OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API 系列
- LangChain 40 实战Langchain访问OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API
- Langchain访问OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API
1. 核心其实在于key和url的设置
方法有:
- 使用环境变量来设置
- 使用变量来传入
- 使用手动设置环境变量
笔者用的是macOS, 先添加配置到 .zshrc
文件
export WANDOU_OPENAI_API_KEY='sk-xxx'
export WANDOU_BASE_URL="https://apejhvxcd.cloud.sealos.io/v1”
重新加载配置
source .zshrc
call 一个API示例
import os
import requests
import time
import json
import time
from langchain.llms import OpenAI
API_SECRET_KEY = "你在跳板机的key";
BASE_URL = "https://apejhvxcd.cloud.sealos.io/v1";
os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_API_BASE"] = BASE_URL
def text():
llm = OpenAI(temperature=0.9)
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
if __name__ == '__main__':
text();
踩坑执行代码
print(os.environ["OPENAI_API_KEY"])
发现是OpenAI的token,不是跳板机的。
.env
配置
OPENAI_API_KEY = os.getenv("WANDOU_OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("WANDOU_BASE_URL")
再次输出就是跳板机的token了,笔者用的跳板机链接,有送美金哦
2. 并行call 6次 OpenAI API试试
2.1 准备工作,打印执行时间
import time
def measure_execution_time(func, *args, **kwargs):
"""测量并返回给定函数的执行时间。
Args:
func: 要测量的函数对象。
*args: 传递给函数的位置参数。
**kwargs: 传递给函数的关键字参数。
Returns:
tuple: (执行结果, 耗时秒数)
"""
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
elapsed_time = end_time - start_time
return result, elapsed_time
# 示例:假设 chain1 已经定义并且具有 invoke 方法
# chain1 = ...
# 使用 measure_execution_time 来测量 chain1.invoke 的执行时间
# result, exec_time = measure_execution_time(chain1.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
2.2 直接RunnableParallel并行call 6次OpenAI 试试
from langchain_core.runnables import RunnablePassthrough
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
import time
from calc_time import measure_execution_time
from dotenv import load_dotenv
import os
load_dotenv()
from langchain_core.runnables import RunnableParallel
# print(os.environ["OPENAI_API_KEY"])
# model = ChatOpenAI()
model = ChatOpenAI(model="gpt-3.5-turbo")
chain1 = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
chain2 = (
ChatPromptTemplate.from_template("write a short (2 line) poem about {topic}")
| model
)
combined = RunnableParallel(joke=chain1, poem=chain2)
# result, exec_time = measure_execution_time(chain1.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain2.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(combined.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain1.batch, [{"topic": "bears"}, {"topic": "cats"}])
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain2.batch, [{"topic": "bears"}, {"topic": "cats"}])
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
result, exec_time = measure_execution_time(combined.batch, [{"topic": "bears"}, {"topic": "cats"}, {"topic": "dogs"}])
print(f"执行结果: {result}")
print(f"函数执行耗时: {exec_time} 秒")
执行结果
zgpeace at zgpeaces-MacBook-Pro in ~/Workspace/LLM/langchain-llm-app on develop!
(.venv) ± python LCEL/parallelism.py
执行结果: [{'joke': AIMessage(content="Why don't bears wear shoes?\n\nBecause they have bear feet!"), 'poem': AIMessage(content="Majestic bears roam,\nNature's guardians, fierce yet kind.")}, {'joke': AIMessage(content="Sure, here's a cat joke for you:\n\nWhy was the cat sitting on the computer?\n\nBecause it wanted to keep an eye on the mouse!"), 'poem': AIMessage(content="Whiskers glide, tails entwine,\nGraceful feline, nature's design.")}, {'joke': AIMessage(content="Sure, here's a dog-related joke for you:\n\nWhy don't dogs make good dancers?\n\nBecause they have two left feet!"), 'poem': AIMessage(content='Loyal companions, hearts pure and true,\nDogs bring joy, love, and laughter to you.')}]
函数执行耗时: 3.3068008899572305 秒
跳板机
https://docs.qq/doc/DRXJxV1Nad3hsb3ZL
代码
https://github/zgpeace/pets-name-langchain/tree/develop
参考
- https://blog.csdn/zgpeace/article/details/135246321
OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API 系列
- LangChain 40 实战Langchain访问OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API
- Langchain访问OpenAI ChatGPT API Account deactivated的另类方法,访问跳板机API
1. 核心其实在于key和url的设置
方法有:
- 使用环境变量来设置
- 使用变量来传入
- 使用手动设置环境变量
笔者用的是macOS, 先添加配置到 .zshrc
文件
export WANDOU_OPENAI_API_KEY='sk-xxx'
export WANDOU_BASE_URL="https://apejhvxcd.cloud.sealos.io/v1”
重新加载配置
source .zshrc
call 一个API示例
import os
import requests
import time
import json
import time
from langchain.llms import OpenAI
API_SECRET_KEY = "你在跳板机的key";
BASE_URL = "https://apejhvxcd.cloud.sealos.io/v1";
os.environ["OPENAI_API_KEY"] = API_SECRET_KEY
os.environ["OPENAI_API_BASE"] = BASE_URL
def text():
llm = OpenAI(temperature=0.9)
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
if __name__ == '__main__':
text();
踩坑执行代码
print(os.environ["OPENAI_API_KEY"])
发现是OpenAI的token,不是跳板机的。
.env
配置
OPENAI_API_KEY = os.getenv("WANDOU_OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("WANDOU_BASE_URL")
再次输出就是跳板机的token了,笔者用的跳板机链接,有送美金哦
2. 并行call 6次 OpenAI API试试
2.1 准备工作,打印执行时间
import time
def measure_execution_time(func, *args, **kwargs):
"""测量并返回给定函数的执行时间。
Args:
func: 要测量的函数对象。
*args: 传递给函数的位置参数。
**kwargs: 传递给函数的关键字参数。
Returns:
tuple: (执行结果, 耗时秒数)
"""
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
elapsed_time = end_time - start_time
return result, elapsed_time
# 示例:假设 chain1 已经定义并且具有 invoke 方法
# chain1 = ...
# 使用 measure_execution_time 来测量 chain1.invoke 的执行时间
# result, exec_time = measure_execution_time(chain1.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
2.2 直接RunnableParallel并行call 6次OpenAI 试试
from langchain_core.runnables import RunnablePassthrough
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
import time
from calc_time import measure_execution_time
from dotenv import load_dotenv
import os
load_dotenv()
from langchain_core.runnables import RunnableParallel
# print(os.environ["OPENAI_API_KEY"])
# model = ChatOpenAI()
model = ChatOpenAI(model="gpt-3.5-turbo")
chain1 = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
chain2 = (
ChatPromptTemplate.from_template("write a short (2 line) poem about {topic}")
| model
)
combined = RunnableParallel(joke=chain1, poem=chain2)
# result, exec_time = measure_execution_time(chain1.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain2.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(combined.invoke, {"topic": "bears"})
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain1.batch, [{"topic": "bears"}, {"topic": "cats"}])
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
# result, exec_time = measure_execution_time(chain2.batch, [{"topic": "bears"}, {"topic": "cats"}])
# print(f"执行结果: {result}")
# print(f"函数执行耗时: {exec_time} 秒")
result, exec_time = measure_execution_time(combined.batch, [{"topic": "bears"}, {"topic": "cats"}, {"topic": "dogs"}])
print(f"执行结果: {result}")
print(f"函数执行耗时: {exec_time} 秒")
执行结果
zgpeace at zgpeaces-MacBook-Pro in ~/Workspace/LLM/langchain-llm-app on develop!
(.venv) ± python LCEL/parallelism.py
执行结果: [{'joke': AIMessage(content="Why don't bears wear shoes?\n\nBecause they have bear feet!"), 'poem': AIMessage(content="Majestic bears roam,\nNature's guardians, fierce yet kind.")}, {'joke': AIMessage(content="Sure, here's a cat joke for you:\n\nWhy was the cat sitting on the computer?\n\nBecause it wanted to keep an eye on the mouse!"), 'poem': AIMessage(content="Whiskers glide, tails entwine,\nGraceful feline, nature's design.")}, {'joke': AIMessage(content="Sure, here's a dog-related joke for you:\n\nWhy don't dogs make good dancers?\n\nBecause they have two left feet!"), 'poem': AIMessage(content='Loyal companions, hearts pure and true,\nDogs bring joy, love, and laughter to you.')}]
函数执行耗时: 3.3068008899572305 秒
跳板机
https://docs.qq/doc/DRXJxV1Nad3hsb3ZL
代码
https://github/zgpeace/pets-name-langchain/tree/develop
参考
- https://blog.csdn/zgpeace/article/details/135246321