2024年4月10日发(作者:廉恬谧)
y=2的x次方的图像如下:
这种函数叫做幂函数,幂函数是基本初等函数之一。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数
为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:
y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料
幂函数的性质:
正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1
时,导数值逐渐减小,趋近于0(函数值递增);
负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶
函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,
自变量趋近+∞,函数值趋近0。
零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
2024年4月10日发(作者:廉恬谧)
y=2的x次方的图像如下:
这种函数叫做幂函数,幂函数是基本初等函数之一。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数
为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:
y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料
幂函数的性质:
正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1
时,导数值逐渐减小,趋近于0(函数值递增);
负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶
函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,
自变量趋近+∞,函数值趋近0。
零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。