最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

51单片机应用程序实例

IT圈 admin 20浏览 0评论

2024年10月13日发(作者:向景山)

MCS 51单片机应用程序实例

2007年10月25日 工控吧-/;/

多路开关状态指示

1. 实验任务

如图3.1所示,AT89S51单片机的P1.0-P1.3接四个发光二极管L1-L4,P1.4-P1.7

接了四个开关K1-K4,编程将开关的状态反映到发光二极管上。(开关闭合,对应

的灯亮,开关断开,对应的灯灭)。

2. 电路原理图

图3.1

3. 系统板上硬件连线

(1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示

模块”区域中的L1-L4端口上;

(2. 把“单片机系统”区域中的P1.4-P1.7用导线连接到“四路拨动开关”区域

中的K1-K4端口上;

4. 程序设计内容

(1. 开关状态检测

对于开关状态检测,相对单片机来说,是输入关系,我们可轮流检测每个开关状态,

根据每个开关的状态让相应的发光二极管指示,可以采用JB P1.X,REL或JNB

P1.X,REL指令来完成;也可以一次性检测四路开关状态,然后让其指示,可以采用

MOV A,P1指令一次把P1端口的状态全部读入,然后取高4位的状态来指示。

(2. 输出控制

根据开关的状态,由发光二极管L1-L4来指示,我们可以用SETB P1.X和CLR P1.X

指令来完成,也可以采用MOV P1,#1111XXXXB方法一次指示。

5. 程序流程

读P1口数据到A CC 中

A CC 内容右移4次

A CC 内容与F0H相或

A CC 内容送入P1口

6. 方法一(汇编源程序)

ORG 00H

START: MOV A,P1

ANL A,#0F0H

RR A

RR A

RR A

RR A

XOR A,#0F0H

MOV P1,A

SJMP START

END

7. 方法一(C语言源程序)

#include

unsigned char temp;

void main(void)

{

while(1)

{

temp=P1>>4;

temp=temp | 0xf0;

P1=temp;

}

}

8. 方法二(汇编源程序)

ORG 00H

START: JB P1.4,NEXT1

CLR P1.0

SJMP NEX1

NEXT1: SETB P1.0

NEX1: JB P1.5,NEXT2

CLR P1.1

SJMP NEX2

NEXT2: SETB P1.1

NEX2: JB P1.6,NEXT3

CLR P1.2

SJMP NEX3

NEXT3: SETB P1.2

NEX3: JB P1.7,NEXT4

CLR P1.3

SJMP NEX4

NEXT4: SETB P1.3

NEX4: SJMP START

END

9. 方法二(C语言源程序)

#include

void main(void)

{

while(1)

{

if(P1_4==0)

{

P1_0=0;

}

else

{

P1_0=1;

}

if(P1_5==0)

{

P1_1=0;

}

else

{

P1_1=1;

}

if(P1_6==0)

{

P1_2=0;

}

else

{

P1_2=1;

}

if(P1_7==0)

{

P1_3=0;

}

else

{

P1_3=1;

}

}

}

广告灯的左移右移

1. 实验任务

做单一灯的左移右移,硬件电路如图4.1所示,八个发光二极管L1-L8分别接在单

片机的P1.0-P1.7接口上,输出“0”时,发光二极管亮,开始时

P1.0→P1.1→P1.2→P1.3→┅→P1.7→P1.6→┅→P1.0亮,重复循环。

2. 电路原理图

图4.1

3. 系统板上硬件连线

把“单片机系统”区域中的P1.0-P1.7用8芯排线连接到“八路发光二极管指示模

块”区域中的L1-L8端口上,要求:P1.0对应着L1,P1.1对应着L2,……,P1.7

对应着L8。

4. 程序设计内容

我们可以运用输出端口指令MOV P1,A或MOV P1,#DATA,只要给累加器值或常

数值,然后执行上述的指令,即可达到输出控制的动作。

每次送出的数据是不同,具体的数据如下表1所示

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

L8 L7 L6 L5 L4 L3 L2 L1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1

说明

L1亮

L2亮

L3亮

L4亮

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

L5亮

L6亮

L7亮

L8亮

表1

5. 程序框图

图4.2

6. 汇编源程序

ORG 0

START: MOV R2,#8

MOV A,#0FEH

SETB C

LOOP: MOV P1,A

LCALL DELAY

RLC A

DJNZ R2,LOOP

MOV R2,#8

LOOP1: MOV P1,A

LCALL DELAY

RRC A

DJNZ R2,LOOP1

LJMP START

DELAY: MOV R5,#20 ;

D1: MOV R6,#20

D2: MOV R7,#248

DJNZ R7,$

DJNZ R6,D2

DJNZ R5,D1

RET

END

7. C语言源程序

#include

unsigned char i;

unsigned char temp;

unsigned char a,b;

void delay(void)

{

unsigned char m,n,s;

for(m=20;m>0;m--)

for(n=20;n>0;n--)

for(s=248;s>0;s--);

}

void main(void)

{

while(1)

{

temp=0xfe;

P1=temp;

delay();

for(i=1;i<8;i++)

{

a=temp<

b=temp>>(8-i);

P1=a|b;

delay();

}

for(i=1;i<8;i++)

{

a=temp>>i;

b=temp<<(8-i);

P1=a|b;

delay();

}

}

}

一键多功能按键识别技术

1.实验任务

如图9.1所示,开关SP1接在P3.7/RD管脚上,在AT89S51单片机的P1端口接有四

个发光二极管,上电的时候,L1接在P1.0管脚上的发光二极管在闪烁,当每一次按

下开关SP1的时候,L2接在P1.1管脚上的发光二极管在闪烁,再按下开关SP1的时

候,L3接在P1.2管脚上的发光二极管在闪烁,再按下开关SP1的时候,L4接在P1.3

管脚上的发光二极管在闪烁,再按下开关SP1的时候,又轮到L1在闪烁了,如此轮

流下去。

2.电路原理图

图9.1

3.系统板上硬件连线

(1. 把“单片机系统”区域中的P3.7/RD端口连接到“独立式键盘”区域中的SP1

端口上;

(2. 把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二

极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到L1,P1.1连接到L2,

P1.2连接到L3,P1.3连接到L4上。

4.程序设计方法

(1. 设计思想由来

在我们生活中,我们很容易通过这个叫张三,那个叫李四,另外一个是王五;那是因

为每个人有不同的名子,我们就很快认出,同样,对于要通过一个按键来识别每种不

同的功能,我们给每个不同的功能模块用不同的ID号标识,这样,每按下一次按键,

ID的值是不相同的,所以单片机就很容易识别不同功能的身份了。

(2. 设计方法

从上面的要求我们可以看出,L1到L4发光二极管在每个时刻的闪烁的时间是受开关

SP1来控制,我们给L1到L4闪烁的时段定义出不同的ID号,当L1在闪烁时,ID=

0;当L2在闪烁时,ID=1;当L3在闪烁时,ID=2;当L4在闪烁时,ID=3;很显

然,只要每次按下开关K1时,分别给出不同的ID号我们就能够完成上面的任务了。

下面给出有关程序设计的框图。

5.程序框图

图9.2

6. 汇编源程序

ID EQU 30H

SP1 BIT P3.7

L1 BIT P1.0

L2 BIT P1.1

L3 BIT P1.2

L4 BIT P1.3

ORG 0

MOV ID,#00H

START: JB K1,REL

LCALL DELAY10MS

JB K1,REL

INC ID

MOV A,ID

CJNE A,#04,REL

MOV ID,#00H

REL: JNB K1,$

MOV A,ID

CJNE A,#00H,IS0

CPL L1

LCALL DELAY

SJMP START

IS0: CJNE A,#01H,IS1

CPL L2

LCALL DELAY

SJMP START

IS1: CJNE A,#02H,IS2

CPL L3

LCALL DELAY

SJMP START

IS2: CJNE A,#03H,IS3

CPL L4

LCALL DELAY

SJMP START

IS3: LJMP START

DELAY10MS: MOV R6,#20

LOOP1: MOV R7,#248

DJNZ R7,$

DJNZ R6,LOOP1

RET

DELAY: MOV R5,#20

LOOP2: LCALL DELAY10MS

DJNZ R5,LOOP2

RET

END

7. C语言源程序

#include

unsigned char ID;

void delay10ms(void)

{

unsigned char i,j;

for(i=20;i>0;i--)

for(j=248;j>0;j--);

}

void delay02s(void)

{

unsigned char i;

for(i=20;i>0;i--)

{delay10ms();

}

}

void main(void)

{ while(1)

{ if(P3_7==0)

{delay10ms();

if(P3_7==0)

{

ID++;

if(ID==4)

{

ID=0;

}

while(P3_7==0);

}

}

switch(ID)

{ case 0:

P1_0=~P1_0;

delay02s();

break;

case 1:

P1_1=~P1_1;

delay02s();

break;

case 2:

P1_2=~P1_2;

delay02s();

break;

case 3:

P1_3=~P1_3;

delay02s();

break;

}

}

}

4×4矩阵式键盘识别技术

1. 实验任务

如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入

线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。对应的按

键的序号排列如图14.1所示

图14.1

2. 硬件电路原理图

图14.2

3. 系统板上硬件连线

(1. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式

键盘”区域中的C1-C4 R1-R4端口上;

(2. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四

路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,

P0.1/AD1对应着b,……,P0.7/AD7对应着h。

4. 程序设计内容

(1. 4×4矩阵键盘识别处理

(2. 每个按键有它的行值和列值 ,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。每个按键的状态同样需变成数字

量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字

“0”实现的。键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的

功能是什么;还要消除按键在闭合或断开时的抖动。两个并行口中,一个输出扫描码,

使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成

键编码而识别按键,通过软件查表,查出该键的功能。

5. 程序框图

图14.3

6. 汇编源程序

KEYBUF EQU 30H

ORG 00H

START: MOV KEYBUF,#2

WAIT:

MOV P3,#0FFH

CLR P3.4

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK1

MOV KEYBUF,#0

LJMP DK1

NK1: CJNE A,#0DH,NK2

MOV KEYBUF,#1

LJMP DK1

NK2: CJNE A,#0BH,NK3

MOV KEYBUF,#2

LJMP DK1

NK3: CJNE A,#07H,NK4

MOV KEYBUF,#3

LJMP DK1

NK4: NOP

DK1:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK1A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK1A

NOKEY1:

MOV P3,#0FFH

CLR P3.5

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK5

MOV KEYBUF,#4

LJMP DK2

NK5: CJNE A,#0DH,NK6

MOV KEYBUF,#5

LJMP DK2

NK6: CJNE A,#0BH,NK7

MOV KEYBUF,#6

LJMP DK2

NK7: CJNE A,#07H,NK8

MOV KEYBUF,#7

LJMP DK2

NK8: NOP

DK2:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK2A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK2A

NOKEY2:

MOV P3,#0FFH

CLR P3.6

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK9

MOV KEYBUF,#8

LJMP DK3

NK9: CJNE A,#0DH,NK10

MOV KEYBUF,#9

LJMP DK3

NK10: CJNE A,#0BH,NK11

MOV KEYBUF,#10

LJMP DK3

NK11: CJNE A,#07H,NK12

MOV KEYBUF,#11

LJMP DK3

NK12: NOP

DK3:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK3A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK3A

NOKEY3:

MOV P3,#0FFH

CLR P3.7

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK13

MOV KEYBUF,#12

LJMP DK4

NK13: CJNE A,#0DH,NK14

MOV KEYBUF,#13

LJMP DK4

NK14: CJNE A,#0BH,NK15

MOV KEYBUF,#14

LJMP DK4

NK15: CJNE A,#07H,NK16

MOV KEYBUF,#15

LJMP DK4

NK16: NOP

DK4:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK4A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK4A

NOKEY4:

LJMP WAIT

DELY10MS:

MOV R6,#10

D1: MOV R7,#248

DJNZ R7,$

DJNZ R6,D1

RET

TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H

DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H

END

7. C语言源程序

#include

unsigned char code table[]={0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

unsigned char temp;

unsigned char key;

unsigned char i,j;

void main(void)

{

while(1)

{

P3=0xff;

P3_4=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=7;

break;

case 0x0d:

key=8;

break;

case 0x0b:

key=9;

break;

case 0x07:

key=10;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_5=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=4;

break;

case 0x0d:

key=5;

break;

case 0x0b:

key=6;

break;

case 0x07:

key=11;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_6=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=1;

break;

case 0x0d:

key=2;

break;

case 0x0b:

key=3;

break;

case 0x07:

key=12;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_7=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=0;

break;

case 0x0d:

key=13;

break;

case 0x0b:

key=14;

break;

case 0x07:

key=15;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

}

}

报警产生器

1. 实验任务

用P1.0输出1KHz和500Hz的音频信号驱动扬声器,作报警信号,要求1KHz信号响

100ms,500Hz信号响200ms,交替进行,P1.7接一开关进行控制,当开关合上响报警

信号,当开关断开告警信号停止,编出程序。

2. 电路原理图

图6.1

3. 系统板上硬件连线

(1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中

的SPK IN端口上;

(2. 在“音频放大模块”区域中的SPK OUT端口上接上一个8欧的或者是16欧的

喇叭;

(3. 把“单片机系统”区域中的P1.7/RD端口用导线连接到“四路拨动开关”区域

中的K1端口上;

4. 程序设计内容

(1. 信号产生的方法

500Hz信号周期为2ms,信号电平为每1ms变反1次,1KHz的信号周期为1ms,信号

电平每500us变反1次;

5. 程序框图

图6.2

6. 汇编源程序

FLAG BIT 00H

ORG 00H

START: JB P1.7,START

JNB FLAG,NEXT

MOV R2,#200

DV: CPL P1.0

LCALL DELY500

LCALL DELY500

DJNZ R2,DV

CPL FLAG

NEXT: MOV R2,#200

DV1: CPL P1.0

LCALL DELY500

DJNZ R2,DV1

CPL FLAG

SJMP START

DELY500: MOV R7,#250

LOOP: NOP

DJNZ R7,LOOP

RET

END

7. C语言源程序

#include

#include

bit flag;

unsigned char count;

void dely500(void)

{

unsigned char i;

for(i=250;i>0;i--)

{

_nop_();

}

}

void main(void)

{

while(1)

{

if(P1_7==0)

{

for(count=200;count>0;count--)

{

P1_0=~P1_0;

dely500();

}

for(count=200;count>0;count--)

{

P1_0=~P1_0;

dely500();

dely500();

}

}

}

}

简易电子琴系统的制作

1. 实验任务

(1. 由4X4组成16个按钮矩阵,设计成16个音。

(2. 可随意弹奏想要表达的音乐。

2. 电路原理图

图22.1

3. 系统板硬件连线

(1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中

的SPK IN端口上;

(2. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式

键盘”区域中的C1-C4 R1-R4端口上;

4. 相关程序内容

(1. 4X4行列式键盘识别;

(2. 音乐产生的方法;

一首音乐是许多不同的音阶组成的,而每个音阶对应着不同的频率,这样我们就可以

利用不同的频率的组合,即可构成我们所想要的音乐了,当然对于单片机来产生不同

的频率非常方便,我们可以利用单片机的定时/计数器T0来产生这样方波频率信号,

因此,我们只要把一首歌曲的音阶对应频率关系弄正确即可。现在以单片机12MHZ

晶振为例,例出高中低音符与单片机计数T0相关的计数值如下表所示

音符 频率(HZ) 简谱码(T值)

低1 DO 262 63628

#1 DO# 277 63731

低2 RE 294 63835

#2 RE# 311 63928

低 3 M 330 64021

低 4 FA 349 64103

# 4 FA# 370 64185

低 5 SO 392 64260

# 5 SO# 415 64331

低 6 LA 440 64400

# 6 466 64463

低 7 SI 494 64524

中 1 DO 523 64580

# 1 DO# 554 64633

中 2 RE 587 64684

# 2 RE# 622 64732

中 3 M 659 64777

中 4 FA 698 64820

音符

# 4 FA#

中 5 SO

# 5 SO#

中 6 LA

# 6

中 7 SI

高 1 DO

# 1 DO#

高 2 RE

# 2 RE#

高 3 M

高 4 FA

# 4 FA#

高 5 SO

# 5 SO#

高 6 LA

# 6

高 7 SI

频率(HZ) 简谱码(T值)

740 64860

784 64898

831 64934

880 64968

932 64994

988 65030

1046 65058

1109 65085

1175 65110

1245 65134

1318 65157

1397 65178

1480 65198

1568 65217

1661 65235

1760 65252

1865 65268

1967 65283

下面我们要为这个音符建立一个表格,有助于单片机通过查表的方式来获得相应的数

低音0-19之间,中音在20-39之间,高音在40-59之间

TABLE: DW 0,63628,63835,64021,64103,64260,64400,64524,0,0

DW 0,63731,63928,0,64185,64331,64463,0,0,0

DW 0,64580,64684,64777,64820,64898,64968,65030,0,0

DW 0,64633,64732,0,64860,64934,64994,0,0,0

DW 0,65058,65110,65157,65178,65217,65252,65283,0,0

DW 0,65085,65134,0,65198,65235,65268,0,0,0

DW 0

2、音乐的音拍,一个节拍为单位(C调)

曲调值

调4/4

调3/4

调2/4

DELAY

125ms

187ms

250ms

曲调值

调4/4

调3/4

调2/4

DELAY

62ms

94ms

125ms

对于不同的曲调我们也可以用单片机的另外一个定时/计数器来完成。

下面就用AT89S51单片机产生一首“生日快乐”歌曲来说明单片机如何产生的。

在这个程序中用到了两个定时/计数器来完成的。其中T0用来产生音符频率,T1用

来产生音拍。

5. 程序框图

图22.2

6. 汇编源程序

KEYBUF EQU 30H

STH0 EQU 31H

STL0 EQU 32H

TEMP EQU 33H

ORG 00H

LJMP START

ORG 0BH

LJMP INT_T0

START: MOV TMOD,#01H

SETB ET0

SETB EA

WAIT:

MOV P3,#0FFH

CLR P3.4

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK1

MOV KEYBUF,#0

LJMP DK1

NK1: CJNE A,#0DH,NK2

MOV KEYBUF,#1

LJMP DK1

NK2: CJNE A,#0BH,NK3

MOV KEYBUF,#2

LJMP DK1

NK3: CJNE A,#07H,NK4

MOV KEYBUF,#3

LJMP DK1

NK4: NOP

DK1:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK1A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK1A

CLR TR0

NOKEY1:

MOV P3,#0FFH

CLR P3.5

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK5

MOV KEYBUF,#4

LJMP DK2

NK5: CJNE A,#0DH,NK6

MOV KEYBUF,#5

LJMP DK2

NK6: CJNE A,#0BH,NK7

MOV KEYBUF,#6

LJMP DK2

NK7: CJNE A,#07H,NK8

MOV KEYBUF,#7

LJMP DK2

NK8: NOP

DK2:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK2A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK2A

CLR TR0

NOKEY2:

MOV P3,#0FFH

CLR P3.6

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK9

MOV KEYBUF,#8

LJMP DK3

NK9: CJNE A,#0DH,NK10

MOV KEYBUF,#9

LJMP DK3

NK10: CJNE A,#0BH,NK11

MOV KEYBUF,#10

LJMP DK3

NK11: CJNE A,#07H,NK12

MOV KEYBUF,#11

LJMP DK3

NK12: NOP

DK3:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK3A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK3A

CLR TR0

NOKEY3:

MOV P3,#0FFH

CLR P3.7

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK13

MOV KEYBUF,#12

LJMP DK4

NK13: CJNE A,#0DH,NK14

MOV KEYBUF,#13

LJMP DK4

NK14: CJNE A,#0BH,NK15

MOV KEYBUF,#14

LJMP DK4

NK15: CJNE A,#07H,NK16

MOV KEYBUF,#15

LJMP DK4

NK16: NOP

DK4:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK4A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK4A

CLR TR0

NOKEY4:

LJMP WAIT

DELY10MS:

MOV R6,#10

D1: MOV R7,#248

DJNZ R7,$

DJNZ R6,D1

RET

INT_T0:

MOV TH0,STH0

MOV TL0,STL0

CPL P1.0

RETI

TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H

DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H

TABLE1: DW 64021,64103,64260,64400

DW 64524,64580,64684,64777

DW 64820,64898,64968,65030

DW 65058,65110,65157,65178

END

7. C语言源程序

#include

unsigned char code table[]={0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

unsigned char temp;

unsigned char key;

unsigned char i,j;

unsigned char STH0;

unsigned char STL0;

unsigned int code tab[]={64021,64103,64260,64400,

64524,64580,64684,64777,

64820,64898,64968,65030,

65058,65110,65157,65178};

void main(void)

{

TMOD=0x01;

ET0=1;

EA=1;

while(1)

{

P3=0xff;

P3_4=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=0;

break;

case 0x0d:

key=1;

break;

case 0x0b:

key=2;

break;

case 0x07:

key=3;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_5=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=4;

break;

case 0x0d:

key=5;

break;

case 0x0b:

key=6;

break;

case 0x07:

key=7;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_6=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=8;

break;

case 0x0d:

key=9;

break;

case 0x0b:

key=10;

break;

case 0x07:

key=11;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_7=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=12;

break;

case 0x0d:

key=13;

break;

case 0x0b:

key=14;

break;

case 0x07:

key=15;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

}

}

void t0(void) interrupt 1 using 0

{

TH0=STH0;

TL0=STL0;

P1_0=~P1_0;

}

2024年10月13日发(作者:向景山)

MCS 51单片机应用程序实例

2007年10月25日 工控吧-/;/

多路开关状态指示

1. 实验任务

如图3.1所示,AT89S51单片机的P1.0-P1.3接四个发光二极管L1-L4,P1.4-P1.7

接了四个开关K1-K4,编程将开关的状态反映到发光二极管上。(开关闭合,对应

的灯亮,开关断开,对应的灯灭)。

2. 电路原理图

图3.1

3. 系统板上硬件连线

(1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示

模块”区域中的L1-L4端口上;

(2. 把“单片机系统”区域中的P1.4-P1.7用导线连接到“四路拨动开关”区域

中的K1-K4端口上;

4. 程序设计内容

(1. 开关状态检测

对于开关状态检测,相对单片机来说,是输入关系,我们可轮流检测每个开关状态,

根据每个开关的状态让相应的发光二极管指示,可以采用JB P1.X,REL或JNB

P1.X,REL指令来完成;也可以一次性检测四路开关状态,然后让其指示,可以采用

MOV A,P1指令一次把P1端口的状态全部读入,然后取高4位的状态来指示。

(2. 输出控制

根据开关的状态,由发光二极管L1-L4来指示,我们可以用SETB P1.X和CLR P1.X

指令来完成,也可以采用MOV P1,#1111XXXXB方法一次指示。

5. 程序流程

读P1口数据到A CC 中

A CC 内容右移4次

A CC 内容与F0H相或

A CC 内容送入P1口

6. 方法一(汇编源程序)

ORG 00H

START: MOV A,P1

ANL A,#0F0H

RR A

RR A

RR A

RR A

XOR A,#0F0H

MOV P1,A

SJMP START

END

7. 方法一(C语言源程序)

#include

unsigned char temp;

void main(void)

{

while(1)

{

temp=P1>>4;

temp=temp | 0xf0;

P1=temp;

}

}

8. 方法二(汇编源程序)

ORG 00H

START: JB P1.4,NEXT1

CLR P1.0

SJMP NEX1

NEXT1: SETB P1.0

NEX1: JB P1.5,NEXT2

CLR P1.1

SJMP NEX2

NEXT2: SETB P1.1

NEX2: JB P1.6,NEXT3

CLR P1.2

SJMP NEX3

NEXT3: SETB P1.2

NEX3: JB P1.7,NEXT4

CLR P1.3

SJMP NEX4

NEXT4: SETB P1.3

NEX4: SJMP START

END

9. 方法二(C语言源程序)

#include

void main(void)

{

while(1)

{

if(P1_4==0)

{

P1_0=0;

}

else

{

P1_0=1;

}

if(P1_5==0)

{

P1_1=0;

}

else

{

P1_1=1;

}

if(P1_6==0)

{

P1_2=0;

}

else

{

P1_2=1;

}

if(P1_7==0)

{

P1_3=0;

}

else

{

P1_3=1;

}

}

}

广告灯的左移右移

1. 实验任务

做单一灯的左移右移,硬件电路如图4.1所示,八个发光二极管L1-L8分别接在单

片机的P1.0-P1.7接口上,输出“0”时,发光二极管亮,开始时

P1.0→P1.1→P1.2→P1.3→┅→P1.7→P1.6→┅→P1.0亮,重复循环。

2. 电路原理图

图4.1

3. 系统板上硬件连线

把“单片机系统”区域中的P1.0-P1.7用8芯排线连接到“八路发光二极管指示模

块”区域中的L1-L8端口上,要求:P1.0对应着L1,P1.1对应着L2,……,P1.7

对应着L8。

4. 程序设计内容

我们可以运用输出端口指令MOV P1,A或MOV P1,#DATA,只要给累加器值或常

数值,然后执行上述的指令,即可达到输出控制的动作。

每次送出的数据是不同,具体的数据如下表1所示

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

L8 L7 L6 L5 L4 L3 L2 L1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1

说明

L1亮

L2亮

L3亮

L4亮

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

L5亮

L6亮

L7亮

L8亮

表1

5. 程序框图

图4.2

6. 汇编源程序

ORG 0

START: MOV R2,#8

MOV A,#0FEH

SETB C

LOOP: MOV P1,A

LCALL DELAY

RLC A

DJNZ R2,LOOP

MOV R2,#8

LOOP1: MOV P1,A

LCALL DELAY

RRC A

DJNZ R2,LOOP1

LJMP START

DELAY: MOV R5,#20 ;

D1: MOV R6,#20

D2: MOV R7,#248

DJNZ R7,$

DJNZ R6,D2

DJNZ R5,D1

RET

END

7. C语言源程序

#include

unsigned char i;

unsigned char temp;

unsigned char a,b;

void delay(void)

{

unsigned char m,n,s;

for(m=20;m>0;m--)

for(n=20;n>0;n--)

for(s=248;s>0;s--);

}

void main(void)

{

while(1)

{

temp=0xfe;

P1=temp;

delay();

for(i=1;i<8;i++)

{

a=temp<

b=temp>>(8-i);

P1=a|b;

delay();

}

for(i=1;i<8;i++)

{

a=temp>>i;

b=temp<<(8-i);

P1=a|b;

delay();

}

}

}

一键多功能按键识别技术

1.实验任务

如图9.1所示,开关SP1接在P3.7/RD管脚上,在AT89S51单片机的P1端口接有四

个发光二极管,上电的时候,L1接在P1.0管脚上的发光二极管在闪烁,当每一次按

下开关SP1的时候,L2接在P1.1管脚上的发光二极管在闪烁,再按下开关SP1的时

候,L3接在P1.2管脚上的发光二极管在闪烁,再按下开关SP1的时候,L4接在P1.3

管脚上的发光二极管在闪烁,再按下开关SP1的时候,又轮到L1在闪烁了,如此轮

流下去。

2.电路原理图

图9.1

3.系统板上硬件连线

(1. 把“单片机系统”区域中的P3.7/RD端口连接到“独立式键盘”区域中的SP1

端口上;

(2. 把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二

极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到L1,P1.1连接到L2,

P1.2连接到L3,P1.3连接到L4上。

4.程序设计方法

(1. 设计思想由来

在我们生活中,我们很容易通过这个叫张三,那个叫李四,另外一个是王五;那是因

为每个人有不同的名子,我们就很快认出,同样,对于要通过一个按键来识别每种不

同的功能,我们给每个不同的功能模块用不同的ID号标识,这样,每按下一次按键,

ID的值是不相同的,所以单片机就很容易识别不同功能的身份了。

(2. 设计方法

从上面的要求我们可以看出,L1到L4发光二极管在每个时刻的闪烁的时间是受开关

SP1来控制,我们给L1到L4闪烁的时段定义出不同的ID号,当L1在闪烁时,ID=

0;当L2在闪烁时,ID=1;当L3在闪烁时,ID=2;当L4在闪烁时,ID=3;很显

然,只要每次按下开关K1时,分别给出不同的ID号我们就能够完成上面的任务了。

下面给出有关程序设计的框图。

5.程序框图

图9.2

6. 汇编源程序

ID EQU 30H

SP1 BIT P3.7

L1 BIT P1.0

L2 BIT P1.1

L3 BIT P1.2

L4 BIT P1.3

ORG 0

MOV ID,#00H

START: JB K1,REL

LCALL DELAY10MS

JB K1,REL

INC ID

MOV A,ID

CJNE A,#04,REL

MOV ID,#00H

REL: JNB K1,$

MOV A,ID

CJNE A,#00H,IS0

CPL L1

LCALL DELAY

SJMP START

IS0: CJNE A,#01H,IS1

CPL L2

LCALL DELAY

SJMP START

IS1: CJNE A,#02H,IS2

CPL L3

LCALL DELAY

SJMP START

IS2: CJNE A,#03H,IS3

CPL L4

LCALL DELAY

SJMP START

IS3: LJMP START

DELAY10MS: MOV R6,#20

LOOP1: MOV R7,#248

DJNZ R7,$

DJNZ R6,LOOP1

RET

DELAY: MOV R5,#20

LOOP2: LCALL DELAY10MS

DJNZ R5,LOOP2

RET

END

7. C语言源程序

#include

unsigned char ID;

void delay10ms(void)

{

unsigned char i,j;

for(i=20;i>0;i--)

for(j=248;j>0;j--);

}

void delay02s(void)

{

unsigned char i;

for(i=20;i>0;i--)

{delay10ms();

}

}

void main(void)

{ while(1)

{ if(P3_7==0)

{delay10ms();

if(P3_7==0)

{

ID++;

if(ID==4)

{

ID=0;

}

while(P3_7==0);

}

}

switch(ID)

{ case 0:

P1_0=~P1_0;

delay02s();

break;

case 1:

P1_1=~P1_1;

delay02s();

break;

case 2:

P1_2=~P1_2;

delay02s();

break;

case 3:

P1_3=~P1_3;

delay02s();

break;

}

}

}

4×4矩阵式键盘识别技术

1. 实验任务

如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入

线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。对应的按

键的序号排列如图14.1所示

图14.1

2. 硬件电路原理图

图14.2

3. 系统板上硬件连线

(1. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式

键盘”区域中的C1-C4 R1-R4端口上;

(2. 把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四

路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,

P0.1/AD1对应着b,……,P0.7/AD7对应着h。

4. 程序设计内容

(1. 4×4矩阵键盘识别处理

(2. 每个按键有它的行值和列值 ,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。每个按键的状态同样需变成数字

量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字

“0”实现的。键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的

功能是什么;还要消除按键在闭合或断开时的抖动。两个并行口中,一个输出扫描码,

使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成

键编码而识别按键,通过软件查表,查出该键的功能。

5. 程序框图

图14.3

6. 汇编源程序

KEYBUF EQU 30H

ORG 00H

START: MOV KEYBUF,#2

WAIT:

MOV P3,#0FFH

CLR P3.4

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK1

MOV KEYBUF,#0

LJMP DK1

NK1: CJNE A,#0DH,NK2

MOV KEYBUF,#1

LJMP DK1

NK2: CJNE A,#0BH,NK3

MOV KEYBUF,#2

LJMP DK1

NK3: CJNE A,#07H,NK4

MOV KEYBUF,#3

LJMP DK1

NK4: NOP

DK1:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK1A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK1A

NOKEY1:

MOV P3,#0FFH

CLR P3.5

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK5

MOV KEYBUF,#4

LJMP DK2

NK5: CJNE A,#0DH,NK6

MOV KEYBUF,#5

LJMP DK2

NK6: CJNE A,#0BH,NK7

MOV KEYBUF,#6

LJMP DK2

NK7: CJNE A,#07H,NK8

MOV KEYBUF,#7

LJMP DK2

NK8: NOP

DK2:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK2A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK2A

NOKEY2:

MOV P3,#0FFH

CLR P3.6

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK9

MOV KEYBUF,#8

LJMP DK3

NK9: CJNE A,#0DH,NK10

MOV KEYBUF,#9

LJMP DK3

NK10: CJNE A,#0BH,NK11

MOV KEYBUF,#10

LJMP DK3

NK11: CJNE A,#07H,NK12

MOV KEYBUF,#11

LJMP DK3

NK12: NOP

DK3:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK3A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK3A

NOKEY3:

MOV P3,#0FFH

CLR P3.7

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK13

MOV KEYBUF,#12

LJMP DK4

NK13: CJNE A,#0DH,NK14

MOV KEYBUF,#13

LJMP DK4

NK14: CJNE A,#0BH,NK15

MOV KEYBUF,#14

LJMP DK4

NK15: CJNE A,#07H,NK16

MOV KEYBUF,#15

LJMP DK4

NK16: NOP

DK4:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

DK4A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK4A

NOKEY4:

LJMP WAIT

DELY10MS:

MOV R6,#10

D1: MOV R7,#248

DJNZ R7,$

DJNZ R6,D1

RET

TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H

DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H

END

7. C语言源程序

#include

unsigned char code table[]={0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

unsigned char temp;

unsigned char key;

unsigned char i,j;

void main(void)

{

while(1)

{

P3=0xff;

P3_4=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=7;

break;

case 0x0d:

key=8;

break;

case 0x0b:

key=9;

break;

case 0x07:

key=10;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_5=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=4;

break;

case 0x0d:

key=5;

break;

case 0x0b:

key=6;

break;

case 0x07:

key=11;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_6=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=1;

break;

case 0x0d:

key=2;

break;

case 0x0b:

key=3;

break;

case 0x07:

key=12;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

P3=0xff;

P3_7=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=0;

break;

case 0x0d:

key=13;

break;

case 0x0b:

key=14;

break;

case 0x07:

key=15;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

}

}

}

}

报警产生器

1. 实验任务

用P1.0输出1KHz和500Hz的音频信号驱动扬声器,作报警信号,要求1KHz信号响

100ms,500Hz信号响200ms,交替进行,P1.7接一开关进行控制,当开关合上响报警

信号,当开关断开告警信号停止,编出程序。

2. 电路原理图

图6.1

3. 系统板上硬件连线

(1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中

的SPK IN端口上;

(2. 在“音频放大模块”区域中的SPK OUT端口上接上一个8欧的或者是16欧的

喇叭;

(3. 把“单片机系统”区域中的P1.7/RD端口用导线连接到“四路拨动开关”区域

中的K1端口上;

4. 程序设计内容

(1. 信号产生的方法

500Hz信号周期为2ms,信号电平为每1ms变反1次,1KHz的信号周期为1ms,信号

电平每500us变反1次;

5. 程序框图

图6.2

6. 汇编源程序

FLAG BIT 00H

ORG 00H

START: JB P1.7,START

JNB FLAG,NEXT

MOV R2,#200

DV: CPL P1.0

LCALL DELY500

LCALL DELY500

DJNZ R2,DV

CPL FLAG

NEXT: MOV R2,#200

DV1: CPL P1.0

LCALL DELY500

DJNZ R2,DV1

CPL FLAG

SJMP START

DELY500: MOV R7,#250

LOOP: NOP

DJNZ R7,LOOP

RET

END

7. C语言源程序

#include

#include

bit flag;

unsigned char count;

void dely500(void)

{

unsigned char i;

for(i=250;i>0;i--)

{

_nop_();

}

}

void main(void)

{

while(1)

{

if(P1_7==0)

{

for(count=200;count>0;count--)

{

P1_0=~P1_0;

dely500();

}

for(count=200;count>0;count--)

{

P1_0=~P1_0;

dely500();

dely500();

}

}

}

}

简易电子琴系统的制作

1. 实验任务

(1. 由4X4组成16个按钮矩阵,设计成16个音。

(2. 可随意弹奏想要表达的音乐。

2. 电路原理图

图22.1

3. 系统板硬件连线

(1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中

的SPK IN端口上;

(2. 把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式

键盘”区域中的C1-C4 R1-R4端口上;

4. 相关程序内容

(1. 4X4行列式键盘识别;

(2. 音乐产生的方法;

一首音乐是许多不同的音阶组成的,而每个音阶对应着不同的频率,这样我们就可以

利用不同的频率的组合,即可构成我们所想要的音乐了,当然对于单片机来产生不同

的频率非常方便,我们可以利用单片机的定时/计数器T0来产生这样方波频率信号,

因此,我们只要把一首歌曲的音阶对应频率关系弄正确即可。现在以单片机12MHZ

晶振为例,例出高中低音符与单片机计数T0相关的计数值如下表所示

音符 频率(HZ) 简谱码(T值)

低1 DO 262 63628

#1 DO# 277 63731

低2 RE 294 63835

#2 RE# 311 63928

低 3 M 330 64021

低 4 FA 349 64103

# 4 FA# 370 64185

低 5 SO 392 64260

# 5 SO# 415 64331

低 6 LA 440 64400

# 6 466 64463

低 7 SI 494 64524

中 1 DO 523 64580

# 1 DO# 554 64633

中 2 RE 587 64684

# 2 RE# 622 64732

中 3 M 659 64777

中 4 FA 698 64820

音符

# 4 FA#

中 5 SO

# 5 SO#

中 6 LA

# 6

中 7 SI

高 1 DO

# 1 DO#

高 2 RE

# 2 RE#

高 3 M

高 4 FA

# 4 FA#

高 5 SO

# 5 SO#

高 6 LA

# 6

高 7 SI

频率(HZ) 简谱码(T值)

740 64860

784 64898

831 64934

880 64968

932 64994

988 65030

1046 65058

1109 65085

1175 65110

1245 65134

1318 65157

1397 65178

1480 65198

1568 65217

1661 65235

1760 65252

1865 65268

1967 65283

下面我们要为这个音符建立一个表格,有助于单片机通过查表的方式来获得相应的数

低音0-19之间,中音在20-39之间,高音在40-59之间

TABLE: DW 0,63628,63835,64021,64103,64260,64400,64524,0,0

DW 0,63731,63928,0,64185,64331,64463,0,0,0

DW 0,64580,64684,64777,64820,64898,64968,65030,0,0

DW 0,64633,64732,0,64860,64934,64994,0,0,0

DW 0,65058,65110,65157,65178,65217,65252,65283,0,0

DW 0,65085,65134,0,65198,65235,65268,0,0,0

DW 0

2、音乐的音拍,一个节拍为单位(C调)

曲调值

调4/4

调3/4

调2/4

DELAY

125ms

187ms

250ms

曲调值

调4/4

调3/4

调2/4

DELAY

62ms

94ms

125ms

对于不同的曲调我们也可以用单片机的另外一个定时/计数器来完成。

下面就用AT89S51单片机产生一首“生日快乐”歌曲来说明单片机如何产生的。

在这个程序中用到了两个定时/计数器来完成的。其中T0用来产生音符频率,T1用

来产生音拍。

5. 程序框图

图22.2

6. 汇编源程序

KEYBUF EQU 30H

STH0 EQU 31H

STL0 EQU 32H

TEMP EQU 33H

ORG 00H

LJMP START

ORG 0BH

LJMP INT_T0

START: MOV TMOD,#01H

SETB ET0

SETB EA

WAIT:

MOV P3,#0FFH

CLR P3.4

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY1

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK1

MOV KEYBUF,#0

LJMP DK1

NK1: CJNE A,#0DH,NK2

MOV KEYBUF,#1

LJMP DK1

NK2: CJNE A,#0BH,NK3

MOV KEYBUF,#2

LJMP DK1

NK3: CJNE A,#07H,NK4

MOV KEYBUF,#3

LJMP DK1

NK4: NOP

DK1:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK1A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK1A

CLR TR0

NOKEY1:

MOV P3,#0FFH

CLR P3.5

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY2

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK5

MOV KEYBUF,#4

LJMP DK2

NK5: CJNE A,#0DH,NK6

MOV KEYBUF,#5

LJMP DK2

NK6: CJNE A,#0BH,NK7

MOV KEYBUF,#6

LJMP DK2

NK7: CJNE A,#07H,NK8

MOV KEYBUF,#7

LJMP DK2

NK8: NOP

DK2:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK2A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK2A

CLR TR0

NOKEY2:

MOV P3,#0FFH

CLR P3.6

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY3

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK9

MOV KEYBUF,#8

LJMP DK3

NK9: CJNE A,#0DH,NK10

MOV KEYBUF,#9

LJMP DK3

NK10: CJNE A,#0BH,NK11

MOV KEYBUF,#10

LJMP DK3

NK11: CJNE A,#07H,NK12

MOV KEYBUF,#11

LJMP DK3

NK12: NOP

DK3:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK3A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK3A

CLR TR0

NOKEY3:

MOV P3,#0FFH

CLR P3.7

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

LCALL DELY10MS

MOV A,P3

ANL A,#0FH

XRL A,#0FH

JZ NOKEY4

MOV A,P3

ANL A,#0FH

CJNE A,#0EH,NK13

MOV KEYBUF,#12

LJMP DK4

NK13: CJNE A,#0DH,NK14

MOV KEYBUF,#13

LJMP DK4

NK14: CJNE A,#0BH,NK15

MOV KEYBUF,#14

LJMP DK4

NK15: CJNE A,#07H,NK16

MOV KEYBUF,#15

LJMP DK4

NK16: NOP

DK4:

MOV A,KEYBUF

MOV DPTR,#TABLE

MOVC A,@A+DPTR

MOV P0,A

MOV A,KEYBUF

MOV B,#2

MUL AB

MOV TEMP,A

MOV DPTR,#TABLE1

MOVC A,@A+DPTR

MOV STH0,A

MOV TH0,A

INC TEMP

MOV A,TEMP

MOVC A,@A+DPTR

MOV STL0,A

MOV TL0,A

SETB TR0

DK4A: MOV A,P3

ANL A,#0FH

XRL A,#0FH

JNZ DK4A

CLR TR0

NOKEY4:

LJMP WAIT

DELY10MS:

MOV R6,#10

D1: MOV R7,#248

DJNZ R7,$

DJNZ R6,D1

RET

INT_T0:

MOV TH0,STH0

MOV TL0,STL0

CPL P1.0

RETI

TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H

DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H

TABLE1: DW 64021,64103,64260,64400

DW 64524,64580,64684,64777

DW 64820,64898,64968,65030

DW 65058,65110,65157,65178

END

7. C语言源程序

#include

unsigned char code table[]={0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

unsigned char temp;

unsigned char key;

unsigned char i,j;

unsigned char STH0;

unsigned char STL0;

unsigned int code tab[]={64021,64103,64260,64400,

64524,64580,64684,64777,

64820,64898,64968,65030,

65058,65110,65157,65178};

void main(void)

{

TMOD=0x01;

ET0=1;

EA=1;

while(1)

{

P3=0xff;

P3_4=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=0;

break;

case 0x0d:

key=1;

break;

case 0x0b:

key=2;

break;

case 0x07:

key=3;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_5=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=4;

break;

case 0x0d:

key=5;

break;

case 0x0b:

key=6;

break;

case 0x07:

key=7;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_6=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=8;

break;

case 0x0d:

key=9;

break;

case 0x0b:

key=10;

break;

case 0x07:

key=11;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

P3=0xff;

P3_7=0;

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

for(i=50;i>0;i--)

for(j=200;j>0;j--);

temp=P3;

temp=temp & 0x0f;

if (temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

switch(temp)

{

case 0x0e:

key=12;

break;

case 0x0d:

key=13;

break;

case 0x0b:

key=14;

break;

case 0x07:

key=15;

break;

}

temp=P3;

P1_0=~P1_0;

P0=table[key];

STH0=tab[key]/256;

STL0=tab[key]%256;

TR0=1;

temp=temp & 0x0f;

while(temp!=0x0f)

{

temp=P3;

temp=temp & 0x0f;

}

TR0=0;

}

}

}

}

void t0(void) interrupt 1 using 0

{

TH0=STH0;

TL0=STL0;

P1_0=~P1_0;

}

发布评论

评论列表 (0)

  1. 暂无评论