遗传算法
问题:求f(x)=x+10*sin(5x)+7*cos(4x)最大值, 0<=x<=9
新建输入文件gadata.txt,内容为:
0, 9
表示变量x的下界和上界。
新建日志文件galog.txt,用于记录计算过程及输出结果。
// GA.cpp : Defines the entry point for the console application. //
/*
这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,
Sita S.Raghavan (University of North Carolina at Charlotte)修正。
代码保证尽可能少,实际上也不必查错。 对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。
该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。
代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。 输入的文件由几行组成:数目对应于变量数。
且每一行提供次序——对应于变量的上下界。 如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。
*/ #include <stdio.h>
#include <stdlib.h>
#include <math.h> /* Change any of these parameters to match your needs */ //请根据你的需要来修改以下参数
#define POPSIZE 50 /* population size 种群大小*/
#define MAXGENS 1000 /* max. number of generations 最大基因个数*/
const int NVARS = 1; /* no. of problem variables 问题变量的个数*/
#define PXOVER 0.8 /* probability of crossover 杂交概率*/
#define PMUTATION 0.15 /* probability of mutation 变异概率*/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926int generation; /* current generation no. 当前基因个数*/
int cur_best; /* best individual 最优个体*/
FILE *galog; /* an output file 输出文件指针*/
struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/
{ double gene[NVARS]; /* a string of variables 变量*/ double fitness; /* GT's fitness 基因的适应度*/ double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/ double cfitness; /* cumulative fitness 积累适应度*/
}; struct genotype population[POPSIZE+1]; /* population 种群*/
struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*/ /* replaces the old generation */ //取代旧的基因/* Declaration of procedures used by this genetic algorithm */
//以下是一些函数声明
void initialize(void); //种群基因结构体初始化
double randval(double, double); //随机数产生函数
void evaluate(void); //评价函数,可以由用户自定义,该函数取得每个基因的适应度
void keep_the_best(void); //保存每次遗传后的最佳基因
void elitist(void); //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体
void select(void); //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存
void crossover(void); //杂交函数:选择两个个体来杂交,这里用单点杂交
void Xover(int,int); //交叉
void swap(double *, double *); //交换
void mutate(void); //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代
void report(void); //报告模拟进展情况
/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/ void initialize(void)
{ FILE *infile; int i, j; double lbound, ubound; if ((infile = fopen("gadata.txt","r"))==NULL) { fprintf(galog,"\nCannot open input file!\n"); exit(1); } /* initialize variables within the bounds */ //把输入文件的变量界限输入到基因结构体中 for (i = 0; i < NVARS; i++) { fscanf(infile, "%lf",&lbound); fscanf(infile, "%lf",&ubound); for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; //基因的适应度population[j].rfitness = 0; //比较适应度population[j].cfitness = 0; //积累适应度population[j].lower[i] = lbound; //基因变量的上界population[j].upper[i]= ubound; //基因变量的下界population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]); //变量 } } fclose(infile);
} /***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/
//随机数产生函数
double randval(double low, double high)
{ double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val);
} /*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]) */
/*************************************************************/
//评价函数,可以由用户自定义,该函数取得每个基因的适应度
void evaluate(void)
{ int mem; int i; double x[NVARS+1]; for (mem = 0; mem < POPSIZE; mem++) //种群中的每个成员{ for (i = 0; i < NVARS; i++) //问题变量x[i+1] = population[mem].gene[i]; population[mem].fitness = x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]); }
} /***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */
/***************************************************************/
//保存每次遗传后的最佳基因
void keep_the_best()
{ int mem; int i; cur_best = 0; /* stores the index of the best individual */ //保存最佳个体的索引 for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; } } /* once the best member in the population is found, copy the genes */ //一旦找到种群的最佳个体,就拷贝他的基因 for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i];
} /****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/
//搜寻杰出个体函数:找出最好和最坏的个体。
//如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体
void elitist()
{ int i; double best, worst; /* best and worst fitness values 最好和最坏个体的适应度值*/ int best_mem, worst_mem; /* indexes of the best and worst member 最好和最坏个体的 索引*/ best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ //如果新种群中的最好个体比前一代的最好个体要强的话,那么就把新种群的最好个体拷贝出来。 //否则就用前一代的最好个体取代这次的最坏个体 if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; }
} /**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/
//选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存
void select(void)
{ int mem, j, i; double sum = 0; double p; /* find total fitness of the population */ //找出种群的适应度之和 for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; } /* calculate relative fitness */ //计算相对适应度 for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; } population[0].cfitness = population[0].rfitness; /* calculate cumulative fitness */ //计算累加适应度 for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; } /* finally select survivors using cumulative fitness. */ //用累加适应度作出选择 for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p<population[j+1].cfitness) newpopulation[i] = population[j+1]; } } /* once a new population is created, copy it back */ //当一个新种群建立的时候,将其拷贝回去 for (i = 0; i < POPSIZE; i++) population[i] = newpopulation[i];
} /***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/
//杂交函数:选择两个个体来杂交,这里用单点杂交
void crossover(void)
{ int mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0; mem < POPSIZE; ++mem) { x = rand()%1000/1000.0; if (x < PXOVER) { ++first; if (first % 2 == 0) Xover(one, mem); else one = mem; } }
} /**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/
//交叉
void Xover(int one, int two)
{ int i; int point; /* crossover point */ /* select crossover point */ if(NVARS > 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1; for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]); }
} /*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/
void swap(double *x, double *y)
{ double temp; temp = *x; *x = *y; *y = temp;
} /**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/
//变异函数:被该函数选中后会使得某一变量被一个随机的值所取代
void mutate(void)
{ int i, j; double lbound, hbound; double x; for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated 确定*/ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } }
} /***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/
//报告模拟进展情况。输出文件中的数据用逗号隔开
void report(void)
{ int i; double best_val; /* best population fitness 最佳种群适应度*/ double avg; /* avg population fitness 平均种群适应度*/ double stddev; /* std. deviation of population fitness 种群适应度偏差 */ double sum_square; /* sum of square for std. calc 各个个体平方之和*/ double square_sum; /* square of sum for std. calc 平均值的平方乘个数*/ double sum; /* total population fitness 所有种群适应度之和*/ sum = 0.0; sum_square = 0.0; for (i = 0; i < POPSIZE; i++) { sum += population[i].fitness; sum_square += population[i].fitness * population[i].fitness; } avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); best_val = population[POPSIZE].fitness; fprintf(galog, "\n generation=%5d, best_val=%6.3f, avg=%6.3f, stddev=%6.3f \n\n", generation, best_val, avg, stddev);
} /**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied */
/**************************************************************/
void main(void)
{ int i; if ((galog = fopen("galog.txt","w"))==NULL) { exit(1); } generation = 0; fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); initialize(); evaluate(); //评价函数,可以由用户自定义,该函数取得每个基因的适应度keep_the_best(); //保存每次遗传后的最佳基因while(generation<MAXGENS) { generation++; select(); //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存crossover(); //杂交函数:选择两个个体来杂交,这里用单点杂交 mutate(); //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代 report(); //报告模拟进展情况evaluate(); //评价函数,可以由用户自定义,该函数取得每个基因的适应度elitist(); //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体 } fprintf(galog,"\n\n Simulation completed\n"); fprintf(galog,"\n Best member: \n"); for (i = 0; i < NVARS; i++) { fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); } fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); fclose(galog); printf("Success\n");
}
/***************************************************************/
计算结果为:
x=7.857 f(x)=24.855
注:遗传算法用来取得近似最优解,而不是最优解
遗传算法
问题:求f(x)=x+10*sin(5x)+7*cos(4x)最大值, 0<=x<=9
新建输入文件gadata.txt,内容为:
0, 9
表示变量x的下界和上界。
新建日志文件galog.txt,用于记录计算过程及输出结果。
// GA.cpp : Defines the entry point for the console application. //
/*
这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,
Sita S.Raghavan (University of North Carolina at Charlotte)修正。
代码保证尽可能少,实际上也不必查错。 对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。
该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。
代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。 输入的文件由几行组成:数目对应于变量数。
且每一行提供次序——对应于变量的上下界。 如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。
*/ #include <stdio.h>
#include <stdlib.h>
#include <math.h> /* Change any of these parameters to match your needs */ //请根据你的需要来修改以下参数
#define POPSIZE 50 /* population size 种群大小*/
#define MAXGENS 1000 /* max. number of generations 最大基因个数*/
const int NVARS = 1; /* no. of problem variables 问题变量的个数*/
#define PXOVER 0.8 /* probability of crossover 杂交概率*/
#define PMUTATION 0.15 /* probability of mutation 变异概率*/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926int generation; /* current generation no. 当前基因个数*/
int cur_best; /* best individual 最优个体*/
FILE *galog; /* an output file 输出文件指针*/
struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/
{ double gene[NVARS]; /* a string of variables 变量*/ double fitness; /* GT's fitness 基因的适应度*/ double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/ double cfitness; /* cumulative fitness 积累适应度*/
}; struct genotype population[POPSIZE+1]; /* population 种群*/
struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*/ /* replaces the old generation */ //取代旧的基因/* Declaration of procedures used by this genetic algorithm */
//以下是一些函数声明
void initialize(void); //种群基因结构体初始化
double randval(double, double); //随机数产生函数
void evaluate(void); //评价函数,可以由用户自定义,该函数取得每个基因的适应度
void keep_the_best(void); //保存每次遗传后的最佳基因
void elitist(void); //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体
void select(void); //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存
void crossover(void); //杂交函数:选择两个个体来杂交,这里用单点杂交
void Xover(int,int); //交叉
void swap(double *, double *); //交换
void mutate(void); //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代
void report(void); //报告模拟进展情况
/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/ void initialize(void)
{ FILE *infile; int i, j; double lbound, ubound; if ((infile = fopen("gadata.txt","r"))==NULL) { fprintf(galog,"\nCannot open input file!\n"); exit(1); } /* initialize variables within the bounds */ //把输入文件的变量界限输入到基因结构体中 for (i = 0; i < NVARS; i++) { fscanf(infile, "%lf",&lbound); fscanf(infile, "%lf",&ubound); for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; //基因的适应度population[j].rfitness = 0; //比较适应度population[j].cfitness = 0; //积累适应度population[j].lower[i] = lbound; //基因变量的上界population[j].upper[i]= ubound; //基因变量的下界population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]); //变量 } } fclose(infile);
} /***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/
//随机数产生函数
double randval(double low, double high)
{ double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val);
} /*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]) */
/*************************************************************/
//评价函数,可以由用户自定义,该函数取得每个基因的适应度
void evaluate(void)
{ int mem; int i; double x[NVARS+1]; for (mem = 0; mem < POPSIZE; mem++) //种群中的每个成员{ for (i = 0; i < NVARS; i++) //问题变量x[i+1] = population[mem].gene[i]; population[mem].fitness = x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]); }
} /***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */
/***************************************************************/
//保存每次遗传后的最佳基因
void keep_the_best()
{ int mem; int i; cur_best = 0; /* stores the index of the best individual */ //保存最佳个体的索引 for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; } } /* once the best member in the population is found, copy the genes */ //一旦找到种群的最佳个体,就拷贝他的基因 for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i];
} /****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/
//搜寻杰出个体函数:找出最好和最坏的个体。
//如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体
void elitist()
{ int i; double best, worst; /* best and worst fitness values 最好和最坏个体的适应度值*/ int best_mem, worst_mem; /* indexes of the best and worst member 最好和最坏个体的 索引*/ best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ //如果新种群中的最好个体比前一代的最好个体要强的话,那么就把新种群的最好个体拷贝出来。 //否则就用前一代的最好个体取代这次的最坏个体 if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; }
} /**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/
//选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存
void select(void)
{ int mem, j, i; double sum = 0; double p; /* find total fitness of the population */ //找出种群的适应度之和 for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; } /* calculate relative fitness */ //计算相对适应度 for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; } population[0].cfitness = population[0].rfitness; /* calculate cumulative fitness */ //计算累加适应度 for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; } /* finally select survivors using cumulative fitness. */ //用累加适应度作出选择 for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p<population[j+1].cfitness) newpopulation[i] = population[j+1]; } } /* once a new population is created, copy it back */ //当一个新种群建立的时候,将其拷贝回去 for (i = 0; i < POPSIZE; i++) population[i] = newpopulation[i];
} /***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/
//杂交函数:选择两个个体来杂交,这里用单点杂交
void crossover(void)
{ int mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0; mem < POPSIZE; ++mem) { x = rand()%1000/1000.0; if (x < PXOVER) { ++first; if (first % 2 == 0) Xover(one, mem); else one = mem; } }
} /**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/
//交叉
void Xover(int one, int two)
{ int i; int point; /* crossover point */ /* select crossover point */ if(NVARS > 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1; for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]); }
} /*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/
void swap(double *x, double *y)
{ double temp; temp = *x; *x = *y; *y = temp;
} /**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/
//变异函数:被该函数选中后会使得某一变量被一个随机的值所取代
void mutate(void)
{ int i, j; double lbound, hbound; double x; for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated 确定*/ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } }
} /***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/
//报告模拟进展情况。输出文件中的数据用逗号隔开
void report(void)
{ int i; double best_val; /* best population fitness 最佳种群适应度*/ double avg; /* avg population fitness 平均种群适应度*/ double stddev; /* std. deviation of population fitness 种群适应度偏差 */ double sum_square; /* sum of square for std. calc 各个个体平方之和*/ double square_sum; /* square of sum for std. calc 平均值的平方乘个数*/ double sum; /* total population fitness 所有种群适应度之和*/ sum = 0.0; sum_square = 0.0; for (i = 0; i < POPSIZE; i++) { sum += population[i].fitness; sum_square += population[i].fitness * population[i].fitness; } avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); best_val = population[POPSIZE].fitness; fprintf(galog, "\n generation=%5d, best_val=%6.3f, avg=%6.3f, stddev=%6.3f \n\n", generation, best_val, avg, stddev);
} /**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied */
/**************************************************************/
void main(void)
{ int i; if ((galog = fopen("galog.txt","w"))==NULL) { exit(1); } generation = 0; fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); initialize(); evaluate(); //评价函数,可以由用户自定义,该函数取得每个基因的适应度keep_the_best(); //保存每次遗传后的最佳基因while(generation<MAXGENS) { generation++; select(); //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存crossover(); //杂交函数:选择两个个体来杂交,这里用单点杂交 mutate(); //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代 report(); //报告模拟进展情况evaluate(); //评价函数,可以由用户自定义,该函数取得每个基因的适应度elitist(); //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体 } fprintf(galog,"\n\n Simulation completed\n"); fprintf(galog,"\n Best member: \n"); for (i = 0; i < NVARS; i++) { fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); } fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); fclose(galog); printf("Success\n");
}
/***************************************************************/
计算结果为:
x=7.857 f(x)=24.855
注:遗传算法用来取得近似最优解,而不是最优解