最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

水下视觉SLAM图像增强研究

IT圈 admin 46浏览 0评论

2024年1月13日发(作者:旅小凝)

信息技术Doi:

10.19661/.2020.04.005!借息技术】水下视觉SLAM图像增强研究张阳%.

2,

*,徐爽0,朱建军%,2,

3,李海森%,2,

*(1.哈尔滨工程大学水声技术重点实验室哈尔滨15000%;

2.海洋信息获取与安全工信部重点实验室工业和信息化部哈尔滨%5000%;

3.哈尔滨工程大学水声工程学院哈尔滨%5000%;4.中国石油集团工程技术研究有限公司天津30045%)摘要针对水下图像质量降低导致视觉SLAM中图像特征点提取与匹配数量减少的情况,提出一种采用图像增强算

法改善对比度提高图像特征匹配数量的方法。本文分析了水下图像在水体吸收和散射作用下导致图像质量下降,以及

由此造成的视觉SLAM定位精度降低的原因。对比了空域和频域图像增强算法,选择直方图均衡化作为图像预处理方

法,研究了直方图均衡化过程。在实际海域分别采集了对比度不同的两组图像,利用ORB特征法进行特征提取与匹

配。实验表明,图像增强对水下图像特征点提取、匹配数量以及正确匹配数量均具有较大改善,特别是对比度不高的

图像,效果更为明显。关键词水下视觉;SLAM;图像增强;特征提取;特征匹配中图分类号P229Underwater

Visual

SLAM

Image

Enhancement

ResearchZHANG

Yang%,2,

3,

XU

Shuang4,

ZHU

Jianjun%,2,

3,

LI

Haisen%,2,

3(%.

Acoustic Science

and

Technology

Laboratory,

Harbin

Engineering

University,

Harbin

15000%,

China;2.

Key

Laboratory

of

Marine

Information

Acquisition

and

Security

(Harbin

Engineering

University),

Ministry

of

Industry

andInformation

Technology,

Harbin

15000%,

China;

3.

College of

Underwater

Acoustic

Engineering,

Harbin

Engineering

University,Harbin

%5000%,

China;

4.

Research

Institute

of

Engineering

Technology,

CNPC,

Tianjin

30045%,

China)Abstract

Against

the

reduced

number

of

feature

points

extracted

and

matched

in

visual

SLAM

due

to

the

degradation

of

underwater

image

quality, a

method

using

image

enhancement

algorithms

to

improve

the

contrast

and

increase

the

number

of

feature

matches

in

the

image

was

proposed.

This

paper

analyzes

the

reasons

for

the

degradation

of

the

image

quality

caused

by

the

absorption

and

scattering

of

water

in

the

underwater

image,

and

the

reasons

for

the

decline

in

the

accuracy

of

the

visual

SLAM

positioning.

The

spatial

and

frequency

domain

image

enhancement

algorithms

are

compared.

Histogram

equalization

is

selected

as

the

image

preprocessing

method,

and

the

histogram

equalization

process

is

studied.

Two

sets

of

images

with

different

contrast

were

collected

in

the

actual

sea

area,

and

the

features

were

extracted

and

matched

using

the

ORB

feature

method.

Experiments

show

that

image

enhancement

has

greatly

improved

the

feature

point

extraction,

the

number

of

matches,

and

the

number

of

correct

matches

in

underwater

images,

especially for

images with

low

ds

underwater

visual;

SLAM;

image

enhancement;

feature

extraction;

feature

matching收稿日期:2020-09-0%项目支撑:国家重点研发计划项目(2017YFC0306000);国家重点研发计划项目(20%,Y(F02%2203);深水油气开发海工关键技术研

究(20%9A-%0%%)$||海洋信2020年第4期29

||

2024年1月13日发(作者:旅小凝)

信息技术Doi:

10.19661/.2020.04.005!借息技术】水下视觉SLAM图像增强研究张阳%.

2,

*,徐爽0,朱建军%,2,

3,李海森%,2,

*(1.哈尔滨工程大学水声技术重点实验室哈尔滨15000%;

2.海洋信息获取与安全工信部重点实验室工业和信息化部哈尔滨%5000%;

3.哈尔滨工程大学水声工程学院哈尔滨%5000%;4.中国石油集团工程技术研究有限公司天津30045%)摘要针对水下图像质量降低导致视觉SLAM中图像特征点提取与匹配数量减少的情况,提出一种采用图像增强算

法改善对比度提高图像特征匹配数量的方法。本文分析了水下图像在水体吸收和散射作用下导致图像质量下降,以及

由此造成的视觉SLAM定位精度降低的原因。对比了空域和频域图像增强算法,选择直方图均衡化作为图像预处理方

法,研究了直方图均衡化过程。在实际海域分别采集了对比度不同的两组图像,利用ORB特征法进行特征提取与匹

配。实验表明,图像增强对水下图像特征点提取、匹配数量以及正确匹配数量均具有较大改善,特别是对比度不高的

图像,效果更为明显。关键词水下视觉;SLAM;图像增强;特征提取;特征匹配中图分类号P229Underwater

Visual

SLAM

Image

Enhancement

ResearchZHANG

Yang%,2,

3,

XU

Shuang4,

ZHU

Jianjun%,2,

3,

LI

Haisen%,2,

3(%.

Acoustic Science

and

Technology

Laboratory,

Harbin

Engineering

University,

Harbin

15000%,

China;2.

Key

Laboratory

of

Marine

Information

Acquisition

and

Security

(Harbin

Engineering

University),

Ministry

of

Industry

andInformation

Technology,

Harbin

15000%,

China;

3.

College of

Underwater

Acoustic

Engineering,

Harbin

Engineering

University,Harbin

%5000%,

China;

4.

Research

Institute

of

Engineering

Technology,

CNPC,

Tianjin

30045%,

China)Abstract

Against

the

reduced

number

of

feature

points

extracted

and

matched

in

visual

SLAM

due

to

the

degradation

of

underwater

image

quality, a

method

using

image

enhancement

algorithms

to

improve

the

contrast

and

increase

the

number

of

feature

matches

in

the

image

was

proposed.

This

paper

analyzes

the

reasons

for

the

degradation

of

the

image

quality

caused

by

the

absorption

and

scattering

of

water

in

the

underwater

image,

and

the

reasons

for

the

decline

in

the

accuracy

of

the

visual

SLAM

positioning.

The

spatial

and

frequency

domain

image

enhancement

algorithms

are

compared.

Histogram

equalization

is

selected

as

the

image

preprocessing

method,

and

the

histogram

equalization

process

is

studied.

Two

sets

of

images

with

different

contrast

were

collected

in

the

actual

sea

area,

and

the

features

were

extracted

and

matched

using

the

ORB

feature

method.

Experiments

show

that

image

enhancement

has

greatly

improved

the

feature

point

extraction,

the

number

of

matches,

and

the

number

of

correct

matches

in

underwater

images,

especially for

images with

low

ds

underwater

visual;

SLAM;

image

enhancement;

feature

extraction;

feature

matching收稿日期:2020-09-0%项目支撑:国家重点研发计划项目(2017YFC0306000);国家重点研发计划项目(20%,Y(F02%2203);深水油气开发海工关键技术研

究(20%9A-%0%%)$||海洋信2020年第4期29

||

发布评论

评论列表 (0)

  1. 暂无评论