection of PVDD1

and PVDD2

Over Voltage Protection of PVDD5

CH5 On Resistance

1.2 1.6 2 A

-- 0.8 1

-- 0.6 0.8

Ω

0.9 1.2 1.6 A

-- 0.5 0.7 Ω

1 1.5 2 A

-- 3 --

Ω

-- 0.9 1.1

0.6 0.8 1 A

5.85 6 6.15 V

20

--

21 22 V

Over Voltage Protection of VOUT6

Over Voltage Protection of PVDD7

(Step-Up Mode)

CH1, CH2 Step-Up Under Voltage

Protection of PVDD1 and PVDD2

CH1/2/3/4 Under Voltage Protection

CH5 Under Voltage Protection

CH6 Under Voltage Protection

CH1/2/3/4 Over Load Protection

CH5 Over Load Protection

CH6 Over Load Protection

Protection Fault Delay

Control

−13 -- V

At V

FBx

< 0.4V after soft-start

ends

At V

FB5

< 0.6V after soft-start

ends

At V

FB6

> 1.2V after soft-start

end

At V

FBx

< 0.7V after fault delay

(100ms)

At V

FB5

< 1.1V after fault delay

(100ms)

At V

FB6

> 0.74V after fault

delay (100ms)

High to Select Step-Up Mode

Low to Select CS Mode

14.3 15 16 V

V

BAT

-- V --

−0.8V

0.35 0.4 0.45 V

0.5 0.6 0.7 V

1.1 1.2 1.3 V

0.65 0.7 0.75 V

1.05 1.1 1.15 V

0.69 0.74 0.79 V

--

1.3

--

1

--

--

100

--

--

--

0.25

2

--

--

0.4

--

--

6

ms

Logic-High

EN1234, EN56, EN7

Input Threshold Voltage

Logic-Low

LX7 Input Threshold

Voltage

Logic-High

Logic-Low

V

V

μA EN1234, EN56, EN7 Sink Current

EN7 Low Time for Shutdown

10

t

SHDN

-- 32 -- ms

To be continued

DS9986A-00 May 2011

RT9986A

Thermal Protection

Thermal Shutdown

Thermal Shutdown Hysteresis

System Reset

SYSR, FB2 Regulation Threshold

SYSR, FB2 Hysteresis

SYSR Rising Delay Time

SYSR Sink Capability

Voltage Detector

Voltage Detector Reset Threshold

(VCHK

<

Threshold Æ RST = L)

Voltage Detector Reset Hysteresis

Standby Current

RST Rising Delay Time

RST Sink Capability

RTC LDO

for SYSR to go low

V

SYSR

= 0.5V

0.709 0.72 0.731

--

--

4

40

10

--

--

--

--

V

mV

ms

mA

T

SD

ΔT

SD

125 160 -- °C

-- 20 -- °C

Parameter Symbol Test Conditions Min Typ Max Unit

VCHK Falling

V

VCHK

= 3V

V

RST

= 0.5V, V

VCHK

= 1.5V

V

DDM

= 4.2V

I

OUT

= 0mA

V

DDM

= 4.2V

I

OUT

= 50mA

I

OUT

= 10mA

I

OUT

= 3mA

1.57 1.6 1.63 V

--

--

4

--

3.1

60

--

--

--

16

2

--

5

3.2

130

--

--

--

--

4

--

8

3.3

200

1000

150

60

mV

mV

μA

mA

μA

V

mA

35 55 75 ms

Standby Current

Regulated Output Voltage @

RTCPWR

Max Output Current (Current Limit)

Dropout Voltage

Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for

stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational

sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may

remain possibility to affect device reliability.

Note 2. θ

JA

is measured in natural convection at T

A

= 25°C on a high-effective thermal conductivity four-layer test board of JEDEC

51-7 thermal measurement standard. The measurement case position of θ

JC

is on the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

DS9986A-00 May

11

RT9986A

Typical Operating Characteristics

CH1 Step-Up Efficiency vs. Output Current

100

90

80

CH1 Step-Up Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

60

50

40

30

20

10

0

10

E

f

f

i

c

i

e

n

c

y

(

%

)

70

V

BAT

= 4.5V

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

80

70

60

50

40

30

20

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

BAT

= 1.8V

V

OUT

= 5V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

10

0

10

V

OUT

= 3.3V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

Output Current (mA)Output Current (mA)

CH2 Step-Up Efficiency vs. Output Current

100

90

80

CH2 Step-Down Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

60

50

40

30

20

10

0

10

E

f

f

i

c

i

e

n

c

y

(

%

)

70

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 1.8V

80

70

60

50

40

30

20

V

BAT

= 3.4V

V

BAT

= 3.7V

V

BAT

= 3.9V

V

BAT

= 4.2V

V

BAT

= 4.5V

V

BAT

= 5V

V

OUT

= 5V, L = 2.2μH, C

OUT

= 10μF x 2

1001000

10

0

10

V

OUT

= 3.3V, L = 2.2μH, C

OUT

= 10μF

1001000

Output Current (mA)Output Current (mA)

CH 3 Step-Down Efficiency vs. Output Current

100

90

80

CH4 Step-Down Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

10

V

BAT

= 2.7V

V

BAT

= 3V

V

BAT

= 3.3V

V

BAT

= 3.6V

V

BAT

= 3.9V

V

BAT

= 4.2V

V

BAT

= 4.5V

80

70

60

50

40

30

20

V

BAT

= 1.8V

V

BAT

= 2.5V

V

BAT

= 3V

V

BAT

= 3.3V

V

BAT

= 3.6V

V

BAT

= 4.2V

V

BAT

= 4.5V

V

OUT

= 1.8V, L = 2.2μH, C

OUT

= 10μF

1001000

10

0

10

V

OUT

= 1V, L = 2.2μH, C

OUT

= 10μF

1001000

Output Current (mA)Output Current (mA)

12

DS9986A-00 May 2011

RT9986A

CH5 Step-Up Efficiency vs. Output Current

100

90

CH6 Inverting Efficiency vs. Output Current

100

90

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

0.001

V

BAT

= 4.5V

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

OUT

= 16V, L = 10μH, C

OUT

= 10μF x 2

0.010.1

I

n

v

e

r

t

i

n

g

E

f

f

i

c

i

e

n

c

y

(

%

)

8080

70

60

50

40

30

20

10

0

1

V

BAT

= 4.2V

V

BAT

= 3.9V

V

BAT

= 3.6V

V

BAT

= 3.3V

V

BAT

= 3V

V

BAT

= 2.7V

V

BAT

= 4.5V

V

BAT

= 2.5V

V

BAT

= 2.2V

V

BAT

= 2V

V

OUT

= −8V, L = 10μH, C

OUT

= 10μF x 2

10100

Output Current (A)Output Current (mA)

CH7 Efficiency vs. Input Voltage

100

90

80

CH1 Step-Up Output Voltage vs. Output Current

5.20

5.15

E

f

f

i

c

i

e

n

c

y

(

%

)

70

60

50

40

30

20

10

0

1.82.12.42.733.33.63.94.24.5

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

5.10

5.05

5.00

4.95

4.90

4.85

V

BAT

= 3V

V

BAT

= 4.5V

I

OUT

= 25mA, L = 10μH, C

OUT

= 1μF

4.80

0

V

OUT

= 5V

500600

Input Voltage (V)Output Current (mA)

CH1 Step-Up Output Voltage vs. Output Current

3.35

CH2 Step-Up Output Voltage vs. Output Current

5.10

3.33

V

BAT

= 1.8V

5.08

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

V

BAT

= 3V

5.06

3.31

V

BAT

= 3.2V

V

BAT

= 4.2V

5.04

3.29

3.27

5.02

V

OUT

= 3.3V

3.25

0500600

5.00

0

V

OUT

= 5V

500600

Output Current (mA)Output Current (mA)

DS9986A-00 May

13

RT9986A

CH2 Step-Down Output Voltage vs. Output Current

3.36

CH3 Step-Down Output Voltage vs. Output Current

1.830

1.825

3.34

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

3.32

V

BAT

= 4.5V

V

BAT

= 5V

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.820

1.815

1.810

1.805

3.30

V

BAT

= 3V

V

BAT

= 4.5V

3.28

V

OUT

= 3.3V

3.26

0500600

1.800

0

V

OUT

= 1.8V

500600

Output Current (mA)Output Current (mA)

CH4 Step-Down Output Voltage vs. Output Current

1.006

1.004

CH5 Step-Up Output Voltage vs. Output Current

16.3

16.2

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.002

1.000

0.998

0.996

0.994

0.992

V

BAT

= 4.5V

V

BAT

= 2.7V

V

BA

T

= 3V

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

16.1

V

BAT

= 3.4V

V

BAT

= 4.5V

16.0

15.9

V

OUT

= 1V

15.8

400500600

0204060

V

OUT

= 16V

80100

Output Current (mA)

Output Current (mA)

CH6 Inverting Efficiency vs. Output Current

-8.190

Power On Sequence

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

-8.195

V

BAT

= 2.7V

V

BAT

= 3.4V

V

BAT

= 4.5V

V

OUT_CH1

(5V/Div)

V

OUT_CH2

(2V/Div)

V

OUT_CH3

(2V/Div)

V

OUT_CH4

(2V/Div)

Time (2.5ms/Div)

-8.200

-8.205

V

OUT

= −8V

-8.210

V

BAT

=

3.7V

Output Current (mA)

14

DS9986A-00 May 2011

RT9986A

Power Off Sequence

V

OUT_CH1

(5V/Div)

V

OUT_CH2

(2V/Div)

V

OUT_CH3

(2V/Div)

V

OUT_CH4

(2V/Div)

Time (1ms/Div)

Power On Sequence

V

OUT_CH5

(10V/Div)

V

OUT_CH6

(5V/Div)

V

BAT

=

3.7VV

BAT

=

3.7V

Time (5ms/Div)

Power Off SequenceCH1 Output Voltage Ripple

V

OUT_CH5

(10V/Div)

V

OUT_CH6

(5V/Div)

LX1

(2V/Div)

V

OUT_CH1_ac

(10mV/Div)

V

BAT

=

3.7V

V

BAT

= 3.7V, V

OUT

= 5V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF x 2

Time (2.5ms/Div)Time (500ns/Div)

CH2 Output Voltage RippleCH3 Output Voltage Ripple

LX2

(2V/Div)

LX3

(2V/Div)

V

OUT_CH2_ac

(2mV/Div)

V

BAT

= 3.7V, V

OUT

= 3.3V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

V

OUT_CH3_ac

(5mV/Div)

V

BAT

= 3.7V, V

OUT

= 1.8V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

Time (500ns/Div)Time (500ns/Div)

DS9986A-00 May

15

RT9986A

CH4 Output Voltage Ripple

CH5 Output Voltage Ripple

LX4

(2V/Div)

LX5

(10V/Div)

V

OUT_CH4_ac

(5mV/Div)

V

BAT

= 3.7V, V

OUT

= 1V,

I

OUT

= 400mA, L = 2.2μH, C

OUT

= 10μF

V

OUT_CH5_ac

(10mV/Div)

V

BAT

= 3.7V, V

OUT

= 16V,

I

OUT

= 30mA, L = 10μH, C

OUT

= 10μF

Time (500ns/Div)Time (1μs/Div)

CH6 Output Voltage RippleCH1 Load Transient Response

LX6

(10V/Div)

I

OUT

(100mA/Div)

V

OUT_CH1_ac

(100mV/Div)

V

BAT

= 3.7V, V

OUT

= −8V,

I

OUT

= 50mA, L = 10μH, C

OUT

= 10μF x 2

V

BAT

= 3.7V, V

OUT

= 5V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF x 2

V

OUT_CH6_ac

(10mV/Div)

Time (1μs/Div)Time (1ms/Div)

CH2 Load Transient ResponseCH3 Load Transient Response

I

OUT

(100mA/Div)

V

OUT_CH2_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 3.3V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

I

OUT

(100mA/Div)

V

OUT_CH3_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 1.8V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

Time (1ms/Div)Time (1ms/Div)

16

DS9986A-00 May 2011

RT9986A

CH4 Load Transient Response

CH5 Load Transient Response

I

OUT

(100mA/Div)

V

OUT_CH4_ac

(20mV/Div)

V

BAT

= 3.7V, V

OUT

= 1V,

I

OUT

= 0 to 300mA, L = 2.2μH, C

OUT

= 10μF

I

OUT

(20mA/Div)

V

OUT_CH5_ac

(50mV/Div)

V

BAT

= 3.7V, V

OUT

= 16V,

I

OUT

= 10 to 30mA, C

OUT

= 10μF

Time (1ms/Div)Time (1ms/Div)

CH6 Load Transient Response

I

OUT

(20mA/Div)

V

OUT_CH6_ac

(20mV/Div)

V

BAT

= 3.7V, V

OUT

= −8V,

I

OUT

= 15 to 50mA, C

OUT

= 10μF x 2

Time (1ms/Div)

DS9986A-00 May

17

RT9986A

Application Information

The RT9986A is a multiple output power supply system

for digital still cameras and other small handheld devices.

It includes six DC/DC converters as well as one WLED

driver, one RTC LDO, one voltage detector, and one

system reset. The WLED works in either current source

mode or step-up mode.

CH1 : Step-up synchronous current mode DC/DC converter

with internal power MOSFETs and compensation network.

The P-MOSFET body can be controlled to disconnect the

load.

CH2 : Step-up or step-down synchronous current mode

DC/DC converter with internal power MOSFETs and

compensation network. External circuit topology

automatically determines whether CH2 is in step-up or

step-down mode. During step-up mode, the P-MOSFET

body can be controlled to disconnect the load if input

voltage is not higher than the V

BAT

.

CH3 : Step-down synchronous current mode DC/DC

converter with internal power MOSFETs and

compensation network.

CH4 : Step-down synchronous current mode DC/DC

converter with internal power MOSFETs and

compensation network.

CH5 : Step-up synchronous current mode DC/DC converter

with internal power MOSFET and compensation network.

The P-MOSFET body can be controlled to disconnect the

load.

CH6 : Asynchronous inverting current mode DC/DC

converter with internal power MOSFET and compensation

network.

CH7 : A WLED driver operating in either current source

mode or synchronous step-up mode with internal power

MOSFET and compensation network. Operation mode is

determined by LX7 initial voltage The P-MOSFET body in

step-up mode can be controlled to disconnect the load

disconnected.

CH1 to CH4 operate in PWM mode with 2MHz, while

CH5 to CH7 operate in PWM mode with 1MHz switching

frequency.

RTC_LDO : A 3.1V output LDO with low quiescent current

and high output voltage accuracy.

18

DS9986A-00 May 2011

System Reset : Accurate voltage detector for checking

CH2 output voltage status.

Voltage Detector : A general, low quiescent current voltage

detector for monitoring status of a node voltage such as

for RTC_LDO output or others.

CH1 : Synchronous Step-Up DC/DC Converter

CH1 is a synchronous step-up converter which can be

used for motor power. The converter operates at fixed

frequency and PWM current mode. The converter

integrates internal MOSFETs, compensation network and

synchronous rectifier for up to 95% efficiency.

The output voltage can be set by the following equation :

V

OUT_CH1

= (1 + R1 / R2) x V

FB1

where V

FB1

is 0.8V typically.

CH2 : Synchronous Step-Up / Step-Down

Selectable DC/DC Converter

CH2 is a synchronous step-up / step-down auto-select

converter, typically for system I/O power. In either step-

up or step-down, the converter operates in fixed frequency

PWM mode, Continuous Current Mode (CCM), and

Discontinuous Current Mode (DCM) with internal

MOSFETs, compensation network and synchronous

rectifiers for up to 95% efficiency.

Step-Up :

In step-up mode, CH2 also disconnects the load from its

input power node and discharges output node of CH2 when

it is turned off.

Step-Down :

In step-down mode, the CH2 converter can be operated

at 100% maximum duty cycle to extend the input

operating voltage range. When the input voltage is close

to the output voltage, the converter enters low dropout

mode.

The output voltage can be set by the following equation :

V

OUT_CH2

= (1 + R3 / R4) x V

FB2

where V

FB2

is 0.8V typically.

RT9986A

CH3 : Synchronous Step-Down DC/DC Converter

CH3 operates in fixed frequency PWM mode with

integrated internal MOSFETs and compensation network.

The CH3 step-down converter can be operated at 100%

maximum duty cycle to extend battery operating voltage

range. When the input voltage is close to the output

voltage, the converter enters low dropout mode with low

output ripple.

The output voltage can be set by the following equation :

V

OUT_CH3

= (1 + R5 / R6) x V

FB3

where V

FB3

is 0.8V typically.

CH4 : Synchronous Step-Down DC/DC Converter

CH4 operates at fixed frequency PWM mode with

integrated internal MOSFETs and compensation network.

The CH4 step-down converter can be operated at 100%

maximum duty cycle to extend battery operating voltage

range. When the input voltage is close to the output

voltage, the converter enters low dropout mode with low

output ripple.

The output voltage can be set by the following equation:

V

OUT_CH4

= (1 + R7 / R8) x V

FB4

where V

FB4

is 0.8V typically.

CH5 : Synchronous Step-Up DC/DC Converter

CH5 is a high voltage synchronous step-up converter for

CCD positive power. The converter operates at fixed

frequency PWM mode, CCM, DCM, and PSM (pulse skip

mode) with integrated internal MOSFETs, compensation

network and load disconnect function.

The output voltage can be set by the following equation:

V

OUT_CH5

= (1 + R9 / R10) x V

FB5

where V

FB5

is 1.25V typically.

CH6 : INV DC/DC Converter

This converter integrates an internal P-MOSFET with

internal compensation and needs an external Schottky

diode to provide CCD negative power supply.

The output voltage can be set by the following equation :

V

OUT_CH6

= −(R11 / R12) x (1.2V) + 0.6V

where R11 and R12 are the feedback resistors connected

DS9986A-00 May 2011

to FB6, 1.2V equals to (V

REF

− V

FB6

) and 0.6V is V

FB6

typical.

Reference Voltage

The RT9986A provides a precise 1.8V reference voltage,

V

REF

, with souring capability of 100µA. Connect a 0.1µF

ceramic capacitor from the VREF pin to GND. Reference

voltage is enabled by pulling EN6 to logic-high.

Furthermore, this reference voltage is internally pulled to

GND at shutdown.

CH7 : WLED Driver

CH7 is a WLED driver that can operate in either current

source mode or synchronous step-up mode, as determined

by LX7

'

s initial voltage level.

Table 1. CH7 WLED setting

CH7 Operating Mode

Current Source

Synchronous Step-Up

LX7

< 0.25V

> 1V

When CH7 works in current source mode, it sinks an

accurate LED current modulated by EN7 high duty such

that it is easily dimmed from 0mA to 30mA. If CH7 works

in synchronous step-up mode, it integrates synchronous

step-up mode with an internal MOSFET and internal

compensation to output a voltage up to 15V. The LED

current is set via an external resistor and controlled via

the PWM duty on the EN7 pin. Regardless of the mode,

holding EN7 low for more than 32ms will turn off CH7.

In addition, CH7 will be turned on until the CH2 soft-start

is finished.

CH7 WLED Current Dimming Control

If CH7 is in synchronous step-up mode, the WLED current

is set by an external resistor. If CH7 is in current source

mode, the sink current into the FB7 pin is 30mA typically

when EN7 is high. Regardless of the mode, dimming is

always controlled by the duty of pulse-width modulated

signal on the EN7 pin. The PWM dimming duty must be

over 10%.

The average current through WLED can be set by the

following equations :

I

LED

(mA) = [250mV / R (W)] x Duty (%) (for step-up mode)

or I

LED

(mA) = 30mA x Duty (%) (for current source mode)

19

RT9986A

R is the current sense resistor from FB7 to GND and Duty

is the duty of the PWM dimming signal into EN7 pin.

Dimming frequency range is from 1kHz to 100kHz but

2kHz to 20kHz should be avoided to prevent distraction

from audio noise.

VDDM Bootstrap

To support bootstrap function, the RT9986A includes a

power selection circuit which selects between BAT and

PVDD1 to create the internal node voltage VDDI and VDDM.

VDDM is the power of all the RT9986A control circuits

and must be connected to an external decoupling capacitor

by way of the VDDM pin. The VDDI is the power input of

the RTC LDO. The output PVDD1 of CH1 can bootstrap

VDDM and VDDI. The RT9986A includes UVLO circuits

to monitor VDDM and BAT voltage status.

RTC LDO

The RT9986A provides a 3.1V output LDO for real time

clock. The LDO features low quiescent current (5µA) and

high output voltage accuracy. This LDO is always on, even

when the system is shut down. For better stability, is it

recommended to connect a 0.1µF to the RTCPWR pin.

The RTC LDO includes pass transistor body diode control

to avoid the RTCPWR node from back-charging into the

input node VDDI.

System Reset

The RT9986A also provides a system voltage detector to

monitor system power status via FB2. If FB2 level is lower

than 90% setting, the open drain output pin SYSR will

pull down. When FB2 level is higher than 95% setting,

the SYSR pin will go high after 10ms.

Voltage Detector

The RT9986A provides a voltage detector to detect the

voltage status at the VCHK pin. The input power of the

voltage detector is RTCPWR and the detector is always

on. 55ms after VCHK voltage > 1.616V, the open drain

output /RST will be pulled high. If VCHK < 1.6V, the /RST

pin will be pulled down to GND immediately.

Power On/Off Sequence for CH1 to CH4

EN1234 will turn on/off CH1 to CH4 in preset sequence.

CH1 to CH4 Power On Sequence is:

20

When EN1234 goes high, CH1 will turn on first. 3.5ms

after CH1 is turned on, CH3 will turn on. 3.5ms after CH3

is turned on, CH4 will turn on. 3.5ms after CH4 is turned

on, CH2 will turn on.

CH1 to CH4 Power-Off Sequence is :

When EN1234 goes low, CH2 will turn off first and internally

discharge output.

When FB2 < 0.1V, CH4 will turn off and also internally

discharge output via the LX4 pin. When FB4 < 0.1V, CH3

will turn off and internally discharge output via the LX3

pin. Likewise, when FB3 < 0.1V, CH1 will turn off and

discharge output. After FB1 < 0.1V, CH1 to 4 shutdown

sequence will be completed.

Thermal Considerations

For continuous operation, do not exceed absolute

maximum junction temperature. The maximum power

dissipation depends on the thermal resistance of the IC

package, PCB layout, rate of surrounding airflow, and

difference between junction and ambient temperature. The

maximum power dissipation can be calculated by the

following formula :

P

D(MAX)

= (T

J(MAX)

− T

A

) / θ

JA

where T

J(MAX)

is the maximum junction temperature, T

A

is

the ambient temperature, and θ

JA

is the junction to ambient

thermal resistance.

For recommended operating condition specifications of

the RT9986A, the maximum junction temperature is 125°C

and T

A

is the ambient temperature. The junction to ambient

thermal resistance, θ

JA

, is layout dependent. For WQFN-

32L 4x4 packages, the thermal resistance, θ

JA

, is 27.8°C/

W on a standard JEDEC 51-7 four-layer thermal test board.

The maximum power dissipation at T

A

= 25°C can be

calculated by the following formula :

P

D(MAX)

= (125°C − 25°C) / (27.8°C/W) = 3.59W for

WQFN-32L 4x4 package

The maximum power dissipation depends on the operating

ambient temperature for fixed T

J(MAX)

and thermal

resistance,θ

JA

. For the RT9986A package, the derating

curve in Figure 1 allows the designer to see the effect of

rising ambient temperature on the maximum power

dissipation.

DS9986A-00 May 2011

RT9986A

4.0

M

a

x

i

m

u

m

P

o

w

e

r

D

i

s

s

i

p

a

t

i

o

n

(

W

)

3.6

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

0255075

Four-Layers PCB

Layout Consideration

For the best performance of the RT9986A, the following

PCB layout guidelines must be strictly followed.

}

Place the input and output capacitors as close as

possible to the input and output pins respectively for

good filtering.

Keep the main power traces as wide and short as

possible.

The switching node area connected to LX and inductor

should be minimized for lower EMI.

Place the feedback components as close as possible

to the FB pin and keep these components away from

the noisy devices.

Connect the GND and Exposed Pad to a strong ground

plane for maximum thermal dissipation and noise

protection.

V

OUT_CH2

C5

GND

R3

R4

}

}

100125

}

Ambient Temperature (°C)

Figure 1. Derating Curves for RT9986A Packages

}

Place the feedback components as close as possible to

the FB pin and keep away from noisy devices.

C3

V

OUT_CH1

GND

C21

R2

V

BAT

C4

GND

C16

FB1

D1C18

C15

V

OUT_CH6

D4D3D2

R11

R12

VREF

FB6

VOUT6

FB7

PVDD7

L7

R13

GND

L4

C10

R8

GND

C20C19

LX7

EN7

1

2

3

4

V

BAT

C6

C2

GND

GND

LX6

R1

L1

E

N

5

6

P

V

D

D

1

B

A

T

323

E

N

1

2

3

4

L6

P

V

D

D

2

L

X

1

L

X

6

L2

L

X

2

C22

Connect the

Exposed Pad to

a ground plane.

25

24

23

22

21

20

19

18

17

FB2

SYSR

RTCPWR

VDDM

LX5

PVDD5

FB5

RST

R10

L5

V

BAT

GND

C1

C14

V

OUT_CH5

C12

R9

C13

GND

5

6

33

7

8

916

P

V

D

D

4

F

B

4

V

C

H

K

L

X

4

V

N

E

G

F

B

3

P

V

D

D

3

L

X

3

V

OUT_CH4

R7

L3

V

OUT_CH3

C8

GND

R6

R5

C9

V

BAT

C7

Input/Output capacitors must be placed as

close as possible to the Input/Output pins.

LX should be connected to Inductor by wide and short

trace, keep sensitive components away from this trace

Figure 2. PCB Layout Guide

DS9986A-00 May

21

RT9986A

Table 2. Protection Items

Threshold (typical)

Protection

Refer to Electrical Protection methods

type

spec

UVLO BAT < 1.3V IC Shutdown.

Automatic reset at VDDM <

5.75V

IC Shutdown.

IC

Shutdown

Delay time

No-delay

Reset method

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power

reset or all enable

pins set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

VDDM power reset

or all enable pins

set to low

BAT

OVP

VDDM

UVLO

Current

Limit

PVDD1

OVP

CH1

PVDD1

Step-Up

UVP

VDDM > 6V 100ms

VDDM < 2.4V

N-MOSFET

Current > 3A

PVDD1 > 6V

No-delay

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock 100ms

cycle.

N-MOSFET off, P-MOSFET off. No-delay

PVDD1 < (BAT − 0.8V)

or PVDD1 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms

soft-start end.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

FB1 < 0.4V after

FB1 UVP

soft-start end.

FB1 Over

FB1 < 0.7V

Load (OL)

Current

Limit

PVDD2

OVP

CH2

Step-Up

PVDD2

UVP

FB2 UVP

100ms

N-MOSFET off, P-MOSFET off.

N-MOSFET Current >

Automatic reset at next clock 100ms

3A

cycle.

PVDD2 > 6V N-MOSFET off, P-MOSFET off. No-delay

PVDD2 < (BAT − 0.8V)

or PVDD2 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms

soft-start end.

FB2 < 0.4V after

soft-start end.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

FB2 Over

FB2 < 0.7V

Load

Current

Limit

P-MOSFET

Current > 1.6A

100ms

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock 100ms

cycle.

N-MOSFET off, P-MOSFET off. No-delay

IC Shutdown when OL occur

each cycle until 100ms.

CH2 FB2 < 0.4V after

FB2 UVP

Step-Down soft-start end.

FB2 Over

FB2 < 0.7V

Load

100ms

22

To be continued

DS9986A-00 May 2011

RT9986A

Threshold (typical)

Protection

Refer to Electrical

type

spec

Current

Limit

CH3

FB3 UVP

Step-Down

FB3 Over

Load

Current

Limit

CH4

FB4 UVP

Step-Down

FB4 Over

Load

Current

Limit

PVDD5

OVP

FB5 UVP

FB5 Over

Load

Current

Limit

VOUT6

OVP

FB6 UVP

FB6 Over

Load

Current

Limit

PVDD7

OVP

P-MOSFET

Current > 1.6A

FB3 < 0.4V after

soft-start end.

FB3 < 0.7V

P-MOSFET

Current > 1.6A

FB4 < 0.4V after

soft-start end.

FB4 < 0.7V

N-MOSFET

Current > 1.2A

PVDD5 > 21V

FB5 < 0.6V after

soft-start end.

FB5 < 1.1V

P-MOSFET

Current > 1.5A

VOUT6 < −13V

Protection methods

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

N-MOSFET off, P-MOSFET off.

IC

Shutdown

Delay time

Reset method

CH5

Step-Up

N-MOSFET off, P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

P-MOSFET off. Automatic reset

at next clock cycle.

P-MOSFET off.

CH6

Inverter

FB6 >1.2V P-MOSFET off.

IC Shutdown when OL occur

each cycle until 100ms.

N-MOSFET off, P-MOSFET off.

Automatic reset at next clock

cycle.

Shutdown CH7

FB6 > 0.74V

N-MOSFET

Current > 0.8A

PVDD7 > 15V

CH7

WLED

Thermal

Thermal Temperature >

Shutdown 160°C

All channels stop switching

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

100ms reset or all enable

pins set to low

VDDM power

Not

reset or all enable

applicable

pins set to low

VDDM power

No-delay reset or all enable

pins set to low

23

DS9986A-00 May 2011

RT9986A

Outline Dimension

1

2

1

2

DETAIL A

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional,

but must be located within the zone indicated.

Symbol

A

A1

A3

b

D

D2

E

E2

e

L

Dimensions In Millimeters

Min

0.700

0.000

0.175

0.150

3.900

2.650

3.900

2.650

0.400

0.300 0.400

Max

0.800

0.050

0.250

0.250

4.100

2.750

4.100

2.750

Dimensions In Inches

Min

0.028

0.000

0.007

0.006

0.154

0.104

0.154

0.104

0.016

0.012 0.016

Max

0.031

0.002

0.010

0.010

0.161

0.108

0.161

0.108

W-Type 32L QFN 4x4 Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email: marketing@

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit

design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be

guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

24

DS9986A-00 May 2011

发布评论

评论列表 (0)

  1. 暂无评论