最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

matlab章课后作业

IT圈 admin 32浏览 0评论

2024年4月1日发(作者:邰乐心)

>> c*d

ans =

255

2.计算

(1)sin(60)

(2)e^3

(3)cos(3π/4)

>> sind(60)

ans =

0.8660

>> exp(3)

ans =

20.0855

>> cos(3*pi/4)

ans =

-0.7071

3.设u=2,v=3,计算:

(1)

(2)

(3)

>> u=2;

>> v=3;

>> 4*u*v/log(v)

ans =

21.8457

>> (exp(u)+v)^2/(v^2-u) ans =

15.4189

>> sqrt(u-3*v)/(u*v) ans =

0 + 0.4410i 4.计算如下表达式:

(1)

(2)

>> (3-5*i)*(4+2*i)

ans =

22.0000 -14.0000i >> sin(2-8*i)

1.3553e+003 +6.2026e+002i

4 3 0 -6

5 -34

>> vecB=[vec2 vec1]

vecB =

Columns 1 through 8

43 2 5 7 3 3 6253 3

Columns 9 through 16

4 3 0 -6

5 -34 4 5 2

Columns 17 through 24

8 4 7 2 64 2 57 2

Columns 25 through 26

45 7

>> small=vec<45

small =

Columns 1 through 17

1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1

Columns 18 through 26

1 1 0 1 1 1 1 1 1

>> vecS=vec(small)

vecS =

Columns 1 through 17

4 5 2 8 4 7 2 2 2 7 43 2 5 7 3 3 3

4 3 0 -6

5 -34

>> vec3R=vec(end:-3:1)

vec3R =

Columns 1 through 8

-34 3 6253 7 43 2 64 4

Column 9

5

>> vecN=find(vec==2|vec==4)

vecN =

1 3 5 7 9 11 15 22

>> [value]=vecN(find(mod(vecN,2)))

y_liner(i)=interp1(x,y,scalar_x(i),'liner');

y_spline(i)=interp1(x,y,scalar_x(i),'spline');

y_cubic(i)=interp1(x,y,scalar_x(i),'cubic');

end

subplot(2,2,1),plot(x,y,'*'),hold

on,plot(scalar_x,y_nearest),title('nearest'); %输出

subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_liner),title('linear'); subplot(2,2,3),plot(x,y,'*'),hold

on,plot(scalar_x,y_spline),title('spline'); subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('cubic');

2. 2. 求下列函数的解,并绘制图形。

(1) y=e x-x5,初始点为x=8.

(2) y=xsin(x)

>> y=@(x)exp(x)-x^5;

>> x=fzero(y,8)

x =

12.7132

>> fplot(y,[10,14]);

>> hold on

>> plot(x,y(x),'r*')

>>y=@(x)x*sin(x);

>> x=fzero(y,0)

x =

3.求下列函数的极值。

(1) z=x2-(y-1)2

(2) z=(x-y+1)2

>> z=@(x)x(1)^2-(x(2)-1)^2;

>> [x,fvalue]=fminsearch(z,[-1,1])

Exiting: Maximum number of function evaluations has been exceeded

- increase MaxFunEvals option.

x =

1.0e+043 *

1.1138 1.2383

fvalue =

-2.9279e+085

>> z = @(x)(x(1)-x(2)+1)^2;

>> [x,fvalue]=fminsearch(z,[-1,1])

x =

>> ezplot(g,[-2,2])

7. 计算下列各式

(1)

(2),求

(3),求,,

(4),

>> limit(sym('(tan(x)-sin(x))/(1-cos(2*x))'))

ans =

>> y=sym('x^3-2*x^2+sin(x)')

y =

sin(x) - 2*x^2 + x^3

>> diff(y)

ans =

cos(x) - 4*x + 3*x^2

>> f=sym('x*y*log(x+y)')

f =

x*y*log(x + y)

>> diff(f,'x')

ans =

y*log(x + y) + (x*y)/(x + y)

>> diff(f,'y')

ans =

x*log(x + y) + (x*y)/(x + y)

>> y=sym('ln(1+t)')

y =

log(t + 1)

>> int(y)

ans =

(log(t + 1) - 1)*(t + 1)

>> int(y,0,27)

ans =

28*log(28) - 27

8.计算下列各式

(1)

(2)

2024年4月1日发(作者:邰乐心)

>> c*d

ans =

255

2.计算

(1)sin(60)

(2)e^3

(3)cos(3π/4)

>> sind(60)

ans =

0.8660

>> exp(3)

ans =

20.0855

>> cos(3*pi/4)

ans =

-0.7071

3.设u=2,v=3,计算:

(1)

(2)

(3)

>> u=2;

>> v=3;

>> 4*u*v/log(v)

ans =

21.8457

>> (exp(u)+v)^2/(v^2-u) ans =

15.4189

>> sqrt(u-3*v)/(u*v) ans =

0 + 0.4410i 4.计算如下表达式:

(1)

(2)

>> (3-5*i)*(4+2*i)

ans =

22.0000 -14.0000i >> sin(2-8*i)

1.3553e+003 +6.2026e+002i

4 3 0 -6

5 -34

>> vecB=[vec2 vec1]

vecB =

Columns 1 through 8

43 2 5 7 3 3 6253 3

Columns 9 through 16

4 3 0 -6

5 -34 4 5 2

Columns 17 through 24

8 4 7 2 64 2 57 2

Columns 25 through 26

45 7

>> small=vec<45

small =

Columns 1 through 17

1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1

Columns 18 through 26

1 1 0 1 1 1 1 1 1

>> vecS=vec(small)

vecS =

Columns 1 through 17

4 5 2 8 4 7 2 2 2 7 43 2 5 7 3 3 3

4 3 0 -6

5 -34

>> vec3R=vec(end:-3:1)

vec3R =

Columns 1 through 8

-34 3 6253 7 43 2 64 4

Column 9

5

>> vecN=find(vec==2|vec==4)

vecN =

1 3 5 7 9 11 15 22

>> [value]=vecN(find(mod(vecN,2)))

y_liner(i)=interp1(x,y,scalar_x(i),'liner');

y_spline(i)=interp1(x,y,scalar_x(i),'spline');

y_cubic(i)=interp1(x,y,scalar_x(i),'cubic');

end

subplot(2,2,1),plot(x,y,'*'),hold

on,plot(scalar_x,y_nearest),title('nearest'); %输出

subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_liner),title('linear'); subplot(2,2,3),plot(x,y,'*'),hold

on,plot(scalar_x,y_spline),title('spline'); subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('cubic');

2. 2. 求下列函数的解,并绘制图形。

(1) y=e x-x5,初始点为x=8.

(2) y=xsin(x)

>> y=@(x)exp(x)-x^5;

>> x=fzero(y,8)

x =

12.7132

>> fplot(y,[10,14]);

>> hold on

>> plot(x,y(x),'r*')

>>y=@(x)x*sin(x);

>> x=fzero(y,0)

x =

3.求下列函数的极值。

(1) z=x2-(y-1)2

(2) z=(x-y+1)2

>> z=@(x)x(1)^2-(x(2)-1)^2;

>> [x,fvalue]=fminsearch(z,[-1,1])

Exiting: Maximum number of function evaluations has been exceeded

- increase MaxFunEvals option.

x =

1.0e+043 *

1.1138 1.2383

fvalue =

-2.9279e+085

>> z = @(x)(x(1)-x(2)+1)^2;

>> [x,fvalue]=fminsearch(z,[-1,1])

x =

>> ezplot(g,[-2,2])

7. 计算下列各式

(1)

(2),求

(3),求,,

(4),

>> limit(sym('(tan(x)-sin(x))/(1-cos(2*x))'))

ans =

>> y=sym('x^3-2*x^2+sin(x)')

y =

sin(x) - 2*x^2 + x^3

>> diff(y)

ans =

cos(x) - 4*x + 3*x^2

>> f=sym('x*y*log(x+y)')

f =

x*y*log(x + y)

>> diff(f,'x')

ans =

y*log(x + y) + (x*y)/(x + y)

>> diff(f,'y')

ans =

x*log(x + y) + (x*y)/(x + y)

>> y=sym('ln(1+t)')

y =

log(t + 1)

>> int(y)

ans =

(log(t + 1) - 1)*(t + 1)

>> int(y,0,27)

ans =

28*log(28) - 27

8.计算下列各式

(1)

(2)

发布评论

评论列表 (0)

  1. 暂无评论