最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

stata-误差修正模型讲解

IT圈 admin 60浏览 0评论

2024年3月16日发(作者:友漫)

误差修正模型:

如果用两个变量,人均消费

y

和人均收入

x

(从格林的数据获得)来研究误差修正模型。 令

z=

y x

)'

则模型为:

k

LZ

t

A

o

Z

二.7

PfZ

tj

亠二

t

i 4

其中,二-「_'

如果令

k =1

,即滞后项为

1

,则模型为

LZ

t

= Ao

• P^Z

t 1 ■

t

实际上为两个方程的估计:

yt

ay bnyt □

,皿人」-皿細」-

Pi^"

xtj ■

M

t

-

x

t -

a

x

b

21

y

t 1

b

22

x

t J '

p

21=

y

t

'

p

22=

x

t

」■

2t

OlS

命令做出的结果:

gen t=_n

tsset t

time variable: t, 1 to 204

gen ly=L.y

(1 miss ing value gen erated)

gen lx=L.x

(1 miss ing value gen erated)

reg D.y ly lx

Source |

+

SS df MS

Number of obs = 202

F( 4, 197) = 21.07

Model | 37251.2525

Residual |

87073.3154

+

Total | 124324.568

4 9312.81313

Prob > F = 0.0000

197 441.996525

R-squared = 0.2996

Adj R-squared = 0.2854

201 618.530189

Root MSE = 21.024

D.y |

+

ly |

Coef.

.0417242

Std. Err.

.0187553

.0171217

t

2.22

-1.86

P>|t|

0.027

0.064

[95% Con f. I nterval]

.0047371

-.0656228

.0787112

.001908

.2717552

lx | -.0318574

ly |

D1. |

.1093189

.082368

1.33

0.186

-.0531173

lx |

D1. |

cons |

这是

y

t

^a

y

.0792758

2.533504

.0566966

3.757158

4

1.40

0.67

0.164

0.501

-.0325344

-4.875909

.1910861

bny

t

4

th

2

x

t

' P

1

y

t4

'卩册叹二’

1t

9.942916

的回归结果,其中

a

y

=2.5335

b

ii

=0.04172

,

b

i2

= -0.03186

,

p

ii

=0.10932

,

p

i2

=0.07928

同理可得

Lx

t

= a

b

i

y

j

x2t

bx

td

-

22

p

i

y

-p

^

x

tJ

2t2

2t

的回归结果,见下

reg D.x ly lx

Source |

+

SS

df

MS Number of obs =

Model | 36530.2795

Residual | 160879.676

+

4 9132.56988

197 816.648101

F( 4, 197)=

8

Prob > F =

0.0000

R-squared = 0.1850

Adj R-squared = 0.1685

Root MSE = 28.577

202

11.1

Total | 197409.955 201 982.139082

D.x |

------------ + -------

ly 1

Coef.

.037608

Std. Err. t

1.48

-1.32

P>|t|

0.142

0.188

[95% Con if. I

nterval]

-.0126676

-.0766694

.0254937

.0232732

.111961

.0878836

.0151237

.635743

4

lx | -.0307729

ly 1

D1. |

.4149475 3.71

0.000

.1941517

lx |

D1. |

_cons |

-.1812014

11.20186

.0770664

5.10702

-2.35

2.19

0.020

0.029

-.3331825

1.130419

-.0292203

21.27331

2024年3月16日发(作者:友漫)

误差修正模型:

如果用两个变量,人均消费

y

和人均收入

x

(从格林的数据获得)来研究误差修正模型。 令

z=

y x

)'

则模型为:

k

LZ

t

A

o

Z

二.7

PfZ

tj

亠二

t

i 4

其中,二-「_'

如果令

k =1

,即滞后项为

1

,则模型为

LZ

t

= Ao

• P^Z

t 1 ■

t

实际上为两个方程的估计:

yt

ay bnyt □

,皿人」-皿細」-

Pi^"

xtj ■

M

t

-

x

t -

a

x

b

21

y

t 1

b

22

x

t J '

p

21=

y

t

'

p

22=

x

t

」■

2t

OlS

命令做出的结果:

gen t=_n

tsset t

time variable: t, 1 to 204

gen ly=L.y

(1 miss ing value gen erated)

gen lx=L.x

(1 miss ing value gen erated)

reg D.y ly lx

Source |

+

SS df MS

Number of obs = 202

F( 4, 197) = 21.07

Model | 37251.2525

Residual |

87073.3154

+

Total | 124324.568

4 9312.81313

Prob > F = 0.0000

197 441.996525

R-squared = 0.2996

Adj R-squared = 0.2854

201 618.530189

Root MSE = 21.024

D.y |

+

ly |

Coef.

.0417242

Std. Err.

.0187553

.0171217

t

2.22

-1.86

P>|t|

0.027

0.064

[95% Con f. I nterval]

.0047371

-.0656228

.0787112

.001908

.2717552

lx | -.0318574

ly |

D1. |

.1093189

.082368

1.33

0.186

-.0531173

lx |

D1. |

cons |

这是

y

t

^a

y

.0792758

2.533504

.0566966

3.757158

4

1.40

0.67

0.164

0.501

-.0325344

-4.875909

.1910861

bny

t

4

th

2

x

t

' P

1

y

t4

'卩册叹二’

1t

9.942916

的回归结果,其中

a

y

=2.5335

b

ii

=0.04172

,

b

i2

= -0.03186

,

p

ii

=0.10932

,

p

i2

=0.07928

同理可得

Lx

t

= a

b

i

y

j

x2t

bx

td

-

22

p

i

y

-p

^

x

tJ

2t2

2t

的回归结果,见下

reg D.x ly lx

Source |

+

SS

df

MS Number of obs =

Model | 36530.2795

Residual | 160879.676

+

4 9132.56988

197 816.648101

F( 4, 197)=

8

Prob > F =

0.0000

R-squared = 0.1850

Adj R-squared = 0.1685

Root MSE = 28.577

202

11.1

Total | 197409.955 201 982.139082

D.x |

------------ + -------

ly 1

Coef.

.037608

Std. Err. t

1.48

-1.32

P>|t|

0.142

0.188

[95% Con if. I

nterval]

-.0126676

-.0766694

.0254937

.0232732

.111961

.0878836

.0151237

.635743

4

lx | -.0307729

ly 1

D1. |

.4149475 3.71

0.000

.1941517

lx |

D1. |

_cons |

-.1812014

11.20186

.0770664

5.10702

-2.35

2.19

0.020

0.029

-.3331825

1.130419

-.0292203

21.27331

发布评论

评论列表 (0)

  1. 暂无评论