2024年3月16日发(作者:友漫)
误差修正模型:
如果用两个变量,人均消费
y
和人均收入
x
(从格林的数据获得)来研究误差修正模型。 令
z=
(
y x
)'
则模型为:
k
LZ
t
二
A
o
二
Z
二.7
PfZ
tj
亠二
t
i 4
其中,二-「_'
如果令
k =1
,即滞后项为
1
,则模型为
LZ
t
= Ao
• P^Z
t 1 ■
;
t
实际上为两个方程的估计:
yt
二
ay bnyt □
,皿人」-皿細」-
Pi^"
:
xtj ■
M
t
-
x
t -
a
x
b
21
y
t 1
b
22
x
t J '
p
21=
y
t
二
'
p
22=
x
t
」■
;
2t
用
OlS
命令做出的结果:
gen t=_n
tsset t
time variable: t, 1 to 204
gen ly=L.y
(1 miss ing value gen erated)
gen lx=L.x
(1 miss ing value gen erated)
reg D.y ly lx
Source |
+
SS df MS
Number of obs = 202
F( 4, 197) = 21.07
Model | 37251.2525
Residual |
87073.3154
+
Total | 124324.568
4 9312.81313
Prob > F = 0.0000
197 441.996525
R-squared = 0.2996
Adj R-squared = 0.2854
201 618.530189
Root MSE = 21.024
D.y |
+
ly |
Coef.
.0417242
Std. Err.
.0187553
.0171217
t
2.22
-1.86
P>|t|
0.027
0.064
[95% Con f. I nterval]
.0047371
-.0656228
.0787112
.001908
.2717552
lx | -.0318574
ly |
D1. |
.1093189
.082368
1.33
0.186
-.0531173
lx |
D1. |
cons |
这是
y
t
^a
y
.0792758
2.533504
.0566966
3.757158
4
1.40
0.67
0.164
0.501
-.0325344
-4.875909
.1910861
bny
t
4
th
2
x
t
' P
1
「
y
t4
'卩册叹二’
;
1t
9.942916
的回归结果,其中
a
y
=2.5335
,
b
ii
=0.04172
,
b
i2
= -0.03186
,
p
ii
=0.10932
,
p
i2
=0.07928
同理可得
Lx
t
= a
b
i
y
j
x2t
bx
td
-
22
p
i
二
y
」
-p
^
x
tJ
2t2
■
;
2t
的回归结果,见下
reg D.x ly lx
Source |
+
SS
df
MS Number of obs =
Model | 36530.2795
Residual | 160879.676
+
4 9132.56988
197 816.648101
F( 4, 197)=
8
Prob > F =
0.0000
R-squared = 0.1850
Adj R-squared = 0.1685
Root MSE = 28.577
202
11.1
Total | 197409.955 201 982.139082
D.x |
------------ + -------
ly 1
Coef.
.037608
Std. Err. t
1.48
-1.32
P>|t|
0.142
0.188
[95% Con if. I
nterval]
-.0126676
-.0766694
.0254937
.0232732
.111961
.0878836
.0151237
.635743
4
lx | -.0307729
ly 1
D1. |
.4149475 3.71
0.000
.1941517
lx |
D1. |
_cons |
-.1812014
11.20186
.0770664
5.10702
-2.35
2.19
0.020
0.029
-.3331825
1.130419
-.0292203
21.27331
2024年3月16日发(作者:友漫)
误差修正模型:
如果用两个变量,人均消费
y
和人均收入
x
(从格林的数据获得)来研究误差修正模型。 令
z=
(
y x
)'
则模型为:
k
LZ
t
二
A
o
二
Z
二.7
PfZ
tj
亠二
t
i 4
其中,二-「_'
如果令
k =1
,即滞后项为
1
,则模型为
LZ
t
= Ao
• P^Z
t 1 ■
;
t
实际上为两个方程的估计:
yt
二
ay bnyt □
,皿人」-皿細」-
Pi^"
:
xtj ■
M
t
-
x
t -
a
x
b
21
y
t 1
b
22
x
t J '
p
21=
y
t
二
'
p
22=
x
t
」■
;
2t
用
OlS
命令做出的结果:
gen t=_n
tsset t
time variable: t, 1 to 204
gen ly=L.y
(1 miss ing value gen erated)
gen lx=L.x
(1 miss ing value gen erated)
reg D.y ly lx
Source |
+
SS df MS
Number of obs = 202
F( 4, 197) = 21.07
Model | 37251.2525
Residual |
87073.3154
+
Total | 124324.568
4 9312.81313
Prob > F = 0.0000
197 441.996525
R-squared = 0.2996
Adj R-squared = 0.2854
201 618.530189
Root MSE = 21.024
D.y |
+
ly |
Coef.
.0417242
Std. Err.
.0187553
.0171217
t
2.22
-1.86
P>|t|
0.027
0.064
[95% Con f. I nterval]
.0047371
-.0656228
.0787112
.001908
.2717552
lx | -.0318574
ly |
D1. |
.1093189
.082368
1.33
0.186
-.0531173
lx |
D1. |
cons |
这是
y
t
^a
y
.0792758
2.533504
.0566966
3.757158
4
1.40
0.67
0.164
0.501
-.0325344
-4.875909
.1910861
bny
t
4
th
2
x
t
' P
1
「
y
t4
'卩册叹二’
;
1t
9.942916
的回归结果,其中
a
y
=2.5335
,
b
ii
=0.04172
,
b
i2
= -0.03186
,
p
ii
=0.10932
,
p
i2
=0.07928
同理可得
Lx
t
= a
b
i
y
j
x2t
bx
td
-
22
p
i
二
y
」
-p
^
x
tJ
2t2
■
;
2t
的回归结果,见下
reg D.x ly lx
Source |
+
SS
df
MS Number of obs =
Model | 36530.2795
Residual | 160879.676
+
4 9132.56988
197 816.648101
F( 4, 197)=
8
Prob > F =
0.0000
R-squared = 0.1850
Adj R-squared = 0.1685
Root MSE = 28.577
202
11.1
Total | 197409.955 201 982.139082
D.x |
------------ + -------
ly 1
Coef.
.037608
Std. Err. t
1.48
-1.32
P>|t|
0.142
0.188
[95% Con if. I
nterval]
-.0126676
-.0766694
.0254937
.0232732
.111961
.0878836
.0151237
.635743
4
lx | -.0307729
ly 1
D1. |
.4149475 3.71
0.000
.1941517
lx |
D1. |
_cons |
-.1812014
11.20186
.0770664
5.10702
-2.35
2.19
0.020
0.029
-.3331825
1.130419
-.0292203
21.27331