2024年5月20日发(作者:理依波)
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
DDP 4Gb B-die DDR3 SDRAM Specification
78 FBGA with Lead-Free & Halogen-Free
(RoHS Compliant)
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT
GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure could result in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
Page 1 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Year
2009 - First release
History
Revision History
Revision
1.0
Month
March
Page 2 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Table Contents
1.0 Ordering Information ...................................................................................................................5
2.0 Key Features ................................................................................................................................5
3.0 Package pinout/Mechanical Dimension & Addressing ............................................................6
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package
..............................................................6
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package
..............................................................7
3.3 FBGA Package Dimension (x4)
.....................................................................................................8
3.4 FBGA Package Dimension (x8)
.....................................................................................................9
4.0 Input/Output Functional Description .......................................................................................10
5.0 DDR3 SDRAM Addressing ........................................................................................................11
6.0 Absolute Maximum Ratings ......................................................................................................12
6.1 Absolute Maximum DC Ratings
...................................................................................................12
6.2 DRAM Component Operating Temperature Range
.........................................................................12
7.0 AC & DC Operation Conditions ................................................................................................12
7.1 Recommended DC operating Conditions (SSTL_1.5)
.....................................................................12
8.0 AC & DC Input Measurement Levels ........................................................................................13
8.1 AC and DC Logic input levels for single-ended singnals
................................................................13
8.2 VREF Tolerances
.......................................................................................................................14
8.3 AC and DC Logic Input Levels for Ditterential Signals
...................................................................15
8.3.1 Differential signal definition
................................................................................................15
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
..............................15
8.3.3 Single-ended requirements for differential signals
.................................................................16
8.4 Differential Input Cross Point Voltage
..........................................................................................17
8.5 Slew Rate Definition for Single Ended Input Signals
......................................................................17
8.6 Slew rate definition for Differential Input Signals
...........................................................................17
9.0 AC and DC Output Measurement Levels .................................................................................18
9.1 Single Ended AC and DC Output Levels
.......................................................................................18
9.2 Differential AC and DC Output Levels
..........................................................................................18
9.3 Single Ended Output Slew Rate
...................................................................................................18
9.4 Differential Output Slew Rate
......................................................................................................19
9.5 Reference Load for AC Timing and Output Slew Rate
....................................................................19
9.6 Overshoot/Undershoot Specification
...........................................................................................20
9.6.1 Address and Control Overshoot and Undershoot specifications
.............................................20
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications
.................................20
9.7 34 ohm Output Driver DC Electrical Characteristics
.......................................................................21
9.7.1 Output Drive Temperature and Voltage sensitivity
.................................................................22
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
...............................................................22
9.8.1 ODT DC electrical characteristics
........................................................................................23
9.8.2 ODT Temperature and Voltage sensitivity
.............................................................................24
Page 3 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
9.9 ODT Timing Definitions
..............................................................................................................25
9.9.1 Test Load for ODT Timings
.................................................................................................25
9.9.2 ODT Timing Definition
........................................................................................................25
10.0 IDD Specification Parameters and Test Conditions .............................................................28
10.1 IDD Measurement Conditions
....................................................................................................28
10.2 IDD Specifications definition
.....................................................................................................30
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table .....................................................................37
12.0 Input/Output Capacitance .......................................................................................................38
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ..............................39
13.1 Clock specification
.............................................................................................................39
13.1.1 Definition for tCK (avg)
.....................................................................................................39
13.1.2 Definition for tCK (abs)
.....................................................................................................39
13.1.3 Definition for tCH(avg) and tCL(avg)
...................................................................................39
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)
........................................................................39
13.1.5 Definition for tJIT(cc), tJIT(cc,Ick)
......................................................................................39
13.1.6 Definition for tERR(nper)
...................................................................................................39
13.2 Refresh Parameters by Device Density
.......................................................................................40
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
.............................................40
13.3.1 Speed Bin
43
14.0 Timing Parameters by Speed Grade ......................................................................................44
14.1 Jitter Notes
.............................................................................................................................47
14.2 Timing Parameter Notes
...........................................................................................................48
14.3 Address / Command Setup, Hold and Derating:
...........................................................................49
14.4 Data Setup, Hold and Slew Rate Derating:
..................................................................................55
Page 4 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
1.0 Ordering Information
[ Table 1 ] Samsung DDP 4Gb DDR3 B-die ordering information table
Organization
1Gx4
512Mx8
DDR3-800 (6-6-6)
K4B4G0446B-MCF7
K4B4G0846B-MCF7
DDR3-1066 (7-7-7)
K4B4G0446B-MCF8
K4B4G0846B-MCF8
DDP 4Gb DDR3 SDRAM
DDR3-1333 (9-9-9)
K4B4G0446B-MCH9
K4B4G0846B-MCH9
Package
78 FBGA
78 FBGA
Note :
1. Speed bin is in order of CL-tRCD-tRP.
2.0 Key Features
[ Table 2 ] DDP 4Gb DDR3 B-die Speed bins
Speed
tCK(min)
CAS Latency
tRCD(min)
tRP(min)
tRAS(min)
tRC(min)
DDR3-800
6-6-6
2.5
6
15
15
37.5
52.5
DDR3-1066
7-7-7
1.875
7
13.125
13.125
37.5
50.625
DDR3-1333
9-9-9
1.5
9
13.5
13.5
36
49.5
Unit
ns
nCK
ns
ns
ns
ns
•JEDEC standard 1.5V ± 0.075V Power Supply
•V
DDQ
= 1.5V ± 0.075V
•400 MHz f
CK
for 800Mb/sec/pin, 533MHz f
CK
for 1066Mb/sec/pin,
667MHz f
CK
for 1333Mb/sec/pin
•8 Banks
•Posted CAS
•Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10
•Programmable Additive Latency: 0, CL-2 or CL-1 clock
•Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6
(DDR3-1066) and 7 (DDR3-1333)
•8-bit pre-fetch
•Burst Length: 8 (Interleave without any limit, sequential with starting
address “000” only), 4 with tCCD = 4 which does not allow seamless
read or write [either On the fly using A12 or MRS]
•Bi-directional Differential Data-Strobe
•Internal(self) calibration : Internal self calibration through ZQ pin
(RZQ : 240 ohm ± 1%)
•On Die Termination using ODT pin
•Average Refresh Period 7.8us at lower than T
CASE
85°C, 3.9us at
85°C < T
CASE
< 95 °C
•Asynchronous Reset
•Package : 78 balls FBGA - x4/x8
•All of Lead-Free products are compliant for RoHS
•All of products are Halogen-free
The DDP 4Gb DDR3 SDRAM B-die is organized as a 128Mbit x 4 I/Os x
8banks, 64Mbit x 8 I/Os x 8banks. This synchronous device achieves high
speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR3-
1333) for general applications.
The chip is designed to comply with the following key DDR3 SDRAM fea-
tures such as posted CAS, Programmable CWL, Internal (Self) Calibra-
tion, On Die Termination using ODT pin and Asynchronous Reset .
All of the control and address inputs are synchronized with a pair of exter-
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-
ion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR3 device operates
with a single 1.5V±0.075V power supply and 1.5V ±0.075V V
DDQ
.
The 4Gb DDR3 B-die device is available in 78ball FBGAs(x4/x8).
Note : 1. The functionality described and the timing specifications included
in this data sheet are for the DLL Enabled mode of operation.
Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device
Operation & Timing Diagram”.
Page 5 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
3.0 Package pinout/Mechanical Dimension & Addressing
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package
DDP 4Gb DDR3 SDRAM
1
A
B
C
D
E
F
G
H
J
K
L
M
N
V
SS
V
SS
V
DDQ
V
SSQ
V
REFDQ
ODT1
ODT0
CS1
V
SS
V
DD
V
SS
V
DD
V
SS
2
V
DD
V
SSQ
DQ2
NC
V
DDQ
V
SS
V
DD
CS0
BA0
A3
A5
A7
RESET
3
NC
DQ0
DQS
DQS
NC
RAS
CAS
WE
BA2
A0
A2
A9
A13
45 67
NC
DM
DQ1
V
DD
NC
CK
CK
A10/AP
NC
A12/BC
A1
A11
A14
8
V
SS
V
SSQ
DQ3
V
SS
NC
V
SS
V
DD
ZQ0
V
REFCA
BA1
A4
A6
A8
9
V
DD
V
DDQ
V
SSQ
V
SSQ
V
DDQ
CKE1
CKE0
ZQ1
V
SS
V
DD
V
SS
V
DD
V
SS
A
B
C
D
E
F
G
H
J
K
L
M
N
123456789
Ball Locations (x4)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
Page 6 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package
1
A
B
C
D
E
F
G
H
J
K
L
M
N
V
SS
V
SS
V
DDQ
V
SSQ
V
REFDQ
ODT1
ODT0
CS1
V
SS
V
DD
V
SS
V
DD
V
SS
2
V
DD
V
SSQ
DQ2
DQ6
V
DDQ
V
SS
V
DD
CS0
BA0
A3
A5
A7
RESET
3
NC
DQ0
DQS
DQS
DQ4
RAS
CAS
WE
BA2
A0
A2
A9
A13
45 67
NU/TDQS
DM/TDQS
DQ1
V
DD
DQ7
CK
CK
A10/AP
NC
A12/BC
A1
A11
A14
8
V
SS
V
SSQ
DQ3
V
SS
DQ5
V
SS
V
DD
ZQ0
V
REFCA
BA1
A4
A6
A8
9
V
DD
V
DDQ
V
SSQ
V
SSQ
V
DDQ
CKE1
CKE0
ZQ1
V
SS
V
DD
V
SS
V
DD
V
SS
A
B
C
D
E
F
G
H
J
K
L
M
N
123456789
Ball Locations (x8)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
Page 7 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.3 FBGA Package Dimension (x4)
Units : Millimeters
A
#A1 INDEX MARK
B
10.00 ± 0.10
0.80 x 8 = 6.40
(Datum A)
0.801.603.20
987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
4
.
8
0
0
.
8
0
(Datum B)
0
.
8
0
x
1
2
=
9
.
6
0
78 - ∅0.45 Solder ball
(Post Reflow ∅0.50 ± 0.05)
0.2MAB
BOTTOM VIEW
0
.
8
0
1
1
.
5
0
±
0
.
1
0
#A1
10.00 ± 0.10
1
1
.
5
0
±
0
.
1
0
0
.
1
0
M
A
X
0.35 ± 0.05
1.40 ± 0.10
TOP VIEW
Page 8 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.4 FBGA Package Dimension (x8)
Units : Millimeters
A
#A1 INDEX MARK
B
10.00 ± 0.10
0.80 x 8 = 6.40
(Datum A)
0.801.603.20
987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
4
.
8
0
0
.
8
0
(Datum B)
0
.
8
0
x
1
2
=
9
.
6
0
78 - ∅0.45 Solder ball
(Post Reflow ∅0.50 ± 0.05)
0.2MAB
BOTTOM VIEW
0
.
8
0
1
1
.
5
0
±
0
.
1
0
#A1
10.00 ± 0.10
1
1
.
5
0
±
0
.
1
0
0
.
1
0
M
A
X
0.35 ± 0.05
1.40 ± 0.10
TOP VIEW
Page 9 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
4.0 Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol
CK, CK
Type
Input
Function
DDP 4Gb DDR3 SDRAM
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V
REFCA
has become
stable during the power on and initialization sequence, it must be maintained during all operations (including Self-
Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on
systems with multiple Ranks. CS is considered part of the command code.
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-
grammed to disable ODT.
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-
dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a
MRS cycle.
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,
see below)
The address inputs also provide the op-code during Mode Register Set commands.
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-
formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-
formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and
20% of V
DD
, i.e. 1.20V for DC high and 0.30V for DC low.
Data Input/ Output: Bi-directional data bus.
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data
strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-
ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and
does not support single-ended.
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.
No Connect: No internal electrical connection is present.
CKEInput
CSInput
ODTInput
RAS, CAS, WE
DM
(DMU), (DML)
Input
Input
BA0 - BA2Input
A0 - A14Input
A10 / APInput
A12 / BC
Input
RESET
DQ
Input
Input/Output
DQS, (DQS)
Input/Output
TDQS, (TDQS)Output
NC
V
DDQ
V
SSQ
V
DD
V
SS
V
REFDQ
V
REFCA
ZQ
Supply
Supply
Supply
Supply
Supply
Supply
Supply
DQ Power Supply: 1.5V +/- 0.075V
DQ Ground
Power Supply: 1.5V +/- 0.075V
Ground
Reference voltage for DQ
Reference voltage for CA
Reference Pin for ZQ calibration
Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.
Page 10 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
5.0 DDR3 SDRAM Addressing
1Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
256Mb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9,
A
11
A
12
/BC
1 KB
DDP 4Gb DDR3 SDRAM
128Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9
A
12
/BC
1 KB
64Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
12
A
0
- A
9
A
12
/BC
2 KB
2Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
512Mb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9,
A
11
A
12
/BC
1 KB
256Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9
A
12
/BC
1 KB
128Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9
A
12
/BC
2 KB
4Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
1Gb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11
A
12
/BC
1 KB
512Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9
A
12
/BC
1 KB
256Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9
A
12
/BC
2 KB
8Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
2Gb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11,
A
13
A
12
/BC
2 KB
1Gb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11
A
12
/BC
2 KB
512Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9
A
12
/BC
2 KB
Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifierswhen an ACTIVE command is registered.
Page size is per bank, calculated as follows: page size = 2
COLBITS
* ORG
÷
8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
Page 11 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
6.0 Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
[ Table 4 ] Absolute Maximum DC Ratings
Symbol
V
DD
V
DDQ
V
IN,
V
OUT
T
STG
Parameter
Voltage on V
DD
pin relative to Vss
Voltage on V
DDQ
pin relative to Vss
Voltage on any pin relative to Vss
Storage Temperature
Rating
DDP 4Gb DDR3 SDRAM
Units
V
V
V
Notes
1,3
1,3
1
-0.4 V ~ 1.975 V
-0.4 V ~ 1.975 V
-0.4 V ~ 1.975 V
-55 to +100°C 1, 2
Note :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2
standard.
3. V
DD
and V
DDQ
must be within 300mV of each other at all times;and V
REF
must be not greater than 0.6 x V
DDQ
, When V
DD
and V
DDQ
are less than
500mV; V
REF
may be equal to or less than 300mV.
6.2 DRAM Component Operating Temperature Range
[ Table 5 ] Temperature Range
Symbol
T
OPER
Parameter
Operating Temperature Range
rating
0 to 95
Unit
°C
Notes
1, 2, 3
Note :
1. Operating Temperature T
OPER
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the
JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-
perature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-
teed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =
0b)
7.0 AC & DC Operation Conditions
7.1 Recommended DC operating Conditions (SSTL_1.5)
[ Table 6 ] Recommended DC Operating Conditions
Symbol
V
DD
V
DDQ
Supply Voltage
Supply Voltage for Output
Parameter
Rating
Min.
1.425
1.425
Typ.
1.5
1.5
Max.
1.575
1.575
Units
V
V
Notes
1,2
1,2
Note :
1. Under all conditions V
DDQ
must be less than or equal to V
DD
.
2. V
DDQ
tracks with V
DD
. AC parameters are measured with V
DD
and V
DDQ
tied together.
Page 12 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.0 AC & DC Input Measurement Levels
8.1 AC and DC Logic input levels for single-ended singnals
[ Table 7 ] Single Ended AC and DC input levels for Command and Address
Symbol
V
(DC)
V
(DC)
V
(AC)
V
(AC)
Parameter
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR3-800/1066
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
-
-
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
-
-
0.51*V
DD
DDP 4Gb DDR3 SDRAM
DDR3-1333/1600
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
V
REF
+150
-
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
-
V
REF
-150
0.51*V
DD
Unit
mV
mV
mV
mV
mV
mV
V
Notes
1
1
1,2
1,2
1,2
1,2
3,4
V
(AC150)
AC input logic high
V
(AC150)
AC input logic lowM
V
REFCA
(DC)
Reference Voltage for ADD,
CMD inuts
Note :
1. For input only pins except RESET, V
REF
= V
REFCA
(DC)
2. See 9.6 "Overshoot and Undershoot specifications"
3. The AC peak noise on V
REF
may not allow V
REF
to deviate from V
REF
(DC) by more than
±
1% V
DD
(for reference : approx.
±
15mV)
4. For reference : approx. V
DD
/2
±
15mV
[ Table 8 ] Single Ended AC and DC input levels for DQ and DM
SymbolParameter
DDR3-800/1066
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
V
REF
+ 150
Note 2
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
Note 2
V
REF
- 150
0.51*V
DD
Min.
V
REF
+ 100
V
SS
V
REF
+ 150
-
-
-
0.49*V
DD
DDR3-1333
Max.
V
DD
V
REF
- 100
-
V
REF
- 150
-
-
0.51*V
DD
Unit
mV
mV
mV
mV
mV
mV
V
Notes
1
1
1,2,5
1,2,5
1,2,5
1,2,5
3,4
V
(DC100)
DC input logic high
V
(DC100)
DC input logic low
V
(AC175)
AC input logic high
V
(AC175)
AC input logic low
V
(AC150)
AC input logic high
V
(AC150)
AC input logic low
V
REF
DQ
(DC)
I/O Reference Voltage(DQ)
Note :
1. For input only pins except RESET, V
REF
= V
REFDQ
(DC)
2. See "Overshoot and Undershoot specifications"
3. The AC peak noise on V
REF
may not allow V
REF
to deviate from V
REF
(DC) by more than
±
1% V
DD
(for reference : approx.
±
15mV)
4. For reference : approx. V
DD
/2
±
15mV
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).
Page 13 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.2 V
REF
Tolerances
DDP 4Gb DDR3 SDRAM
The dc-tolerance limits and ac-noise limits for the reference voltages V
REFCA
and V
REFDQ
are illustrate in Figure 1. It shows a valid reference voltage
V
REF
(t) as a function of time. (V
REF
stands for V
REFCA
and V
REFDQ
likewise).
V
REF
(DC) is the linear average of V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Fur-
thermore V
REF
(t) may temporarily deviate from V
REF
(DC) by no more than ± 1% V
DD
.
voltage
V
DD
V
SS
time
Figure 1. Illustration of V
REF
(DC) tolerance and V
REF
ac-noise limits
The voltage levels for setup and hold time measurements V
IH
(AC), V
IH
(DC), V
IL
(AC) and V
IL
(DC) are dependent on V
REF
.
"V
REF
" shall be understood as V
REF
(DC), as defined in Figure 1.
This clarifies, that dc-variations of V
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for V
REF
(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
REF
ac-noise. Timing
and voltage effects due to ac-noise on V
REF
up to the specified limit (+/-1% of V
DD
) are included in DRAM timings and their associated deratings.
Page 14 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.3 AC and DC Logic Input Levels for Ditterential Signals
8.3.1 Differential signal definition
tDVAC
V
IH
.
D
i
f
f
e
r
e
n
t
i
a
l
I
n
p
u
t
V
o
l
t
a
g
e
(
i.
e
.
D
Q
S
-
D
Q
S
,
C
K
-
C
K
)
DDP 4Gb DDR3 SDRAM
V
IH
.
0.0
half cycle
V
IL
.
V
IL
.
tDVAC
time
Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
[ Table 9 ] Defferential AC and DC Input Levels
Symbol
V
IHdiff
V
ILdiff
V
IHdiff
(AC)
V
ILdiff
(AC)
Parameter
differential input high
differential input low
differential input high ac
differential input low ac
DDR3-800/1066/1333/1600
min
+0.2
note 3
2 x (V
IH
(AC)-V
REF
)
note 3
max
note 3
-0.2
note 3
2 x (V
REF
- V
IL
(AC))
unit
V
V
V
V
Note
1
1
2
2
Notes:
1. Used to define a differential signal slew-rate.
2. for CK - CK use V
IH
/V
IL
(AC) of ADD/CMD and V
REFCA
; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use V
IH
/V
IL
(AC) of DQs and V
REFDQ
; if a
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (V
IH
(DC) max, V
IL
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet
Specification "
[ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS
Slew Rate [V/ns]
> 4.0
4.0
3.0
2.0
1.8
1.6
1.4
1.2
1.0
< 1.0
tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 350mV
min
75
57
50
38
34
29
22
13
0
0
max
-
-
-
-
-
-
-
-
-
-
tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 300mV
min
175
170
167
163
162
161
159
155
150
150
max
-
-
-
-
-
-
-
-
-
-
Page 15 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.3.3 Single-ended requirements for differential signals
DDP 4Gb DDR3 SDRAM
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for
single-ended signals.
CK and CK have to approximately reach V
SEH
min / V
SEL
max (approximately equal to the ac-levels ( V
IH
(AC) / V
IL
(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach V
SEH
min / V
SEL
max (approximately the ac-levels ( V
IH
(AC) / V
IL
(AC) ) for DQ signals) in every half-cycle
preceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V
IH
150(AC)/V
IL
150(AC) is used for ADD/CMD sig-
nals, then these ac-levels apply also for the single-ended signals CK and CK .
V
DD
or V
DDQ
V
SEH
min
V
SEH
V
DD
/2 or V
DDQ
/2
CK or DQS
V
SEL
max
V
SEL
time
Figure 3 : Single-ended requirement for differential signals.
V
SS
or V
SSQ
Note that while ADD/CMD and DQ signal requirements are with respect to V
REF
, the single-ended components of differential signals have a requirement
with respect to V
DD
/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
ended components of differential signals the requirement to reach V
SEL
max, V
SEH
min has no bearing on timing, but adds a restriction on the common
mode charateristics of these signals.
[ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol
V
SEH
V
SEL
Parameter
Single-ended high-level for strobes
Single-ended high-level for CK, CK
Single-ended low-level for strobes
Single-ended low-level for CK, CK
DDR3-800/1066/1333/1600
Min
(V
DD
/2)+0.175
(V
DD
/2)+0.175
Note3
Note3
Max
Note3
Note3
(V
DD
/2)-0.175
(V
DD
/2)-0.175
Unit
V
V
V
V
Notes
1, 2
1, 2
1,2
1,2
Notes:
1. For CK, CK use V
IH
/V
IL
(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use V
IH
/V
IL
(AC) of DQs.
2. V
IH
(AC)/V
IL
(AC) for DQs is based on V
REFDQ
; V
IH
(AC)/V
IL
(AC) for ADD/CMD is based on V
REFCA
; if a reduced ac-high or ac-low level is used for a
signal group, then the reduced level applies also here
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (V
IH
(DC) max, V
IL
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot
Specification"
Page 16 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.4 Differential Input Cross Point Voltage
DDP 4Gb DDR3 SDRAM
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage V
IX
is measured from the actual
cross point of true and complement signal to the mid level between of V
DD
and V
SS
.
V
DD
CK, DQS
V
IX
V
DD
/2
V
IX
V
IX
CK, DQS
V
SS
Figure 4. V
IX
Definition
[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)
Symbol
V
IX
V
IX
Parameter
Differential Input Cross Point Voltage relative to V
DD
/2 for CK,CK
Differential Input Cross Point Voltage relative to V
DD
/2 for DQS,DQS
DDR3-800/1066/1333/1600
Min
-150
-175
-150
Max
150
175
150
Unit
mV
mV
mV
1
Notes
Note :
1. Extended range for V
IX
is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing V
SEL
/
V
SEH
of at least V
DD
/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for V
SEL
and V
SEH
stan-
dard values.
8.5 Slew Rate Definition for Single Ended Input Signals
See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data nominal slew rate for a falling signal is
defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
8.6 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.
[ Table 13 ] Differential input slew rate definition
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
Measured
From
V
ILdiffmax
V
IHdiffmin
To
V
IHdiffmin
V
ILdiffmax
Defined by
V
IHdiffmin
- V
ILdiffmax
Delta TRdiff
V
IHdiffmin
- V
ILdiffmax
Delta TFdiff
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
V
IHdiffmin
0
V
ILdiffmax
delta TFdiff
delta TRdiff
Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK
Page 17 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.0 AC and DC Output Measurement Levels
9.1 Single Ended AC and DC Output Levels
[ Table 14 ] Single Ended AC and DC output levels
Symbol
V
OH
(DC)
V
OM
(DC)
V
OL
(DC)
V
OH
(AC)
V
OL
(AC)
Parameter
DC output high measurement level (for IV curve linearity)
DC output mid measurement level (for IV curve linearity)
DC output low measurement level (for IV curve linearity)
AC output high measurement level (for output SR)
AC output low measurement level (for output SR)
DDP 4Gb DDR3 SDRAM
DDR3-800/1066/1333/1600
0.8 x V
DDQ
0.5 x V
DDQ
0.2 x V
DDQ
V
TT
+ 0.1 x V
DDQ
V
TT
- 0.1 x V
DDQ
Units
V
V
V
V
V
Notes
1
1
Note : 1. The swing of +/-0.1 x V
DDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40
Ω
and an effective test load of 25
Ω
to V
TT
=V
DDQ
/2.
9.2 Differential AC and DC Output Levels
[ Table 15 ] Differential AC and DC output levels
Symbol
V
OHdiff
(AC)
V
OLdiff
(DC)
Parameter
AC differential output high measurement level (for output SR)
AC differential output low measurement level (for output SR)
DDR3-800/1066/1333/1600
+0.2 x V
DDQ
-0.2 x V
DDQ
Units
V
V
Notes
1
1
Note : 1. The swing of +/-0.2xV
DDQ
is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40
Ω
and an effective test load of 25
Ω
to V
TT
=V
DDQ
/2 at each of the differential outputs.
9.3 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OL
(AC) and V
OH
(AC)
for single ended signals as shown in Table 16 and figure 6.
[ Table 16 ] Single Ended Output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
Measured
From
V
OL
(AC)
V
OH
(AC)
To
V
OH
(AC)
V
OL
(AC)
Defined by
V
OH
(AC)-V
OL
(AC)
Delta TRse
V
OH
(AC)-V
OL
(AC)
Delta TFse
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 17 ] Single Ended Output slew rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
Min
2.5
Max
5
DDR3-1066
Min
2.5
Max
5
DDR3-1333
Min
2.5
Max
5
DDR3-1600
Min
TBD
Max
5
Units
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
se : Singe-ended Signals
For Ron = RZQ/7 setting
V
OH(AC)
V
TT
V
OL(AC)
delta
TFse
delta
TRse
Figure 6. Single Ended Output Slew Rate definition
Page 18 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.4 Differential Output Slew Rate
DDP 4Gb DDR3 SDRAM
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OLdiff
(AC) and
V
OHdiff
(AC) for differential signals as shown inTable 18 and figure 7.
[ Table 18 ] Differential Output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
Measured
From
V
OLdiff
(AC)
V
OHdiff
(AC)
To
V
OHdiff
(AC)
V
OLdiff
(AC)
Defined by
V
OHdiff
(AC)-V
OLdiff
(AC)
Delta TRdiff
V
OHdiff
(AC)-V
OLdiff
(AC)
Delta TFdiff
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 19 ] Differential Output slew rate
Parameter
Differential output slew rate
Symbol
SRQse
DDR3-800
Min
5
Max
10
DDR3-1066
Min
5
Max
10
DDR3-1333
Min
5
Max
10
DDR3-1600
Min
TBD
Max
10
Units
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
diff : Singe-ended Signals
For Ron = RZQ/7 setting
V
OHdiff
(AC)
V
TT
V
OLdiff
(AC)
delta
TFdiff
delta
TRdiff
Figure 7. Differential Output Slew Rate definition
9.5 Reference Load for AC Timing and Output Slew Rate
Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. Sys-
tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
V
DDQ
CK/CK
DUT
DQ
DQS
DQS
V
TT
= V
DDQ
/2
25
Ω
Reference
Point
Figure 8. Reference Load for AC Timing and Output Slew Rate
Page 19 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.6 Overshoot/Undershoot Specification
9.6.1 Address and Control Overshoot and Undershoot specifications
DDP 4Gb DDR3 SDRAM
[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)
Parameter
Maximum peak amplitude allowed for overshoot area (See Figure 9)
Maximum peak amplitude allowed for undershoot area (See Figure 9)
Maximum overshoot area above V
DD
(See Figure 9)
Maximum undershoot area below V
SS
(See Figure 9)
Specification
DDR3-800
0.4V
0.4V
0.67V-ns
0.67V-ns
DDR3-1066
0.4V
0.4V
0.5V-ns
0.5V-ns
DDR3-1333
0.4V
0.4V
0.4V-ns
0.4V-ns
DDR3-1600
0.4V
0.4V
0.33V-ns
0.33V-ns
Unit
V
V
V-ns
V-ns
MaximumAmplitude
OvershootArea
Volts
(V)
V
DD
V
SS
MaximumAmplitude
Time (ns)
UndershootArea
Figure 9. Address and Control Overshoot and Undershoot definition
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications
[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)
Parameter
Maximum peak amplitude allowed for overshoot area (See Figure 11)
Maximum peak amplitude allowed for undershoot area (See Figure 11)
Maximum overshoot area above V
DDQ
(See Figure 11)
Maximum undershoot area below V
SSQ
(See Figure 11)
Specification
DDR3-800
0.4V
0.4V
0.25V-ns
0.25V-ns
DDR3-1066
0.4V
0.4V
0.19V-ns
0.19V-ns
DDR3-1333
0.4V
0.4V
0.15V-ns
0.15V-ns
DDR3-1600
0.4V
0.4V
0.13V-ns
0.13V-ns
Unit
V
V
V-ns
V-ns
MaximumAmplitude
OvershootArea
Volts
(V)
V
DDQ
V
SSQ
MaximumAmplitude
Time (ns)
UndershootArea
Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition
Page 20 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.7 34 ohm Output Driver DC Electrical Characteristics
DDP 4Gb DDR3 SDRAM
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ
as follows:
RON
34
= RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)
RON
40
= RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm)
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows
RONpu =
V
DDQ
-V
OUT
l Iout l
V
OUT
l Iout l
under the condition that RONpu is turned off
under the condition that RONpd is turned off
RONpd =
Output Driver : Definition of Voltages and Currents
Output Driver
V
DDQ
Ipu
To
other
circuity
RON
Pu
DQ
RON
Ipd
Iout
Vout
V
SSQ
Pd
Figure 11. Output Driver : Definition of Voltages and Currents
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;
entire operating temperature range; after proper ZQ calibration
RONnomResistorVout
V
OLdc
= 0.2 x V
DDQ
RON34pd
34Ohms
RON34pu
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
RON40pd
40Ohms
RON40pu
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
Mismatch between Pull-up and Pull-down,
MMpupd
V
OMdc
= 0.5 x V
DDQ
Min
0.6
0.9
0.9
0.9
0.9
0.6
0.6
0.9
0.9
0.9
0.9
0.6
-10
Nom
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Max
1.1
1.1
1.4
1.4
1.1
1.1
1.1
1.1
1.4
1.4
1.1
1.1
10%
RZQ/6
RZQ/7
UnitsNotes
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,4
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-
tion, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that V
DDQ
= V
DD
and that V
SSQ
= V
SS
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V
DDQ
. Other calibration schemes may be used to achieve the linearity spec shown
above, e.g. calibration at 0.2 X V
DDQ
and 0.8 X V
DDQ
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V
DDQ
:
MMpupd=
RONpu - RONpd
RONnom
x 100
Page 21 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.7.1 Output Drive Temperature and Voltage sensitivity
DDP 4Gb DDR3 SDRAM
If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24.
∆T = T - T(@calibration); ∆V = V
DDQ
- V
DDQ
(@calibration); V
DD
= V
DDQ
*dR
ON
dT and dR
ON
dV are not subject to production test but are verified by design and characterization
[ Table 23 ] Output Driver Sensitivity Definition
Min
RONPU@V
OHDC
RON@V
OMDC
RONPD@
VOLDC
0.6 - dR
ON
dTH * |
∆T| - dR
ON
dVH * |∆V|
0.9 - dR
ON
dTM * |
∆T| - dR
ON
dVM * |∆V|
0.6 - dR
ON
dTL * |
∆T| - dR
ON
dVL * |∆V|
Max
1.1 + dR
ON
dTH * |
∆T| + dR
ON
dVH * |∆V|
1.1 + dR
ON
dTM * |
∆T| + dR
ON
dVM * |∆V|
1.1 + dR
ON
dTL * |
∆T| + dR
ON
dVL * |∆V|
Units
RZQ/7
RZQ/7
RZQ/7
[ Table 24 ] Output Driver Voltage and Temperature Sensitivity
Speed Bin
Min
dR
ON
dTM
dR
ON
dVM
dR
ON
dTL
dR
ON
dVL
dR
ON
dTH
dR
ON
dVH
0
0
0
0
0
0
800/1066/1333
Max
1.5
0.15
1.5
0.15
1.5
0.15
Min
0
0
0
0
0
0
1600
Max
1.5
0.13
1.5
0.13
1.5
0.13
Units
%/°C
%/mV
%/°C
%/mV
%/°C
%/mV
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as
follows :
V
DDQ
-V
OUT
l Iout l
V
OUT
l Iout l
under the condition that RTTpu is turned off
RTTpu =
under the condition that RTTpd is turned off
RTTpd =
On-Die Termination : Definition of Voltages and Currents
Chip in Termination Mode
ODT
V
DDQ
Ipu
To
other
circuitry
like
RCV,
...
Iout=Ipd-Ipu
Pu
RTT
DQ
RTT
Ipd
Iout
Pd
V
OUT
V
SSQ
Figure 12. On-Die Termination : Definition of Voltages and Currents
Page 22 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.8.1 ODT DC electrical characteristics
DDP 4Gb DDR3 SDRAM
Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT
60pd120,
RTT
60pu120,
RTT
120pd240,
RTT
120pu240,
RTT
40pd80,
RTT
40pu80,
RTT
30pd60,
RTT
30pu60,
RTT
20pd40,
RTT
20pu40
are not specification requirements, but can be used as design guide lines:
[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operationg temperature range ;
after proper ZQ calibration.
MR1 (A9,A6,A2)RTTRESISTORVout
V
OL
(DC) 0.2XV
DDQ
RTT
120pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,1,0)120 ohm
RTT
120pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
120
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,0,1)60 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
40pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,1,1)40 ohm
RTT
40pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
40
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(1,0,1)30 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(1,0,0)20 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
Min
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
-5
Nom
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Max
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
5
Unit
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/4
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/6
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/8
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/12
%
Notes
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,5,6
Deviation of V
M
w.r.t V
DDQ
/2, ∆VM
Page 23 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage
changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that V
DDQ
= V
DD
and that V
SSQ
= V
SS
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV
DDQ
. Other calibration schemes may be used to achieve the linearity
spec shown above, e.g. calibration at 0.2XV
DDQ
and 0.8XV
DDQ
.
4. Not a specification requirement, but a design guide line
5. Measurement definition for RTT:
Apply V
IH
(AC) to pin under test and measure current I(V
IH
(AC)), then apply V
IL
(AC) to pin under test and measure current I(V
IL
(AC)) perspectively
RTT =
V
IH
(AC) - V
IL
(AC)
I(V
IH
(AC)) - I(V
IL
(AC))
6. Measurement definition for V
M
and
∆
V
M
: Measure voltage (V
M
) at test pin (midpoint) with no load
∆
V
M
=
2 x
V
M
V
DDQ
- 1
x 100
9.8.2 ODT Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below
∆T = T - T(@calibration); ∆V = V
DDQ
- V
DDQ
(@calibration); V
DD
= V
DDQ
[ Table 26 ] ODT Sensitivity Definition
Min
RTT
0.9 - dR
TT
dT * |
∆T| - dR
TT
dV * |∆V|
Max
1.6 + dR
TT
dT * |
∆T| + dR
TT
dV * |∆V|
Units
RZQ/2,4,6,8,12
[ Table 27 ] ODT Voltage and Temperature Sensitivity
Min
dR
TT
dT
dR
TT
dV
0
0
Max
1.5
0.15
Units
%/°C
%/mV
These parameters may not be subject to production test. They are verified by design and characterization.
Page 24 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.9 ODT Timing Definitions
9.9.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in Figgure 13.
DDP 4Gb DDR3 SDRAM
V
DDQ
CK,CK
DUT
DQ, DM
DQS , DQS
TDQS , TDQS
RTT
=25 ohm
V
TT
=
V
SSQ
V
SSQ
Timing Reference Points
Figure 13. ODT Timing Reference Load
9.9.2 ODT Timing Definition
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided
in Table 29.
[ Table 28 ] ODT Timing Definitions
Symbol
tAON
tAONPD
tAOF
tAOFPD
tADC
Begin Point Definition
Rising edge of CK - CK defined by the end point of ODTLon
Rising edge of CK - CK with ODT being first registered high
Rising edge of CK - CK defined by the end point of ODTLoff
Rising edge of CK - CK with ODT being first registered low
Rising edge of CK - CK defined by the end point of ODTLcnw,
ODTLcwn4 of ODTLcwn8
End Point Definition
Extrapolated point at V
SSQ
Extrapolated point at V
SSQ
End point: Extrapolated point at V
RTT_Nom
End point: Extrapolated point at V
RTT_Nom
End point: Extrapolated point at V
RTT_Wr
and V
RTT_Nom
respectively
Figute
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
[ Table 29 ] Reference Settings for ODT Timing Measurements
Measured
Parameter
tAON
tAONPD
tAOF
tAOFPD
tADC
RTT_Nom Setting
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/12
RTT_Wr Setting
NA
NA
NA
NA
NA
NA
NA
NA
R
ZQ
/2
V
SW1
[V]
0.05
0.10
0.05
0.10
0.05
0.10
0.05
0.10
0.20
V
SW2
[V]
0.10
0.20
0.10
0.20
0.10
0.20
0.10
0.20
0.30
Note
Page 25 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Begin point : Rising edge of CK - CK
defined by the end point of ODTLon
CK
V
TT
CK
t
AON
T
SW2
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW1
V
SW2
V
SW1
V
SSQ
V
SSQ
End point Extrapolated point at V
SSQ
Figure 14. Definition of tAON
Begin point : Rising edge of CK - CK
with ODT being first registered high
CK
V
TT
CK
t
AONPD
T
SW2
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW1
V
SW2
V
SW1
V
SSQ
V
SSQ
End point Extrapolated point at V
SSQ
Figure 15. Definition of tAONPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLoff
CK
V
TT
CK
t
AOF
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
End point Extrapolated point at V
RTT_Nom
T
SW2
V
SW2
V
SW1
T
SW1
V
SSQ
TD_TAON_DEF
Figure 16. Definition of tAOF
Page 26 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
Begin point : Rising edge of CK - CK
with ODT being first registered low
DDP 4Gb DDR3 SDRAM
CK
V
TT
CK
t
AOFPD
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
End point Extrapolated point at V
RTT_Nom
T
SW2
V
SW2
V
SW1
T
SW1
V
SSQ
Figure 17. Definition of tAOFPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLcnw
Begin point : Rising edge of CK - CK defined by
the end point of ODTLcwn4 or ODTLcwn8
CK
V
TT
CK
t
ADC
t
ADC
End point Extrapolated point at V
RTT_Nom
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW21
End point
Extrapolated point
T
SW11
at V
RTT_Nom
V
SW1
T
SW22
T
SW12
V
RTT_Nom
V
SW2
V
RTT_Wr
End point Extrapolated point at V
RTT_Wr
V
SSQ
Figure 18. Definition of tADC
Page 27 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
10.0 IDD Specification Parameters and Test Conditions
10.1 IDD Measurement Conditions
DDP 4Gb DDR3 SDRAM
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and
IDDQ measurements.
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and
IDD7) are measured as time-averaged currents with all V
DD
balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in
IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V
DDQ
balls of the DDR3 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V
DD
and V
DDQ
are using one merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply :
- "0" and "LOW" is defined as V
IN
<= V
IL
AC(max).
- "1" and "HIGH" is defined as V
IN
>= V
IH
AC(min).
- "FLOATING" is defined as inputs are V
REF
= V
DD
/ 2.
- Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30.
- Basic IDD and IDDQ Measurement Conditions are described in Table 31.
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}
Timing parameters are listed in the following table:
[ Table 30 ] Timing used for IDD and IDDQ Measured-Loop Patterns.
Parameter Bin
tCKmin(IDD)
CL(IDD) 5
tRCDmin(IDD)
tRCmin(IDD)
tRASmin(IDD)
tRPmin(IDD)
tFAW(IDD)
tRRD(IDD)
x4/x8
x16
x4/x8
x16
5
16
20
4
4
36
44
64
120
140
5
20
15
66
DDR3-800
5-5-5
2.5
6
6
21
6
6
26
6-6-6
DDR3-1066
6-6-67-7-7
1.875
7
7
27
20
7
20
27
4
6
48
59
86
160
187
878
20
30
4
5
60
74
107
200
234
8
8
28
7
7
31
8
8
32
24
91089
24
32
5
6
72
88
128
240
280
8-8-87-7-7
DDR3-1333
8-8-89-9-9
1.5
9
9
33
10
10
34
8
8
36
9
9
37
28
1011
10-10-108-8-8
DDR3-1600
9-9-910-10-10
1.25
10
10
38
11
11
39
11-11-11
Unit
ns
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
tRFC(IDD) - 512Mb
tRFC(IDD) - 1Gb
tRFC(IDD) - 2Gb
tRFC(IDD) - 4Gb
tRFC(IDD) - 8Gb
Page 28 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions
SymbolDescription
Operating One Bank Active-Precharge Current
IDD0
DDP 4Gb DDR3 SDRAM
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address
Inputs: partially toggling according to Table 32 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...
(see Table32); Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 32
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between ACT, RD and PRE; Command, Address,
Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...
(see Table33); Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 33
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT
Signal: stable at 0; Pattern Details: see Table 34
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 35 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT
Signal: toggling according to Table 35 ; Pattern Details: see Table 35
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pecharge
Power Down Mode: Slow Exi
c)
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pecharge
Power Down Mode: Fast Exit
c)
Precharge Quiet Standby Current
IDD1
IDD2N
DD2NT
DDQ2NT
(optional)
IDD2P0
IDD2P1
IDD2Q CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Sig-
nal: stable at 0; Pattern Details: see Table 34
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling
according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Regis-
ters
b)
; ODT Signal: stable at 0; Pattern Details: see Table 36
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-
gling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0;
Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers
b)
;
ODT Signal: stable at HIGH; Pattern Details: see Table 37
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially
toggling according to Table 38 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:
Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 38
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled
d)
; Self-Refresh Temperature Range (SRT): Normal
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Self-Refresh operation;
Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
IDD3N
IDD3P
IDD4R
IDDQ4R
(optional)
IDD4W
IDD5B
IDD6
Page 29 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions
SymbolDescription
Self-Refresh Current: Extended Temperature Range (optional)
f
)
IDD6ET
DDP 4Gb DDR3 SDRAM
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled
d)
; Self-Refresh Temperature Range (SRT): Extended
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Extended Temperature
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
Auto Self-Refresh Current (optional)
f
)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled
d)
; Self-Refresh Temperature Range (SRT): Normal
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Auto
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8
a, g)
; AL: CL-1; CS: High between ACT and RDA; Command,
Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one
according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output
Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 39
IDD6TC
IDD7
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
10.2 IDD Specifications definition
Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot.
Only the following changes will be done to Chapter 10.2:
Table 53 "IDD Specification Example 512M DDR3", add the following Rows:
- Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT".
- Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT".
- Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R".
Page 30 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
(optional)
DDP 4Gb DDR3 SDRAM
I
DD
I
DDQ
V
DD
RESET
CK/CK
CKE
CS
RAS, CAS, WE
A, BA
ODT
ZQ
V
DDQ
DQS, DQS
DQ, DM,
TDQS, TDQS
R
TT
= 25 Ohm
V
DDQ
/2
V
SS
V
SSQ
[Note: DIMM level Output test load condition may be different from above ]
Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
Application specific
memory channel
environment
IDDQ
Test Load
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Measurement
Correlation
Correction
Channel IO Power
Number
Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
Page 31 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 32 ] IDD0 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1,2
3,4
...
nRAS
...
1*nRC + 0
1*nRC + 1, 2
ACT
D,D
D, D
PRE
ACT
D, D
D, D
PRE
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
0
1
0
1
1
1
0
1
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
F
0
0
0
0
0
0
0
0
repeat 4 until nRAS - 1, truncate if necessary
-
-
-
-
repeat 4 until nRC - 1, truncate if necessary
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1*nRC + 3, 4
...
1*nRC + nRAS
...
1
2
3
4
5
6
7
2*nRC
4*nRC
6*nRC
8*nRC
10*nRC
12*nRC
14*nRC
repeat 4 until 1*nRC + nRAS - 1, truncate if necessary
4 until 2*nRC - 1, truncate if necessary
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driben LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 32 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 33 ] IDD1 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1,2
3,4
...
nRCD
...
nRAS
...
1*nRC+0
1*nRC + 1, 2
ACT
D,D
D, D
RD
PRE
ACT
D, D
D, D
RD
PRE
0
1
1
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
F
F
0
0
0
0
0
0
0
0
0
0
repeat 4 until nRCD- 1, truncate if necessary
00000000
-
-
-
-
00110011
-
repeat 4 until nRAS - 1, truncate if necessary
repeat 4 until nRC - 1, truncate if necessary
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1*nRC + 3, 4
...
1*nRC + nRCD
...
1*nRC + nRAS
...
1
2
3
4
5
6
7
2*nRC
4*nRC
6*nRC
8*nRC
10*nRC
12*nRC
14*nRC
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
[ Table 34 ] IDD2 and IDD3N Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
-
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
C
K
E
R
A
S
C
A
S
O
D
T
00
1
2
3
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
W
E
C
S
0
0
1
1
0
0
0
0
0
0
0
0
00
00
00
00
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1
2
3
4
5
6
7
4-7
8-11
12-15
16-19
20-23
24-27
28-31
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 33 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 35 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1
2
3
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00
00
00
00
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1
2
3
4
5
6
7
4-7
8-11
12-15
16-19
20-23
24-27
28-31
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7
Note :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
[ Table 36 ] IDD4R and IDDQ4R Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
00000000
-
-
00110011
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
00
1
2,3
4
5
RD
D
D,D
RD
D
D,D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
W
E
C
S
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
6,7
1
2
3
4
5
6
7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
repeat Sub-Loop 0, but BA[2:0] = 1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 0, but BA[2:0] = 3
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 0, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 0, but BA[2:0] = 7
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
Page 34 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 37 ] IDD4W Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1
2,3
4
5
WR
D
D,D
WR
D
D,D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000
-
-
00110011
-
-
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
6,7
1
2
3
4
5
6
7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
repeat Sub-Loop 0, but BA[2:0] = 1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 0, but BA[2:0] = 3
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 0, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 0, but BA[2:0] = 7
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
[ Table 38 ] IDD5B Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
0
1
0
1,2
3,4
5...8
REF
D
D,D
0
1
1
0
0
1
0
0
1
W
E
C
S
1
0
1
0
0
0
0
0
0
00
00
00
0
0
0
0
0
0
0
0
F
0
0
0
repeat 4, but BA[2:0] = 1
repeat 4, but BA[2:0] = 2
repeat 4, but BA[2:0] = 3
repeat 4, but BA[2:0] = 4
repeat 4, but BA[2:0] = 5
repeat 4, but BA[2:0] = 6
repeat 4, but BA[2:0] = 7
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
9...12
13...16
17...20
21...24
25...28
29...32
RFC - 1
Note :
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 35 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 39 ] IDD7 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
0
0
1
2
...
nRRD
1
nRRD + 1
nRRD + 2
...
2
3
4
5
6
7
8
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
9
2 * nRRD
3 * nRRD
4 * nRRD
nFAW
nFAW+nRRD
nFAW+2*nRRD
nFAW+3*nRRD
nFAW+4*nRRD
2*nFAW+0
10
2*nFAW+1
2*nFAW+2
2*nFAW+nRRD
11
2*nFAW+nRRD+1
2*nFAW+nRRD+2
12
13
14
15
16
17
18
19
2*nFAW+2*nRRD
2*nFAW+3*nRRD
2*nFAW+4*nRRD
3*nFAW
3*nFAW+nRRD
3*nFAW+2*nRRD
3*nFAW+3*nRRD
3*nFAW+4*nRRD
ACT
RDA
D
ACT
RDA
D
0
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
00
00
00
00
00
00
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000
-
-
00110011
-
repeat above D Command until nRRD - 1
repeat above D Command until 2*nRRD-1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 1, but BA[2:0] = 3
D1000030000F0-
Assert and repeat above D Command until nFAW - 1, if necessary
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 1, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 1, but BA[2:0] = 7
D
ACT
RDA
D
ACT
RDA
D
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
7
0
0
0
1
1
1
00
00
00
00
00
00
00
0
0
1
0
0
1
0
0
0
0
0
0
0
0
F
F
F
F
0
0
0
0
0
0
0
0
0
0
-
-
00110011
-
-
00000000
-
Assert and repeat above D Command until 2*nFAW - 1, if necessary
Repeat above D Command until 2*nFAW + nRRD - 1
Repeat above D Command until 2*nFAW + 2*nRRD - 1
repeat Sub-Loop 10, but BA[2:0] = 2
repeat Sub-Loop 11, but BA[2:0] = 3
D1-
Assert and repeat above D Command until 3*nFAW - 1, if necessary
repeat Sub-Loop 10, but BA[2:0] = 4
repeat Sub-Loop 11, but BA[2:0] = 5
repeat Sub-Loop 10, but BA[2:0] = 6
repeat Sub-Loop 11, but BA[2:0] = 7
D1-
Assert and repeat above D Command until 4*nFAW - 1, if necessary
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.
Page 36 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table
[ Table 40 ] IDD Specification for DDP 4Gb DDR3 B-die
1Gx4 (K4B4G0446B)
Symbol
IDD0
IDD1
IDD2P0(slow exit)
IDD2P1(fast exit)
IDD2N
IDD2NT
IDD2Q
IDD3P(fast exit)
IDD3N
IDD4R
IDD4W
IDD5B
IDD6
IDD7
DDR3-800
6-6-6
100
115
24
50
70
70
60
60
85
135
140
220
24
235
DDR3-1066
7-7-7
110
125
24
50
80
80
70
70
95
160
165
225
24
250
DDR3-1333
9-9-9
115
130
24
50
80
90
70
70
100
175
180
225
24
300
DDP 4Gb DDR3 SDRAM
DDR3-1600
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Unit
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
Notes
512Mx8 (K4B4G0846B)
Symbol
IDD0
IDD1
IDD2P0(slow exit)
IDD2P1(fast exit)
IDD2N
IDD2NT
IDD2Q
IDD3P(fast exit)
IDD3N
IDD4R
IDD4W
IDD5B
IDD6
IDD7
DDR3-800
6-6-6
100
115
24
50
70
80
64
60
85
140
145
220
24
245
DDR3-1066
7-7-7
110
125
24
60
80
80
70
70
95
165
170
225
24
270
DDR3-1333
9-9-9
115
130
24
70
80
90
80
70
100
185
190
225
24
320
DDR3-1600
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
UnitNotes
Page 37 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
12.0 Input/Output Capacitance
[ Table 41 ] Input/Output Capacitance
Parameter
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance
(CK and CK)
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-onlypins)
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input/output capacitance of ZQ pin
Symbol
CIO
CCK
CDCK
CI
CDDQS
CDI_CTRL
CDI_ADD_CMD
CDIO
CZQ
DDR3-800
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDR3-1066
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDP 4Gb DDR3 SDRAM
DDR3-1333
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDR3-1600
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Units
pF
pF
pF
pF
pF
pF
pF
pF
pF
Notes
1,2,3
2,3
2,3,4
2,3,6
2,3,5
2,3,7,8
2,3,9,10
2,3,11
2, 3, 12
Note :
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER( VNA)") with V
DD
, V
DDQ
, V
SS
, V
SSQ
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary).
V
DD
=V
DDQ
=1.5V, V
BIAS
=V
DD
/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
Page 38 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600
13.1 Clock specification
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3
SDRAM device.
13.1.1 Definition for tCK (avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to
rising edge.
∑
j=1
N
tCKj
N
N=200
13.1.2 Definition for tCK (abs)
tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.
13.1.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:
∑
tCHj
j=1
N
N x tCK(avg)N=200
∑
j=1
N
tCLj
N x tCK(avg)N=200
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}
tJIT(per) defines the single period jitter when the DLL is already locked.
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
tJIT(per) and tJIT(per,lck) are not subject to production test.
13.1.5 Definition for note for tJIT(cc), tJIT(cc,Ick)
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
tJIT(cc) and tJIT(cc,lck) are not subject to production test.
13.1.6 Definition for tERR(nper)
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.
Page 39 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
13.2 Refresh Parameters by Device Density
[ Table 42 ] Refresh parameters by device density
Parameter
All Bank Refresh to active/refresh cmd time
Average periodic refresh intervaltREFI
Symbol
tRFC
0 °C ≤ T
CASE
≤ 85°C
85 °C < T
CASE
≤ 95°C
1Gb
110
7.8
3.9
DDP 4Gb DDR3 SDRAM
2Gb
160
7.8
3.9
4Gb
300
7.8
3.9
8Gb
350
7.8
3.9
Units
ns
µs
µs
Note
1
Note :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or
requirements referred to in this material.
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 43 ] DDR3-800 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6 / CWL = 5
Supported CL Settings
Supported CWL Settings
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
min
15
15
15
52.5
37.5
2.5
6
5
DDR3-800
6 - 6 - 6
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
nCK
nCK
8
1,2,3
UnitsNote
[ Table 44 ] DDR3-1066 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6
CL = 7
CL = 8
Supported CL Settings
Supported CWL Settings
CWL = 5
CWL = 6
CWL = 5
CWL = 6
CWL = 5
CWL = 6
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)1.875
6,7,8
5,6
1.875
Reserved
<2.5
min
13.125
13.125
13.125
50.625
37.5
2.5
Reserved
Reserved
<2.5
DDR3-1066
7 - 7 - 7
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
nCK
nCK
8
1,2,3,6
1,2,3,4
4
1,2,3,4
4
1,2,3
UnitsNote
Page 40 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 45 ] DDR3-1333 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CWL = 5
CL = 6CWL = 6
CWL = 7
CWL = 5
CL = 7CWL = 6
CWL = 7
CWL = 5
CL = 8CWL = 6
CWL = 7
CL = 9
CWL = 5,6
CWL = 7
CWL = 5,6
CL = 10
Supported CL Settings
Supported CWL Settings
CWL = 7
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
1.5
(Optional)
6,7,8,9
5,6,7
1.5
Reserved
1.875
Reserved
Reserved
1.875
min
13.5
(13.125)
5,9
13.5
(13.125)
5,9
13.5
(13.125)
5,9
49.5
(49.125)
5,9
36
2.5
Reserved
Reserved
Reserved
DDR3-1333
9 -9 - 9
DDP 4Gb DDR3 SDRAM
Units
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
<2.5
ns
ns
ns
<2.5ns
ns
ns
<1.875
<1.875
ns
ns
ns
ns
nCK
nCK
Note
8
1,2,3,7
1,2,3,4,7
4
4
1,2,3,4,7
1,2,3,4,
4
1,2,3,7
1,2,3,4,
4
1,2,3,4
4
1,2,3
5
(Optional) Note 5,9
Reserved
Reserved
Page 41 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 46 ] DDR3-1600 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CWL = 5
CL = 6CWL = 6
CWL = 7, 8
CWL = 5
CL = 7
CWL = 6
CWL = 7
CWL = 8
CWL = 5
CL = 8
CWL = 6
CWL = 7
CWL = 8
CWL = 5,6
CL = 9CWL = 7
CWL = 8
CWL = 5,6
CL = 10CWL = 7
CWL = 8
CL = 11
Supported CL Settings
Supported CWL Settings
CWL = 5,6,7
CWL = 8
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)1.25
6,7,8,9,10,11
5,6,7,8
1.5
Reserved
Reserved
1.5
TBD
Reserved
1.875
Reserved
Reserved
Reserved
1.875
min
13.75
(13.125)
5,9
13.75
(13.125)
5,9
13.75
(13.125)
5,9
48.75
(48.125)
5,9
35
2.5
Reserved
Reserved
Reserved
DDR3-1600
11-11-11
DDP 4Gb DDR3 SDRAM
Units
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
<2.5
ns
ns
ns
ns
<2.5ns
ns
ns
ns
<1.875
ns
ns
ns
<1.875
ns
ns
ns
<1.5ns
nCK
nCK
Note
1,2,3,8
1,2,3,4,8
4
4
1,2,3,4,8
1,2,3,4,8
4
4
1,2,3,8
1,2,3,4,8
1,2,3,4
4
1,2,3,4,8
1,2,3,4
4
1,2,3,8
1,2,3,4
4
1,2,3,5
(Optional) Note 5,9
Reserved
Reserved
Reserved
(Optional) Note 9,10
(Optional) Note 9,10
Page 42 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
13.3.1 Speed Bin Table Notes
Absolute Specification (T
OPER
; V
DDQ
= V
DD
= 1.5V +/- 0.075 V);
DDP 4Gb DDR3 SDRAM
Note :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-
filled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/
or the DIMM SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to
match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte
16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-
gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin
(Byte 21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns
(tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
Page 43 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.0 Timing Parameters by Speed Grade
[ Table 47 ] Timing Parameters by Speed Bin
Speed
Parameter
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
Clock Period
Average high pulse width
Average low pulse width
Clock Period Jitter
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
Cycle to Cycle Period Jitter during DLL locking period
Cumulative error across 2 cycles
Cumulative error across 3 cycles
Cumulative error across 4 cycles
Cumulative error across 5 cycles
Cumulative error across 6 cycles
Cumulative error across 7 cycles
Cumulative error across 8 cycles
Cumulative error across 9 cycles
Cumulative error across 10 cycles
Cumulative error across 11 cycles
Cumulative error across 12 cycles
Cumulative error across n = 13, 14 ... 49, 50 cycles
Absolute clock HIGH pulse width
Absolute clock Low pulse width
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
DQ low-impedance time from CK, CK
DQ high-impedance time from CK, CK
Data setup time to DQS, DQS referenced to
V
IH
(AC)V
IL
(AC) levels
Data hold time to DQS, DQS referenced to
V
IH
(AC)V
IL
(AC) levels
DQ and DM Input pulse width for each input
Data Strobe Timing
DQS, DQS READ Preamble
DQS, DQS differential READ Postamble
DQS, DQS output high time
DQS, DQS output low time
DQS, DQS WRITE Preamble
DQS, DQS WRITE Postamble
DQS, DQS rising edge output access time from rising
CK, CK
DQS, DQS low-impedance time (Referenced from RL-1)
DQS, DQS high-impedance time (Referenced from
RL+BL/2)
DQS, DQS differential input low pulse width
DQS, DQS differential input high pulse width
DQS, DQS rising edge to CK, CK rising edge
DQS,DQS faling edge setup time to CK, CK rising edge
DQS,DQS faling edge hold time to CK, CK rising edge
tRPRE
tRPST
tQSH
tQSL
tWPRE
tWPST
tDQSCK
tLZ(DQS)
tHZ(DQS)
tDQSL
tDQSH
tDQSS
tDSS
tDSH
0.9
0.3
0.38
0.38
0.9
0.3
-400
-800
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
400
400
400
0.55
0.55
0.25
-
-
0.9
0.3
0.38
0.38
0.9
0.3
-300
-600
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
300
300
300
0.55
0.55
0.25
-
-
tDQSQ
tQH
tLZ(DQ)
tHZ(DQ)
tDS(base)
tDH(base)
tDIPW
-
0.38
-800
-
75
150
600
200
-
400
400
-
0.38
-600
-
25
100
490
150
-
300
300
-
tCK(DLL_OF
F)
tCK(avg)
tCK(abs)
tCH(avg)
tCL(avg)
tJIT(per)
tJIT(per, lck)
tJIT(cc)
tJIT(cc, lck)
tERR(2per)
tERR(3per)
tERR(4per)
tERR(5per)
tERR(6per)
tERR(7per)
tERR(8per)
tERR(9per)
tERR(10per)
tERR(11per)
tERR(12per)
tERR(nper)
tCH(abs)
tCL(abs)
0.43
0.43
-
-
- 147
- 175
- 194
- 209
- 222
- 232
- 241
- 249
- 257
- 263
- 269
8-8-8
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
-8-ns
ps
ps
tCK(avg)
tCK(avg)
ps
ps
ps
ps
6
See Speed Bins Table
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +
tJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)max
0.47
0.47
-100
-90
200
180
0.53
0.53
100
90
0.47
0.47
-90
-80
180
160
0.53
0.53
90
80
0.47
0.47
-80
-70
160
140
0.53
0.53
80
70
0.47
0.47
-70
-60
140
120
0.53
0.53
70
60
147
175
194
209
222
232
241
249
257
263
269
- 132
- 157
- 175
- 188
- 200
- 209
- 217
- 224
- 231
- 237
- 242
132
157
175
188
200
209
217
224
231
237
242
- 118
- 140
- 155
- 168
- 177
- 186
- 193
- 200
- 205
- 210
- 215
118
140
155
168
177
186
193
200
205
210
215
-103
-122
-136
-147
-155
-163
-169
-175
-180
-184
-188
103
122
136
147
155
163
169
175
180
184
188
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps24
25
26
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
0.43
0.43
-
-
0.43
0.43
-
-
0.43
0.43
-
-
tCK(avg)
tCK(avg)
125
-
250
250
-
-
-
0.38
-450
-
10
45
360
100
-
225
225
ps
tCK(avg)
ps
ps
ps
ps
ps
13
13, g
13,14, f
13,14, f
d, 17
d, 17
28
0.38
-500
-
30
65
400
-
-
-
-
-
--
0.9
0.3
0.4
0.4
0.9
0.3
-255
-500
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
255
250
250
0.55
0.55
0.25
-
-
0.9
0.3
0.4
0.4
0.9
0.3
-225
-450
-
0.45
0.45
-0.27
0.18
0.18
Note 19
Note 11
-
-
-
-
225
225
225
0.55
0.55
0.27
-
-
tCK
tCK
tCK(avg)
tCK(avg)
tCK
tCK
ps
ps
ps
tCK
tCK
tCK(avg)
tCK(avg)
tCK(avg)
13, 19, g
11, 13, b
13, g
13, g
13,f
13,14,f
12,13,14
29, 31
30, 31
c
c, 32
c, 32
Page 44 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Tabel 47 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
Command and Address Timing
DLL locking time
internal READ Command to PRECHARGE Command
delay
Delay from start of internal write transaction to internal
read command
WRITE recovery time
Mode Register Set command cycle time
Mode Register Set command update delay
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
ACTIVE to ACTIVE command period for 1KB page size
ACTIVE to ACTIVE command period for 2KB page size
Four activate window for 1KB page size
Four activate window for 2KB page size
Command and Address setup time to CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Command and Address hold time from CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Command and Address setup time to CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Control & Address Input pulse width for each input
Calibration Timing
Power-up and RESET calibration time
Normal operation Full calibration time
Normal operation short calibration time
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked
DLL
Exit Self Refresh to commands requiring a locked DLL
Minimum CKE low width for Self refresh entry to exit
timing
Valid Clock Requirement after Self Refresh Entry
(SRE) or Power-Down Entry (PDE)
Valid Clock Requirement before Self Refresh Exit
(SRX) or Power-Down Exit (PDX) or Reset Exit
tXS
tXSDLL
tCKESR
tCKSRE
tCKSRX
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
tXPR
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
tZQinitI
tZQoper
tZQCS
512
256
64
-
-
-
512
256
64
-
-
-
tDLLK
tRTP
tWTR
tWR
tMRD
tMOD
tCCD
tDAL(min)
tMPRR
tRAS
tRRD
tRRD
tFAW
tFAW
tIS(base)
tIH(base)
tIS(base)
AC150
tIPW
1-1
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
nCK
e
e,18
ns
nCK
e
nCK
nCKWR + roundup (tRP / tCK(AVG))
-1-1-nCK
ns
22
e
e
e
See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37
max
(4nCK,10ns)
max
(4nCK,10ns)
40
50
200
275
200 + 150
900
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,10ns)
37.5
50
125
200
125 + 150
780
-
-
-
-
max
(4nCK,6ns)
max
(4nCK,7.5ns)
30
45
65
140
65+125
620
-
-
-
-
-
-
-
-
max
(4nCK,6ns)
max
(4nCK,7.5ns)
30
40
TBD
TBD
TBD+125
560
-
-
-
-
-
-
-
-
ns
ns
ps
ps
ps
ps
e
e
b,16
b,16
b,16,27
28
-
-
-
-
-
-
-
-
512
256
64
-
-
-
512
256
64
-
-
-
nCK
nCK
nCK23
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
nCK
Page 45 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 47 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
Power Down Timing
Exit Power Down with DLL on to any valid com-
mand;Exit Percharge Power Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to com-
mands requiring a locked DLL
tXP
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
7.5ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,5ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
tXPDLL----2
CKE minimum pulse width
Command pass disable delay
Power Down Entry to Exit Timing
Timing of ACT command to Power Down entry
Timing of PRE command to Power Down entry
Timing of RD/RDA command to Power Down entry
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WR command to Power Down entry
(BL4MRS)
Timing of WRA command to Power Down entry
(BL4MRS)
Timing of REF command to Power Down entry
Timing of MRS command to Power Down entry
ODT Timing
ODT high time without write command or with wirte
command and BC4
ODT high time with Write command and BL8
Asynchronous RTT tum-on delay (Power-Down with
DLL frozen)
Asynchronous RTT tum-off delay (Power-Down with
DLL frozen)
ODT turn-on
RTT_NOM and RTT_WR turn-off time from ODTLoff
reference
RTT dynamic change skew
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining
mode is programmed
DQS/DQS delay after tDQS margining mode is pro-
grammed
Setup time for tDQSS latch
Write leveling hold time from rising DQS, DQS cross-
ing to rising CK, CK crossing
Write leveling output delay
Write leveling output error
tCKE
tCPDED
tPD
tACTPDEN
tPRPDEN
tRDPDEN
tWRPDEN
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-nCK9
nCK
tCK
nCK
nCK
15
20
20
tWRAPDEN----nCK10
tWRPDEN----nCK9
tWRAPDEN
tREFPDEN
tMRSPDEN
-
-
-
-
-
-
-
-
-
-
-
-
nCK10
20,21
ODTH4
ODTH8
tAONPD
tAOFPD
tAON
tAOF
tADC
4
6
2
2
-400
0.3
0.3
-
-
8.5
8.5
400
0.7
0.7
4
6
2
2
-300
0.3
0.3
-
-
8.5
8.5
300
0.7
0.7
4
6
2
2
-250
0.3
0.3
-
-
8.5
8.5
250
0.7
0.7
4
6
2
2
-225
0.3
0.3
-
-
8.5
8.5
225
0.7
0.7
nCK
nCK
ns
ns
ps
tCK(avg)
tCK(avg)
7,f
8,f
f
tWLMRD
tWLDQSEN
tWLS
tWLH
tWLO
tWLOE
40
25
325
325
0
0
-
-
-
-
9
2
40
25
245
245
0
0
-
-
-
-
9
2
40
25
195
195
0
0
-
-
-
-
9
2
40
25
165
165
0
0
-
-
-
-
7.5
2
tCK
tCK
ps
ps
ns
ns
3
3
Page 46 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.1 Jitter Notes
DDP 4Gb DDR3 SDRAM
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input
clock, counting the actual clock ) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-
eters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-
ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-
cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to
input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-
put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9
x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =
0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)
Page 47 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation"
8. For definition of RTT turn-off time tAOF see "Device Operation".
DDP 4Gb DDR3 SDRAM
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T
OPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
V
REF
(DC) = V
REF
DQ(DC). FOr input only pins except RESET, V
REF
(DC)=V
REF
CA(DC).
See "Address/ Command Setup, Hold and Derating"
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
V
REF
(DC)= V
REF
DQ(DC). For input only pins except RESET, V
REF
(DC)=V
REF
CA(DC).
See "Data Setup, Hold and Slew Rate Derating"
18. Start of internal write transaction is definited as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-
lated as:
0.5
(1.5 x 1) + (0.15 x 15)
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
= 0.133
~
~
128ms
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of V
REF
(DC) and the consecutive crossing of V
REF
(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
Page 48 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.3 Address / Command Setup, Hold and Derating:
DDP 4Gb DDR3 SDRAM
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table
48) to the ∆tIS and ∆tIH derating value (see Table 49) respectively.
Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
V
REF
(DC) and the first crossing of V
IH
(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as
the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IL
(AC)max. If the actual signal is always earlier than the nominal slew rate
line between shaded ’V
REF
(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew
rate line anywhere between shaded ’V
REF
(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for der-
ating value (see Figure 25).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
IL
(DC)max and the first crossing of V
REF
(DC).
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
(DC). If
the actual signal is always later than the nominal slew rate line between shaded ’dc to V
REF
(DC) region’, use nominal slew rate for derating value (see
Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V
REF
(DC) region’, the slew rate of a tangent line
to the actual signal from the dc level to V
REF
(DC) level is used for derating value (see Figure 26).
For a valid transition the input signal has to remain above/below V
IH/IL
(AC) for some time tVAC (see Table 50).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V
IH/IL
(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach V
IH/IL
(AC).
For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[ Table 48 ] ADD/CMD Setup and Hold Base-Values for 1V/ns
[ps]
tIS(base)
tIH(base)
tIS(base)-AC150
DDR3-800
200
275
200 + 150
DDR3-1066
125
200
125 + 150
DDR3-1333
65
140
65+125
DDR3-1600
45
120
45+125
reference
V
IH/L(AC)
V
IH/L(DC)
V
IH/L(AC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate
Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old
of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].
[ Table 49 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based
∆tIS, ∆tIH Derating [ps] AC/DC based
AC175 Threshold -> V
IH
(AC) = V
REF
(DC) + 175mV, V
IL
(AC) = V
REF
(DC) - 175mV
CLK,CLK Differential Slew Rate
4.0 V/ns
∆tIS
2.0
1.5
CMD/
ADD
Slew
rate
V/ns
1.0
0.9
0.8
0.7
0.6
0.5
0.4
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
3.0 V/ns
∆tIS
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
2.0 V/ns
∆tIS
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
1.8 V/ns
∆tIS
96
67
8
6
2
-3
-9
-27
-54
∆tIH
58
42
8
4
-2
-8
-18
-32
-52
1.6 V/ns
∆tIS
104
75
16
14
10
5
-1
-19
-46
∆tIH
66
50
16
12
6
0
-10
-24
-44
1.4V/ns
∆tIS
112
83
24
20
13
13
7
-11
-38
∆tIH
74
58
24
20
14
8
-2
-16
-36
1.2V/ns
∆tIS
120
91
32
30
26
21
15
-2
-30
∆tIH
84
68
34
30
24
18
8
-6
-26
1.0V/ns
∆tIS
128
99
40
38
34
29
23
5
-22
∆tIH
100
84
50
46
40
34
24
10
-10
Page 49 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
∆tIS, ∆tIH Derating [ps] AC/DC based
Alternate AC150 Threshold -> V
IH
(AC) = V
REF
(DC) + 150mV, V
IL
(AC) = V
REF
(DC) - 150mV
CLK,CLK Differential Slew Rate
4.0 V/ns3.0 V/ns
∆tIS
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
2.0 V/ns
∆tIS
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
1.8 V/ns
∆tIS
83
58
8
8
8
8
7
-2
-17
∆tIH
58
42
8
4
-2
-8
-18
-32
-52
1.6 V/ns
∆tIS
91
66
16
16
16
16
15
6
-9
∆tIH
66
50
16
12
6
0
-10
-24
-44
1.4V/ns
∆tIS
99
74
24
24
24
24
23
14
-1
∆tIH
74
58
24
20
14
8
-2
-16
-36
1.2V/ns
∆tIS
107
82
32
32
32
32
31
22
7
∆tIH
84
68
34
30
24
18
8
-6
-26
1.0V/ns
∆tIS
115
90
40
40
40
40
39
30
15
∆tIH
100
84
50
46
40
34
24
10
-10
[ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold
∆tIS
2.0
1.5
CMD/
ADD
Slew
rate
V/ns
1.0
0.9
0.8
0.7
0.6
0.5
0.4
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
[ Table 51 ] Required time t
VAC
above V
IH
(AC) {blow V
IL
(AC)} for valid transition
Slew Rate[V/ns]
min
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
< 0.5
75
57
50
38
34
29
22
13
0
0
t
VAC
@175mV [ps]
max
-
-
-
-
-
-
-
-
-
-
t
VAC
@150mV [ps]
min
175
170
167
163
162
161
159
155
150
150
max
-
-
-
-
-
-
-
-
-
-
Page 50 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
nominal
slew rate
V
REF
(DC)
nominal slew
rate
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
tVAC
V
SS
Delta TF
Setup Slew Rate
=
V
REF
(DC) - V
IL
(AC)max
Falling Signal
Delta TF
Delta TR
Setup Slew Rate
V
IH
(AC)min - V
REF
(DC)
=
Rising Signal
Delta TR
Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 51 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
V
DDQ
tDS
tDH
tDS
tDH
V
IH
(AC) min
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
nominal
slew rate
dc to V
REF
region
nominal
slew rate
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
V
REF
(DC) - V
IL
(DC)max
Rising Signal
=
Delta TR
Delta TF
Hold Slew Rate
V
IH
(DC)min - V
REF
(DC)
=
Falling Signal
Delta TF
Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 52 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
nominal
line
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
tangent
line
V
REF
(DC)
tangent
line
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
nominal
line
V
SS
Delta TR
Setup Slew Rate
tangent line[V
IH
(AC)min - V
REF
(DC)]
=
Rising Signal
Delta TR
Delta TF
Setup Slew Rate
tangent line[V
REF
(DC) - V
IL
(AC)max]
Falling Signal
=
Delta TF
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(forADD/CMD with respect to clock)
Page 53 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tDH
V
IH
(AC) min
nominal
line
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
tangent
line
nominal
line
tangent
line
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
tangent line [ V
REF
(DC) - V
IL
(DC)max ]
Rising Signal
=
Delta TR
Hold Slew Rate
tangent line [ V
IH
(DC)min - V
REF
(DC) ]
Falling Signal
=
Delta TF
Delta TF
Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 54 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.4 Data Setup, Hold and Slew Rate Derating:
DDP 4Gb DDR3 SDRAM
or all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see
Table 52) to the ∆ tDS and ∆tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IH
(AC)min.
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IL
(AC)max
(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’V
REF
(DC) to ac region’, use nominal slew rate for
derating value. If the actual signal is later than the nominal slew rate line anywhere
between shaded ’V
REF
(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see
Figure 27).
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
IL
(DC)max and the first crossing of V
REF
(DC).
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
(DC)
(see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to V
REF
(DC) region’, use nominal slew rate for
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V
REF
(DC) region’, the slew rate of a tangent
line to the actual signal from the dc level to V
REF
(DC) level is used for derating value (see Figure 28).
For a valid transition the input signal has to remain above/below V
IH/IL
(AC) for some time tVAC (see Table 54).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V
IH/IL
(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach V
IH/IL
(AC).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization
[ Table 52 ] Data Setup and Hold Base-Value
[ps]
tDS(base)
tDH(base)
tDS(AC150)
DDR3-800
75
150
75+50
DDR3-1066
25
100
25+50
DDR3-1333
30
65
-
DDR3-1600
10
45
-
reference
V
IH/L
(AC)
V
IH/L
(DC)
V
IH/L
(AC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
[ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based
∆tDS, ∆tDH Derating [ps] AC/DC based
a
DQS,DQS Differential Slew Rate
2.0 V/ns1.8 V/ns1.6 V/ns
∆tDS∆tDH∆tDS∆tDH∆tDS∆tDH
8850----
59346742--
00881616
-2-4641412
-6-102-2106
---3-850
-----1-10
------
------
7550----
50345842--
00881616
0-4841612
0-108-2166
--8-8160
----15-10
------
------
DDR3
DQ
Slew
-
800/
rate
1066
V/ns
DDR3
DQ
Slew
-
1333/
rate
1600
V/ns
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
4.0 V/ns
∆tDS∆tDH
8850
5934
00
--
--
--
--
--
--
7550
5034
00
--
--
--
--
--
--
3.0 V/ns
∆tDS∆tDH
8850
5934
00
-2-4
--
--
--
--
--
7550
5034
00
0-4
--
--
--
--
--
1.4V/ns
∆tDS∆tDH
--
--
--
2220
1814
138
7-2
-11-16
--
--
--
--
2420
2414
248
23-2
14-16
--
1.2V/ns
∆tDS∆tDH
--
--
--
--
2624
2118
158
-2-6
-30-26
--
--
--
--
3224
3218
318
22-6
7-26
1.0V/ns
∆tDS∆tDH
--
--
--
--
--
2934
2324
610
-22-10
--
--
--
--
--
4034
3924
3010
15-10
Note : a. Cell contents shaded in red are defined as ’not supported’.
[ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
Slew Rate[V/ns]
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
<0.5
t
VAC
[ps] DDR3-800/1066
min
75
57
50
38
34
29
22
13
0
0
t
VAC
[ps] DDR3-1333/1600
min
175
170
167
163
162
161
159
155
155
150
max
-
-
-
-
-
-
-
-
-
-
max
-
-
-
-
-
-
-
-
-
-
Page 55 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
nominal
slew rate
V
REF
(DC)
nominal slew
rate
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
tVAC
V
SS
Delta TF
Setup Slew Rate
=
V
REF
(DC) - V
IL
(AC)max
Falling Signal
Delta TF
Delta TR
Setup Slew Rate
V
IH
(AC)min - V
REF
(DC)
=
Rising Signal
Delta TR
Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 56 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
V
DDQ
tDS
tDH
tDS
tDH
V
IH
(AC) min
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
nominal
slew rate
dc to V
REF
region
nominal
slew rate
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
=
Rising Signal
V
REF
(DC) - V
IL
(DC)max
Delta TR
Delta TF
V
IH
(DC)min - V
REF
(DC)
Hold Slew Rate
=
Falling Signal
Delta TF
Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 57 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
nominal
line
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
tangent
line
V
REF
(DC)
tangent
line
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
nominal
line
V
SS
Delta TR
Setup Slew Rate
tangent line[V
IH
(AC)min - V
REF
(DC)]
=
Rising Signal
Delta TR
Delta TF
Setup Slew Rate
tangent line[V
REF
(DC) - V
IL
(AC)max]
Falling Signal
=
Delta TF
Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(forADD/CMD with respect to clock)
Page 58 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tDH
V
IH
(AC) min
nominal
line
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
tangent
line
nominal
line
tangent
line
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
tangent line [ V
REF
(DC) - V
IL
(DC)max ]
Rising Signal
=
Delta TR
Hold Slew Rate
tangent line [ V
IH
(DC)min - V
REF
(DC) ]
Falling Signal
=
Delta TF
Delta TF
Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 59 of 59
Rev. 1.0 March 2009
2024年5月20日发(作者:理依波)
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
DDP 4Gb B-die DDR3 SDRAM Specification
78 FBGA with Lead-Free & Halogen-Free
(RoHS Compliant)
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT
GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure could result in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
Page 1 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Year
2009 - First release
History
Revision History
Revision
1.0
Month
March
Page 2 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Table Contents
1.0 Ordering Information ...................................................................................................................5
2.0 Key Features ................................................................................................................................5
3.0 Package pinout/Mechanical Dimension & Addressing ............................................................6
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package
..............................................................6
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package
..............................................................7
3.3 FBGA Package Dimension (x4)
.....................................................................................................8
3.4 FBGA Package Dimension (x8)
.....................................................................................................9
4.0 Input/Output Functional Description .......................................................................................10
5.0 DDR3 SDRAM Addressing ........................................................................................................11
6.0 Absolute Maximum Ratings ......................................................................................................12
6.1 Absolute Maximum DC Ratings
...................................................................................................12
6.2 DRAM Component Operating Temperature Range
.........................................................................12
7.0 AC & DC Operation Conditions ................................................................................................12
7.1 Recommended DC operating Conditions (SSTL_1.5)
.....................................................................12
8.0 AC & DC Input Measurement Levels ........................................................................................13
8.1 AC and DC Logic input levels for single-ended singnals
................................................................13
8.2 VREF Tolerances
.......................................................................................................................14
8.3 AC and DC Logic Input Levels for Ditterential Signals
...................................................................15
8.3.1 Differential signal definition
................................................................................................15
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
..............................15
8.3.3 Single-ended requirements for differential signals
.................................................................16
8.4 Differential Input Cross Point Voltage
..........................................................................................17
8.5 Slew Rate Definition for Single Ended Input Signals
......................................................................17
8.6 Slew rate definition for Differential Input Signals
...........................................................................17
9.0 AC and DC Output Measurement Levels .................................................................................18
9.1 Single Ended AC and DC Output Levels
.......................................................................................18
9.2 Differential AC and DC Output Levels
..........................................................................................18
9.3 Single Ended Output Slew Rate
...................................................................................................18
9.4 Differential Output Slew Rate
......................................................................................................19
9.5 Reference Load for AC Timing and Output Slew Rate
....................................................................19
9.6 Overshoot/Undershoot Specification
...........................................................................................20
9.6.1 Address and Control Overshoot and Undershoot specifications
.............................................20
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications
.................................20
9.7 34 ohm Output Driver DC Electrical Characteristics
.......................................................................21
9.7.1 Output Drive Temperature and Voltage sensitivity
.................................................................22
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
...............................................................22
9.8.1 ODT DC electrical characteristics
........................................................................................23
9.8.2 ODT Temperature and Voltage sensitivity
.............................................................................24
Page 3 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
9.9 ODT Timing Definitions
..............................................................................................................25
9.9.1 Test Load for ODT Timings
.................................................................................................25
9.9.2 ODT Timing Definition
........................................................................................................25
10.0 IDD Specification Parameters and Test Conditions .............................................................28
10.1 IDD Measurement Conditions
....................................................................................................28
10.2 IDD Specifications definition
.....................................................................................................30
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table .....................................................................37
12.0 Input/Output Capacitance .......................................................................................................38
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ..............................39
13.1 Clock specification
.............................................................................................................39
13.1.1 Definition for tCK (avg)
.....................................................................................................39
13.1.2 Definition for tCK (abs)
.....................................................................................................39
13.1.3 Definition for tCH(avg) and tCL(avg)
...................................................................................39
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)
........................................................................39
13.1.5 Definition for tJIT(cc), tJIT(cc,Ick)
......................................................................................39
13.1.6 Definition for tERR(nper)
...................................................................................................39
13.2 Refresh Parameters by Device Density
.......................................................................................40
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
.............................................40
13.3.1 Speed Bin
43
14.0 Timing Parameters by Speed Grade ......................................................................................44
14.1 Jitter Notes
.............................................................................................................................47
14.2 Timing Parameter Notes
...........................................................................................................48
14.3 Address / Command Setup, Hold and Derating:
...........................................................................49
14.4 Data Setup, Hold and Slew Rate Derating:
..................................................................................55
Page 4 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
1.0 Ordering Information
[ Table 1 ] Samsung DDP 4Gb DDR3 B-die ordering information table
Organization
1Gx4
512Mx8
DDR3-800 (6-6-6)
K4B4G0446B-MCF7
K4B4G0846B-MCF7
DDR3-1066 (7-7-7)
K4B4G0446B-MCF8
K4B4G0846B-MCF8
DDP 4Gb DDR3 SDRAM
DDR3-1333 (9-9-9)
K4B4G0446B-MCH9
K4B4G0846B-MCH9
Package
78 FBGA
78 FBGA
Note :
1. Speed bin is in order of CL-tRCD-tRP.
2.0 Key Features
[ Table 2 ] DDP 4Gb DDR3 B-die Speed bins
Speed
tCK(min)
CAS Latency
tRCD(min)
tRP(min)
tRAS(min)
tRC(min)
DDR3-800
6-6-6
2.5
6
15
15
37.5
52.5
DDR3-1066
7-7-7
1.875
7
13.125
13.125
37.5
50.625
DDR3-1333
9-9-9
1.5
9
13.5
13.5
36
49.5
Unit
ns
nCK
ns
ns
ns
ns
•JEDEC standard 1.5V ± 0.075V Power Supply
•V
DDQ
= 1.5V ± 0.075V
•400 MHz f
CK
for 800Mb/sec/pin, 533MHz f
CK
for 1066Mb/sec/pin,
667MHz f
CK
for 1333Mb/sec/pin
•8 Banks
•Posted CAS
•Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10
•Programmable Additive Latency: 0, CL-2 or CL-1 clock
•Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6
(DDR3-1066) and 7 (DDR3-1333)
•8-bit pre-fetch
•Burst Length: 8 (Interleave without any limit, sequential with starting
address “000” only), 4 with tCCD = 4 which does not allow seamless
read or write [either On the fly using A12 or MRS]
•Bi-directional Differential Data-Strobe
•Internal(self) calibration : Internal self calibration through ZQ pin
(RZQ : 240 ohm ± 1%)
•On Die Termination using ODT pin
•Average Refresh Period 7.8us at lower than T
CASE
85°C, 3.9us at
85°C < T
CASE
< 95 °C
•Asynchronous Reset
•Package : 78 balls FBGA - x4/x8
•All of Lead-Free products are compliant for RoHS
•All of products are Halogen-free
The DDP 4Gb DDR3 SDRAM B-die is organized as a 128Mbit x 4 I/Os x
8banks, 64Mbit x 8 I/Os x 8banks. This synchronous device achieves high
speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR3-
1333) for general applications.
The chip is designed to comply with the following key DDR3 SDRAM fea-
tures such as posted CAS, Programmable CWL, Internal (Self) Calibra-
tion, On Die Termination using ODT pin and Asynchronous Reset .
All of the control and address inputs are synchronized with a pair of exter-
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-
ion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR3 device operates
with a single 1.5V±0.075V power supply and 1.5V ±0.075V V
DDQ
.
The 4Gb DDR3 B-die device is available in 78ball FBGAs(x4/x8).
Note : 1. The functionality described and the timing specifications included
in this data sheet are for the DLL Enabled mode of operation.
Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device
Operation & Timing Diagram”.
Page 5 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
3.0 Package pinout/Mechanical Dimension & Addressing
3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package
DDP 4Gb DDR3 SDRAM
1
A
B
C
D
E
F
G
H
J
K
L
M
N
V
SS
V
SS
V
DDQ
V
SSQ
V
REFDQ
ODT1
ODT0
CS1
V
SS
V
DD
V
SS
V
DD
V
SS
2
V
DD
V
SSQ
DQ2
NC
V
DDQ
V
SS
V
DD
CS0
BA0
A3
A5
A7
RESET
3
NC
DQ0
DQS
DQS
NC
RAS
CAS
WE
BA2
A0
A2
A9
A13
45 67
NC
DM
DQ1
V
DD
NC
CK
CK
A10/AP
NC
A12/BC
A1
A11
A14
8
V
SS
V
SSQ
DQ3
V
SS
NC
V
SS
V
DD
ZQ0
V
REFCA
BA1
A4
A6
A8
9
V
DD
V
DDQ
V
SSQ
V
SSQ
V
DDQ
CKE1
CKE0
ZQ1
V
SS
V
DD
V
SS
V
DD
V
SS
A
B
C
D
E
F
G
H
J
K
L
M
N
123456789
Ball Locations (x4)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
Page 6 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package
1
A
B
C
D
E
F
G
H
J
K
L
M
N
V
SS
V
SS
V
DDQ
V
SSQ
V
REFDQ
ODT1
ODT0
CS1
V
SS
V
DD
V
SS
V
DD
V
SS
2
V
DD
V
SSQ
DQ2
DQ6
V
DDQ
V
SS
V
DD
CS0
BA0
A3
A5
A7
RESET
3
NC
DQ0
DQS
DQS
DQ4
RAS
CAS
WE
BA2
A0
A2
A9
A13
45 67
NU/TDQS
DM/TDQS
DQ1
V
DD
DQ7
CK
CK
A10/AP
NC
A12/BC
A1
A11
A14
8
V
SS
V
SSQ
DQ3
V
SS
DQ5
V
SS
V
DD
ZQ0
V
REFCA
BA1
A4
A6
A8
9
V
DD
V
DDQ
V
SSQ
V
SSQ
V
DDQ
CKE1
CKE0
ZQ1
V
SS
V
DD
V
SS
V
DD
V
SS
A
B
C
D
E
F
G
H
J
K
L
M
N
123456789
Ball Locations (x8)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
Page 7 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.3 FBGA Package Dimension (x4)
Units : Millimeters
A
#A1 INDEX MARK
B
10.00 ± 0.10
0.80 x 8 = 6.40
(Datum A)
0.801.603.20
987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
4
.
8
0
0
.
8
0
(Datum B)
0
.
8
0
x
1
2
=
9
.
6
0
78 - ∅0.45 Solder ball
(Post Reflow ∅0.50 ± 0.05)
0.2MAB
BOTTOM VIEW
0
.
8
0
1
1
.
5
0
±
0
.
1
0
#A1
10.00 ± 0.10
1
1
.
5
0
±
0
.
1
0
0
.
1
0
M
A
X
0.35 ± 0.05
1.40 ± 0.10
TOP VIEW
Page 8 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
3.4 FBGA Package Dimension (x8)
Units : Millimeters
A
#A1 INDEX MARK
B
10.00 ± 0.10
0.80 x 8 = 6.40
(Datum A)
0.801.603.20
987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
4
.
8
0
0
.
8
0
(Datum B)
0
.
8
0
x
1
2
=
9
.
6
0
78 - ∅0.45 Solder ball
(Post Reflow ∅0.50 ± 0.05)
0.2MAB
BOTTOM VIEW
0
.
8
0
1
1
.
5
0
±
0
.
1
0
#A1
10.00 ± 0.10
1
1
.
5
0
±
0
.
1
0
0
.
1
0
M
A
X
0.35 ± 0.05
1.40 ± 0.10
TOP VIEW
Page 9 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
4.0 Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol
CK, CK
Type
Input
Function
DDP 4Gb DDR3 SDRAM
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V
REFCA
has become
stable during the power on and initialization sequence, it must be maintained during all operations (including Self-
Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on
systems with multiple Ranks. CS is considered part of the command code.
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-
grammed to disable ODT.
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-
dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a
MRS cycle.
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,
see below)
The address inputs also provide the op-code during Mode Register Set commands.
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-
formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-
formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and
20% of V
DD
, i.e. 1.20V for DC high and 0.30V for DC low.
Data Input/ Output: Bi-directional data bus.
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data
strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-
ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and
does not support single-ended.
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.
No Connect: No internal electrical connection is present.
CKEInput
CSInput
ODTInput
RAS, CAS, WE
DM
(DMU), (DML)
Input
Input
BA0 - BA2Input
A0 - A14Input
A10 / APInput
A12 / BC
Input
RESET
DQ
Input
Input/Output
DQS, (DQS)
Input/Output
TDQS, (TDQS)Output
NC
V
DDQ
V
SSQ
V
DD
V
SS
V
REFDQ
V
REFCA
ZQ
Supply
Supply
Supply
Supply
Supply
Supply
Supply
DQ Power Supply: 1.5V +/- 0.075V
DQ Ground
Power Supply: 1.5V +/- 0.075V
Ground
Reference voltage for DQ
Reference voltage for CA
Reference Pin for ZQ calibration
Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.
Page 10 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
5.0 DDR3 SDRAM Addressing
1Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
256Mb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9,
A
11
A
12
/BC
1 KB
DDP 4Gb DDR3 SDRAM
128Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9
A
12
/BC
1 KB
64Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
12
A
0
- A
9
A
12
/BC
2 KB
2Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
512Mb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9,
A
11
A
12
/BC
1 KB
256Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9
A
12
/BC
1 KB
128Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
13
A
0
- A
9
A
12
/BC
2 KB
4Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
1Gb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11
A
12
/BC
1 KB
512Mb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9
A
12
/BC
1 KB
256Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
14
A
0
- A
9
A
12
/BC
2 KB
8Gb
Configuration
# of Bank
Bank Address
Auto precharge
Row Address
Column Address
BC switch on the fly
Page size
*1
2Gb x 4
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11,
A
13
A
12
/BC
2 KB
1Gb x 8
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9,
A
11
A
12
/BC
2 KB
512Mb x 16
8
BA0 - BA2
A
10
/AP
A
0
- A
15
A
0
- A
9
A
12
/BC
2 KB
Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifierswhen an ACTIVE command is registered.
Page size is per bank, calculated as follows: page size = 2
COLBITS
* ORG
÷
8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
Page 11 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
6.0 Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
[ Table 4 ] Absolute Maximum DC Ratings
Symbol
V
DD
V
DDQ
V
IN,
V
OUT
T
STG
Parameter
Voltage on V
DD
pin relative to Vss
Voltage on V
DDQ
pin relative to Vss
Voltage on any pin relative to Vss
Storage Temperature
Rating
DDP 4Gb DDR3 SDRAM
Units
V
V
V
Notes
1,3
1,3
1
-0.4 V ~ 1.975 V
-0.4 V ~ 1.975 V
-0.4 V ~ 1.975 V
-55 to +100°C 1, 2
Note :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2
standard.
3. V
DD
and V
DDQ
must be within 300mV of each other at all times;and V
REF
must be not greater than 0.6 x V
DDQ
, When V
DD
and V
DDQ
are less than
500mV; V
REF
may be equal to or less than 300mV.
6.2 DRAM Component Operating Temperature Range
[ Table 5 ] Temperature Range
Symbol
T
OPER
Parameter
Operating Temperature Range
rating
0 to 95
Unit
°C
Notes
1, 2, 3
Note :
1. Operating Temperature T
OPER
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the
JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-
perature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-
teed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =
0b)
7.0 AC & DC Operation Conditions
7.1 Recommended DC operating Conditions (SSTL_1.5)
[ Table 6 ] Recommended DC Operating Conditions
Symbol
V
DD
V
DDQ
Supply Voltage
Supply Voltage for Output
Parameter
Rating
Min.
1.425
1.425
Typ.
1.5
1.5
Max.
1.575
1.575
Units
V
V
Notes
1,2
1,2
Note :
1. Under all conditions V
DDQ
must be less than or equal to V
DD
.
2. V
DDQ
tracks with V
DD
. AC parameters are measured with V
DD
and V
DDQ
tied together.
Page 12 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.0 AC & DC Input Measurement Levels
8.1 AC and DC Logic input levels for single-ended singnals
[ Table 7 ] Single Ended AC and DC input levels for Command and Address
Symbol
V
(DC)
V
(DC)
V
(AC)
V
(AC)
Parameter
DC input logic high
DC input logic low
AC input logic high
AC input logic low
DDR3-800/1066
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
-
-
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
-
-
0.51*V
DD
DDP 4Gb DDR3 SDRAM
DDR3-1333/1600
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
V
REF
+150
-
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
-
V
REF
-150
0.51*V
DD
Unit
mV
mV
mV
mV
mV
mV
V
Notes
1
1
1,2
1,2
1,2
1,2
3,4
V
(AC150)
AC input logic high
V
(AC150)
AC input logic lowM
V
REFCA
(DC)
Reference Voltage for ADD,
CMD inuts
Note :
1. For input only pins except RESET, V
REF
= V
REFCA
(DC)
2. See 9.6 "Overshoot and Undershoot specifications"
3. The AC peak noise on V
REF
may not allow V
REF
to deviate from V
REF
(DC) by more than
±
1% V
DD
(for reference : approx.
±
15mV)
4. For reference : approx. V
DD
/2
±
15mV
[ Table 8 ] Single Ended AC and DC input levels for DQ and DM
SymbolParameter
DDR3-800/1066
Min.
V
REF
+ 100
V
SS
V
REF
+ 175
-
V
REF
+ 150
Note 2
0.49*V
DD
Max.
V
DD
V
REF
- 100
-
V
REF
- 175
Note 2
V
REF
- 150
0.51*V
DD
Min.
V
REF
+ 100
V
SS
V
REF
+ 150
-
-
-
0.49*V
DD
DDR3-1333
Max.
V
DD
V
REF
- 100
-
V
REF
- 150
-
-
0.51*V
DD
Unit
mV
mV
mV
mV
mV
mV
V
Notes
1
1
1,2,5
1,2,5
1,2,5
1,2,5
3,4
V
(DC100)
DC input logic high
V
(DC100)
DC input logic low
V
(AC175)
AC input logic high
V
(AC175)
AC input logic low
V
(AC150)
AC input logic high
V
(AC150)
AC input logic low
V
REF
DQ
(DC)
I/O Reference Voltage(DQ)
Note :
1. For input only pins except RESET, V
REF
= V
REFDQ
(DC)
2. See "Overshoot and Undershoot specifications"
3. The AC peak noise on V
REF
may not allow V
REF
to deviate from V
REF
(DC) by more than
±
1% V
DD
(for reference : approx.
±
15mV)
4. For reference : approx. V
DD
/2
±
15mV
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).
Page 13 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.2 V
REF
Tolerances
DDP 4Gb DDR3 SDRAM
The dc-tolerance limits and ac-noise limits for the reference voltages V
REFCA
and V
REFDQ
are illustrate in Figure 1. It shows a valid reference voltage
V
REF
(t) as a function of time. (V
REF
stands for V
REFCA
and V
REFDQ
likewise).
V
REF
(DC) is the linear average of V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Fur-
thermore V
REF
(t) may temporarily deviate from V
REF
(DC) by no more than ± 1% V
DD
.
voltage
V
DD
V
SS
time
Figure 1. Illustration of V
REF
(DC) tolerance and V
REF
ac-noise limits
The voltage levels for setup and hold time measurements V
IH
(AC), V
IH
(DC), V
IL
(AC) and V
IL
(DC) are dependent on V
REF
.
"V
REF
" shall be understood as V
REF
(DC), as defined in Figure 1.
This clarifies, that dc-variations of V
REF
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for V
REF
(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
REF
ac-noise. Timing
and voltage effects due to ac-noise on V
REF
up to the specified limit (+/-1% of V
DD
) are included in DRAM timings and their associated deratings.
Page 14 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.3 AC and DC Logic Input Levels for Ditterential Signals
8.3.1 Differential signal definition
tDVAC
V
IH
.
D
i
f
f
e
r
e
n
t
i
a
l
I
n
p
u
t
V
o
l
t
a
g
e
(
i.
e
.
D
Q
S
-
D
Q
S
,
C
K
-
C
K
)
DDP 4Gb DDR3 SDRAM
V
IH
.
0.0
half cycle
V
IL
.
V
IL
.
tDVAC
time
Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
[ Table 9 ] Defferential AC and DC Input Levels
Symbol
V
IHdiff
V
ILdiff
V
IHdiff
(AC)
V
ILdiff
(AC)
Parameter
differential input high
differential input low
differential input high ac
differential input low ac
DDR3-800/1066/1333/1600
min
+0.2
note 3
2 x (V
IH
(AC)-V
REF
)
note 3
max
note 3
-0.2
note 3
2 x (V
REF
- V
IL
(AC))
unit
V
V
V
V
Note
1
1
2
2
Notes:
1. Used to define a differential signal slew-rate.
2. for CK - CK use V
IH
/V
IL
(AC) of ADD/CMD and V
REFCA
; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use V
IH
/V
IL
(AC) of DQs and V
REFDQ
; if a
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (V
IH
(DC) max, V
IL
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet
Specification "
[ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS
Slew Rate [V/ns]
> 4.0
4.0
3.0
2.0
1.8
1.6
1.4
1.2
1.0
< 1.0
tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 350mV
min
75
57
50
38
34
29
22
13
0
0
max
-
-
-
-
-
-
-
-
-
-
tDVAC [ps] @ |V
IH/Ldiff
(AC)| = 300mV
min
175
170
167
163
162
161
159
155
150
150
max
-
-
-
-
-
-
-
-
-
-
Page 15 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.3.3 Single-ended requirements for differential signals
DDP 4Gb DDR3 SDRAM
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for
single-ended signals.
CK and CK have to approximately reach V
SEH
min / V
SEL
max (approximately equal to the ac-levels ( V
IH
(AC) / V
IL
(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach V
SEH
min / V
SEL
max (approximately the ac-levels ( V
IH
(AC) / V
IL
(AC) ) for DQ signals) in every half-cycle
preceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V
IH
150(AC)/V
IL
150(AC) is used for ADD/CMD sig-
nals, then these ac-levels apply also for the single-ended signals CK and CK .
V
DD
or V
DDQ
V
SEH
min
V
SEH
V
DD
/2 or V
DDQ
/2
CK or DQS
V
SEL
max
V
SEL
time
Figure 3 : Single-ended requirement for differential signals.
V
SS
or V
SSQ
Note that while ADD/CMD and DQ signal requirements are with respect to V
REF
, the single-ended components of differential signals have a requirement
with respect to V
DD
/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
ended components of differential signals the requirement to reach V
SEL
max, V
SEH
min has no bearing on timing, but adds a restriction on the common
mode charateristics of these signals.
[ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol
V
SEH
V
SEL
Parameter
Single-ended high-level for strobes
Single-ended high-level for CK, CK
Single-ended low-level for strobes
Single-ended low-level for CK, CK
DDR3-800/1066/1333/1600
Min
(V
DD
/2)+0.175
(V
DD
/2)+0.175
Note3
Note3
Max
Note3
Note3
(V
DD
/2)-0.175
(V
DD
/2)-0.175
Unit
V
V
V
V
Notes
1, 2
1, 2
1,2
1,2
Notes:
1. For CK, CK use V
IH
/V
IL
(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use V
IH
/V
IL
(AC) of DQs.
2. V
IH
(AC)/V
IL
(AC) for DQs is based on V
REFDQ
; V
IH
(AC)/V
IL
(AC) for ADD/CMD is based on V
REFCA
; if a reduced ac-high or ac-low level is used for a
signal group, then the reduced level applies also here
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (V
IH
(DC) max, V
IL
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot
Specification"
Page 16 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
8.4 Differential Input Cross Point Voltage
DDP 4Gb DDR3 SDRAM
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage V
IX
is measured from the actual
cross point of true and complement signal to the mid level between of V
DD
and V
SS
.
V
DD
CK, DQS
V
IX
V
DD
/2
V
IX
V
IX
CK, DQS
V
SS
Figure 4. V
IX
Definition
[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)
Symbol
V
IX
V
IX
Parameter
Differential Input Cross Point Voltage relative to V
DD
/2 for CK,CK
Differential Input Cross Point Voltage relative to V
DD
/2 for DQS,DQS
DDR3-800/1066/1333/1600
Min
-150
-175
-150
Max
150
175
150
Unit
mV
mV
mV
1
Notes
Note :
1. Extended range for V
IX
is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing V
SEL
/
V
SEH
of at least V
DD
/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for V
SEL
and V
SEH
stan-
dard values.
8.5 Slew Rate Definition for Single Ended Input Signals
See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data nominal slew rate for a falling signal is
defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
8.6 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.
[ Table 13 ] Differential input slew rate definition
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
Measured
From
V
ILdiffmax
V
IHdiffmin
To
V
IHdiffmin
V
ILdiffmax
Defined by
V
IHdiffmin
- V
ILdiffmax
Delta TRdiff
V
IHdiffmin
- V
ILdiffmax
Delta TFdiff
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
V
IHdiffmin
0
V
ILdiffmax
delta TFdiff
delta TRdiff
Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK
Page 17 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.0 AC and DC Output Measurement Levels
9.1 Single Ended AC and DC Output Levels
[ Table 14 ] Single Ended AC and DC output levels
Symbol
V
OH
(DC)
V
OM
(DC)
V
OL
(DC)
V
OH
(AC)
V
OL
(AC)
Parameter
DC output high measurement level (for IV curve linearity)
DC output mid measurement level (for IV curve linearity)
DC output low measurement level (for IV curve linearity)
AC output high measurement level (for output SR)
AC output low measurement level (for output SR)
DDP 4Gb DDR3 SDRAM
DDR3-800/1066/1333/1600
0.8 x V
DDQ
0.5 x V
DDQ
0.2 x V
DDQ
V
TT
+ 0.1 x V
DDQ
V
TT
- 0.1 x V
DDQ
Units
V
V
V
V
V
Notes
1
1
Note : 1. The swing of +/-0.1 x V
DDQ
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40
Ω
and an effective test load of 25
Ω
to V
TT
=V
DDQ
/2.
9.2 Differential AC and DC Output Levels
[ Table 15 ] Differential AC and DC output levels
Symbol
V
OHdiff
(AC)
V
OLdiff
(DC)
Parameter
AC differential output high measurement level (for output SR)
AC differential output low measurement level (for output SR)
DDR3-800/1066/1333/1600
+0.2 x V
DDQ
-0.2 x V
DDQ
Units
V
V
Notes
1
1
Note : 1. The swing of +/-0.2xV
DDQ
is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40
Ω
and an effective test load of 25
Ω
to V
TT
=V
DDQ
/2 at each of the differential outputs.
9.3 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OL
(AC) and V
OH
(AC)
for single ended signals as shown in Table 16 and figure 6.
[ Table 16 ] Single Ended Output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
Measured
From
V
OL
(AC)
V
OH
(AC)
To
V
OH
(AC)
V
OL
(AC)
Defined by
V
OH
(AC)-V
OL
(AC)
Delta TRse
V
OH
(AC)-V
OL
(AC)
Delta TFse
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 17 ] Single Ended Output slew rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
Min
2.5
Max
5
DDR3-1066
Min
2.5
Max
5
DDR3-1333
Min
2.5
Max
5
DDR3-1600
Min
TBD
Max
5
Units
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
se : Singe-ended Signals
For Ron = RZQ/7 setting
V
OH(AC)
V
TT
V
OL(AC)
delta
TFse
delta
TRse
Figure 6. Single Ended Output Slew Rate definition
Page 18 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.4 Differential Output Slew Rate
DDP 4Gb DDR3 SDRAM
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OLdiff
(AC) and
V
OHdiff
(AC) for differential signals as shown inTable 18 and figure 7.
[ Table 18 ] Differential Output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
Measured
From
V
OLdiff
(AC)
V
OHdiff
(AC)
To
V
OHdiff
(AC)
V
OLdiff
(AC)
Defined by
V
OHdiff
(AC)-V
OLdiff
(AC)
Delta TRdiff
V
OHdiff
(AC)-V
OLdiff
(AC)
Delta TFdiff
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 19 ] Differential Output slew rate
Parameter
Differential output slew rate
Symbol
SRQse
DDR3-800
Min
5
Max
10
DDR3-1066
Min
5
Max
10
DDR3-1333
Min
5
Max
10
DDR3-1600
Min
TBD
Max
10
Units
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
diff : Singe-ended Signals
For Ron = RZQ/7 setting
V
OHdiff
(AC)
V
TT
V
OLdiff
(AC)
delta
TFdiff
delta
TRdiff
Figure 7. Differential Output Slew Rate definition
9.5 Reference Load for AC Timing and Output Slew Rate
Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. Sys-
tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
V
DDQ
CK/CK
DUT
DQ
DQS
DQS
V
TT
= V
DDQ
/2
25
Ω
Reference
Point
Figure 8. Reference Load for AC Timing and Output Slew Rate
Page 19 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.6 Overshoot/Undershoot Specification
9.6.1 Address and Control Overshoot and Undershoot specifications
DDP 4Gb DDR3 SDRAM
[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)
Parameter
Maximum peak amplitude allowed for overshoot area (See Figure 9)
Maximum peak amplitude allowed for undershoot area (See Figure 9)
Maximum overshoot area above V
DD
(See Figure 9)
Maximum undershoot area below V
SS
(See Figure 9)
Specification
DDR3-800
0.4V
0.4V
0.67V-ns
0.67V-ns
DDR3-1066
0.4V
0.4V
0.5V-ns
0.5V-ns
DDR3-1333
0.4V
0.4V
0.4V-ns
0.4V-ns
DDR3-1600
0.4V
0.4V
0.33V-ns
0.33V-ns
Unit
V
V
V-ns
V-ns
MaximumAmplitude
OvershootArea
Volts
(V)
V
DD
V
SS
MaximumAmplitude
Time (ns)
UndershootArea
Figure 9. Address and Control Overshoot and Undershoot definition
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications
[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)
Parameter
Maximum peak amplitude allowed for overshoot area (See Figure 11)
Maximum peak amplitude allowed for undershoot area (See Figure 11)
Maximum overshoot area above V
DDQ
(See Figure 11)
Maximum undershoot area below V
SSQ
(See Figure 11)
Specification
DDR3-800
0.4V
0.4V
0.25V-ns
0.25V-ns
DDR3-1066
0.4V
0.4V
0.19V-ns
0.19V-ns
DDR3-1333
0.4V
0.4V
0.15V-ns
0.15V-ns
DDR3-1600
0.4V
0.4V
0.13V-ns
0.13V-ns
Unit
V
V
V-ns
V-ns
MaximumAmplitude
OvershootArea
Volts
(V)
V
DDQ
V
SSQ
MaximumAmplitude
Time (ns)
UndershootArea
Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition
Page 20 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.7 34 ohm Output Driver DC Electrical Characteristics
DDP 4Gb DDR3 SDRAM
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ
as follows:
RON
34
= RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)
RON
40
= RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm)
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows
RONpu =
V
DDQ
-V
OUT
l Iout l
V
OUT
l Iout l
under the condition that RONpu is turned off
under the condition that RONpd is turned off
RONpd =
Output Driver : Definition of Voltages and Currents
Output Driver
V
DDQ
Ipu
To
other
circuity
RON
Pu
DQ
RON
Ipd
Iout
Vout
V
SSQ
Pd
Figure 11. Output Driver : Definition of Voltages and Currents
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;
entire operating temperature range; after proper ZQ calibration
RONnomResistorVout
V
OLdc
= 0.2 x V
DDQ
RON34pd
34Ohms
RON34pu
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
RON40pd
40Ohms
RON40pu
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
V
OLdc
= 0.2 x V
DDQ
V
OMdc
= 0.5 x V
DDQ
V
OHdc
= 0.8 x V
DDQ
Mismatch between Pull-up and Pull-down,
MMpupd
V
OMdc
= 0.5 x V
DDQ
Min
0.6
0.9
0.9
0.9
0.9
0.6
0.6
0.9
0.9
0.9
0.9
0.6
-10
Nom
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Max
1.1
1.1
1.4
1.4
1.1
1.1
1.1
1.1
1.4
1.4
1.1
1.1
10%
RZQ/6
RZQ/7
UnitsNotes
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,3
1,2,4
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-
tion, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that V
DDQ
= V
DD
and that V
SSQ
= V
SS
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V
DDQ
. Other calibration schemes may be used to achieve the linearity spec shown
above, e.g. calibration at 0.2 X V
DDQ
and 0.8 X V
DDQ
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V
DDQ
:
MMpupd=
RONpu - RONpd
RONnom
x 100
Page 21 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.7.1 Output Drive Temperature and Voltage sensitivity
DDP 4Gb DDR3 SDRAM
If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24.
∆T = T - T(@calibration); ∆V = V
DDQ
- V
DDQ
(@calibration); V
DD
= V
DDQ
*dR
ON
dT and dR
ON
dV are not subject to production test but are verified by design and characterization
[ Table 23 ] Output Driver Sensitivity Definition
Min
RONPU@V
OHDC
RON@V
OMDC
RONPD@
VOLDC
0.6 - dR
ON
dTH * |
∆T| - dR
ON
dVH * |∆V|
0.9 - dR
ON
dTM * |
∆T| - dR
ON
dVM * |∆V|
0.6 - dR
ON
dTL * |
∆T| - dR
ON
dVL * |∆V|
Max
1.1 + dR
ON
dTH * |
∆T| + dR
ON
dVH * |∆V|
1.1 + dR
ON
dTM * |
∆T| + dR
ON
dVM * |∆V|
1.1 + dR
ON
dTL * |
∆T| + dR
ON
dVL * |∆V|
Units
RZQ/7
RZQ/7
RZQ/7
[ Table 24 ] Output Driver Voltage and Temperature Sensitivity
Speed Bin
Min
dR
ON
dTM
dR
ON
dVM
dR
ON
dTL
dR
ON
dVL
dR
ON
dTH
dR
ON
dVH
0
0
0
0
0
0
800/1066/1333
Max
1.5
0.15
1.5
0.15
1.5
0.15
Min
0
0
0
0
0
0
1600
Max
1.5
0.13
1.5
0.13
1.5
0.13
Units
%/°C
%/mV
%/°C
%/mV
%/°C
%/mV
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as
follows :
V
DDQ
-V
OUT
l Iout l
V
OUT
l Iout l
under the condition that RTTpu is turned off
RTTpu =
under the condition that RTTpd is turned off
RTTpd =
On-Die Termination : Definition of Voltages and Currents
Chip in Termination Mode
ODT
V
DDQ
Ipu
To
other
circuitry
like
RCV,
...
Iout=Ipd-Ipu
Pu
RTT
DQ
RTT
Ipd
Iout
Pd
V
OUT
V
SSQ
Figure 12. On-Die Termination : Definition of Voltages and Currents
Page 22 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.8.1 ODT DC electrical characteristics
DDP 4Gb DDR3 SDRAM
Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT
60pd120,
RTT
60pu120,
RTT
120pd240,
RTT
120pu240,
RTT
40pd80,
RTT
40pu80,
RTT
30pd60,
RTT
30pu60,
RTT
20pd40,
RTT
20pu40
are not specification requirements, but can be used as design guide lines:
[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operationg temperature range ;
after proper ZQ calibration.
MR1 (A9,A6,A2)RTTRESISTORVout
V
OL
(DC) 0.2XV
DDQ
RTT
120pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,1,0)120 ohm
RTT
120pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
120
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,0,1)60 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
40pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(0,1,1)40 ohm
RTT
40pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
40
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(1,0,1)30 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
V
OL
(DC) 0.2XV
DDQ
RTT
60pd240
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
(1,0,0)20 ohm
RTT
60pu240
V
OL
(DC) 0.2XV
DDQ
0.5XV
DDQ
V
OH
(DC) 0.8XV
DDQ
RTT
60
V
IL
(AC) to V
IH
(AC)
Min
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
0.6
0.9
0.9
0.9
0.9
0.6
0.9
-5
Nom
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Max
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
1.1
1.1
1.4
1.4
1.1
1.1
1.6
5
Unit
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/2
R
ZQ
/4
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/3
R
ZQ
/6
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/4
R
ZQ
/8
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/6
R
ZQ
/12
%
Notes
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4
1,2,5
1,2,5,6
Deviation of V
M
w.r.t V
DDQ
/2, ∆VM
Page 23 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage
changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that V
DDQ
= V
DD
and that V
SSQ
= V
SS
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV
DDQ
. Other calibration schemes may be used to achieve the linearity
spec shown above, e.g. calibration at 0.2XV
DDQ
and 0.8XV
DDQ
.
4. Not a specification requirement, but a design guide line
5. Measurement definition for RTT:
Apply V
IH
(AC) to pin under test and measure current I(V
IH
(AC)), then apply V
IL
(AC) to pin under test and measure current I(V
IL
(AC)) perspectively
RTT =
V
IH
(AC) - V
IL
(AC)
I(V
IH
(AC)) - I(V
IL
(AC))
6. Measurement definition for V
M
and
∆
V
M
: Measure voltage (V
M
) at test pin (midpoint) with no load
∆
V
M
=
2 x
V
M
V
DDQ
- 1
x 100
9.8.2 ODT Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below
∆T = T - T(@calibration); ∆V = V
DDQ
- V
DDQ
(@calibration); V
DD
= V
DDQ
[ Table 26 ] ODT Sensitivity Definition
Min
RTT
0.9 - dR
TT
dT * |
∆T| - dR
TT
dV * |∆V|
Max
1.6 + dR
TT
dT * |
∆T| + dR
TT
dV * |∆V|
Units
RZQ/2,4,6,8,12
[ Table 27 ] ODT Voltage and Temperature Sensitivity
Min
dR
TT
dT
dR
TT
dV
0
0
Max
1.5
0.15
Units
%/°C
%/mV
These parameters may not be subject to production test. They are verified by design and characterization.
Page 24 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
9.9 ODT Timing Definitions
9.9.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in Figgure 13.
DDP 4Gb DDR3 SDRAM
V
DDQ
CK,CK
DUT
DQ, DM
DQS , DQS
TDQS , TDQS
RTT
=25 ohm
V
TT
=
V
SSQ
V
SSQ
Timing Reference Points
Figure 13. ODT Timing Reference Load
9.9.2 ODT Timing Definition
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided
in Table 29.
[ Table 28 ] ODT Timing Definitions
Symbol
tAON
tAONPD
tAOF
tAOFPD
tADC
Begin Point Definition
Rising edge of CK - CK defined by the end point of ODTLon
Rising edge of CK - CK with ODT being first registered high
Rising edge of CK - CK defined by the end point of ODTLoff
Rising edge of CK - CK with ODT being first registered low
Rising edge of CK - CK defined by the end point of ODTLcnw,
ODTLcwn4 of ODTLcwn8
End Point Definition
Extrapolated point at V
SSQ
Extrapolated point at V
SSQ
End point: Extrapolated point at V
RTT_Nom
End point: Extrapolated point at V
RTT_Nom
End point: Extrapolated point at V
RTT_Wr
and V
RTT_Nom
respectively
Figute
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
[ Table 29 ] Reference Settings for ODT Timing Measurements
Measured
Parameter
tAON
tAONPD
tAOF
tAOFPD
tADC
RTT_Nom Setting
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/4
R
ZQ
/12
R
ZQ
/12
RTT_Wr Setting
NA
NA
NA
NA
NA
NA
NA
NA
R
ZQ
/2
V
SW1
[V]
0.05
0.10
0.05
0.10
0.05
0.10
0.05
0.10
0.20
V
SW2
[V]
0.10
0.20
0.10
0.20
0.10
0.20
0.10
0.20
0.30
Note
Page 25 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Begin point : Rising edge of CK - CK
defined by the end point of ODTLon
CK
V
TT
CK
t
AON
T
SW2
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW1
V
SW2
V
SW1
V
SSQ
V
SSQ
End point Extrapolated point at V
SSQ
Figure 14. Definition of tAON
Begin point : Rising edge of CK - CK
with ODT being first registered high
CK
V
TT
CK
t
AONPD
T
SW2
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW1
V
SW2
V
SW1
V
SSQ
V
SSQ
End point Extrapolated point at V
SSQ
Figure 15. Definition of tAONPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLoff
CK
V
TT
CK
t
AOF
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
End point Extrapolated point at V
RTT_Nom
T
SW2
V
SW2
V
SW1
T
SW1
V
SSQ
TD_TAON_DEF
Figure 16. Definition of tAOF
Page 26 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
Begin point : Rising edge of CK - CK
with ODT being first registered low
DDP 4Gb DDR3 SDRAM
CK
V
TT
CK
t
AOFPD
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
End point Extrapolated point at V
RTT_Nom
T
SW2
V
SW2
V
SW1
T
SW1
V
SSQ
Figure 17. Definition of tAOFPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLcnw
Begin point : Rising edge of CK - CK defined by
the end point of ODTLcwn4 or ODTLcwn8
CK
V
TT
CK
t
ADC
t
ADC
End point Extrapolated point at V
RTT_Nom
V
RTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
T
SW21
End point
Extrapolated point
T
SW11
at V
RTT_Nom
V
SW1
T
SW22
T
SW12
V
RTT_Nom
V
SW2
V
RTT_Wr
End point Extrapolated point at V
RTT_Wr
V
SSQ
Figure 18. Definition of tADC
Page 27 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
10.0 IDD Specification Parameters and Test Conditions
10.1 IDD Measurement Conditions
DDP 4Gb DDR3 SDRAM
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and
IDDQ measurements.
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and
IDD7) are measured as time-averaged currents with all V
DD
balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in
IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V
DDQ
balls of the DDR3 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V
DD
and V
DDQ
are using one merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply :
- "0" and "LOW" is defined as V
IN
<= V
IL
AC(max).
- "1" and "HIGH" is defined as V
IN
>= V
IH
AC(min).
- "FLOATING" is defined as inputs are V
REF
= V
DD
/ 2.
- Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30.
- Basic IDD and IDDQ Measurement Conditions are described in Table 31.
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}
Timing parameters are listed in the following table:
[ Table 30 ] Timing used for IDD and IDDQ Measured-Loop Patterns.
Parameter Bin
tCKmin(IDD)
CL(IDD) 5
tRCDmin(IDD)
tRCmin(IDD)
tRASmin(IDD)
tRPmin(IDD)
tFAW(IDD)
tRRD(IDD)
x4/x8
x16
x4/x8
x16
5
16
20
4
4
36
44
64
120
140
5
20
15
66
DDR3-800
5-5-5
2.5
6
6
21
6
6
26
6-6-6
DDR3-1066
6-6-67-7-7
1.875
7
7
27
20
7
20
27
4
6
48
59
86
160
187
878
20
30
4
5
60
74
107
200
234
8
8
28
7
7
31
8
8
32
24
91089
24
32
5
6
72
88
128
240
280
8-8-87-7-7
DDR3-1333
8-8-89-9-9
1.5
9
9
33
10
10
34
8
8
36
9
9
37
28
1011
10-10-108-8-8
DDR3-1600
9-9-910-10-10
1.25
10
10
38
11
11
39
11-11-11
Unit
ns
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
nCK
tRFC(IDD) - 512Mb
tRFC(IDD) - 1Gb
tRFC(IDD) - 2Gb
tRFC(IDD) - 4Gb
tRFC(IDD) - 8Gb
Page 28 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions
SymbolDescription
Operating One Bank Active-Precharge Current
IDD0
DDP 4Gb DDR3 SDRAM
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address
Inputs: partially toggling according to Table 32 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...
(see Table32); Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 32
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between ACT, RD and PRE; Command, Address,
Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...
(see Table33); Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 33
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT
Signal: stable at 0; Pattern Details: see Table 34
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 35 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT
Signal: toggling according to Table 35 ; Pattern Details: see Table 35
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pecharge
Power Down Mode: Slow Exi
c)
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pecharge
Power Down Mode: Fast Exit
c)
Precharge Quiet Standby Current
IDD1
IDD2N
DD2NT
DDQ2NT
(optional)
IDD2P0
IDD2P1
IDD2Q CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Sig-
nal: stable at 0; Pattern Details: see Table 34
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
MID-LEVEL;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling
according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Regis-
ters
b)
; ODT Signal: stable at 0; Pattern Details: see Table 36
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-
gling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0;
Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers
b)
;
ODT Signal: stable at HIGH; Pattern Details: see Table 37
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8
a)
; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially
toggling according to Table 38 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:
Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 38
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled
d)
; Self-Refresh Temperature Range (SRT): Normal
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Self-Refresh operation;
Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
IDD3N
IDD3P
IDD4R
IDDQ4R
(optional)
IDD4W
IDD5B
IDD6
Page 29 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 31 ] Basic IDD and IDDQ Measurement Conditions
SymbolDescription
Self-Refresh Current: Extended Temperature Range (optional)
f
)
IDD6ET
DDP 4Gb DDR3 SDRAM
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled
d)
; Self-Refresh Temperature Range (SRT): Extended
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Extended Temperature
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
Auto Self-Refresh Current (optional)
f
)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled
d)
; Self-Refresh Temperature Range (SRT): Normal
e)
; CKE: Low; External clock: Off; CK and CK:
LOW; CL: see Table 30 ; BL: 8
a)
; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Auto
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: MID-LEVEL
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8
a, g)
; AL: CL-1; CS: High between ACT and RDA; Command,
Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one
according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output
Buffer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Pattern Details: see Table 39
IDD6TC
IDD7
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
10.2 IDD Specifications definition
Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot.
Only the following changes will be done to Chapter 10.2:
Table 53 "IDD Specification Example 512M DDR3", add the following Rows:
- Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT".
- Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT".
- Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R".
Page 30 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
(optional)
DDP 4Gb DDR3 SDRAM
I
DD
I
DDQ
V
DD
RESET
CK/CK
CKE
CS
RAS, CAS, WE
A, BA
ODT
ZQ
V
DDQ
DQS, DQS
DQ, DM,
TDQS, TDQS
R
TT
= 25 Ohm
V
DDQ
/2
V
SS
V
SSQ
[Note: DIMM level Output test load condition may be different from above ]
Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
Application specific
memory channel
environment
IDDQ
Test Load
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Measurement
Correlation
Correction
Channel IO Power
Number
Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
Page 31 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 32 ] IDD0 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1,2
3,4
...
nRAS
...
1*nRC + 0
1*nRC + 1, 2
ACT
D,D
D, D
PRE
ACT
D, D
D, D
PRE
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
0
1
0
1
1
1
0
1
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
F
0
0
0
0
0
0
0
0
repeat 4 until nRAS - 1, truncate if necessary
-
-
-
-
repeat 4 until nRC - 1, truncate if necessary
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1*nRC + 3, 4
...
1*nRC + nRAS
...
1
2
3
4
5
6
7
2*nRC
4*nRC
6*nRC
8*nRC
10*nRC
12*nRC
14*nRC
repeat 4 until 1*nRC + nRAS - 1, truncate if necessary
4 until 2*nRC - 1, truncate if necessary
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driben LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 32 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 33 ] IDD1 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1,2
3,4
...
nRCD
...
nRAS
...
1*nRC+0
1*nRC + 1, 2
ACT
D,D
D, D
RD
PRE
ACT
D, D
D, D
RD
PRE
0
1
1
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
F
F
0
0
0
0
0
0
0
0
0
0
repeat 4 until nRCD- 1, truncate if necessary
00000000
-
-
-
-
00110011
-
repeat 4 until nRAS - 1, truncate if necessary
repeat 4 until nRC - 1, truncate if necessary
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1*nRC + 3, 4
...
1*nRC + nRCD
...
1*nRC + nRAS
...
1
2
3
4
5
6
7
2*nRC
4*nRC
6*nRC
8*nRC
10*nRC
12*nRC
14*nRC
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
[ Table 34 ] IDD2 and IDD3N Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
-
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
C
K
E
R
A
S
C
A
S
O
D
T
00
1
2
3
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
W
E
C
S
0
0
1
1
0
0
0
0
0
0
0
0
00
00
00
00
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1
2
3
4
5
6
7
4-7
8-11
12-15
16-19
20-23
24-27
28-31
repeat Sub-Loop 0, use BA[2:0] = 1 instead
repeat Sub-Loop 0, use BA[2:0] = 2 instead
repeat Sub-Loop 0, use BA[2:0] = 3 instead
repeat Sub-Loop 0, use BA[2:0] = 4 instead
repeat Sub-Loop 0, use BA[2:0] = 5 instead
repeat Sub-Loop 0, use BA[2:0] = 6 instead
repeat Sub-Loop 0, use BA[2:0] = 7 instead
Note :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 33 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 35 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1
2
3
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00
00
00
00
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
1
2
3
4
5
6
7
4-7
8-11
12-15
16-19
20-23
24-27
28-31
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7
Note :
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
[ Table 36 ] IDD4R and IDDQ4R Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
00000000
-
-
00110011
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
00
1
2,3
4
5
RD
D
D,D
RD
D
D,D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
W
E
C
S
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
6,7
1
2
3
4
5
6
7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
repeat Sub-Loop 0, but BA[2:0] = 1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 0, but BA[2:0] = 3
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 0, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 0, but BA[2:0] = 7
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
Page 34 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 37 ] IDD4W Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
00
1
2,3
4
5
WR
D
D,D
WR
D
D,D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000
-
-
00110011
-
-
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
6,7
1
2
3
4
5
6
7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
repeat Sub-Loop 0, but BA[2:0] = 1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 0, but BA[2:0] = 3
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 0, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 0, but BA[2:0] = 7
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
[ Table 38 ] IDD5B Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
D
a
t
a
2
)
-
-
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
0
1
0
1,2
3,4
5...8
REF
D
D,D
0
1
1
0
0
1
0
0
1
W
E
C
S
1
0
1
0
0
0
0
0
0
00
00
00
0
0
0
0
0
0
0
0
F
0
0
0
repeat 4, but BA[2:0] = 1
repeat 4, but BA[2:0] = 2
repeat 4, but BA[2:0] = 3
repeat 4, but BA[2:0] = 4
repeat 4, but BA[2:0] = 5
repeat 4, but BA[2:0] = 6
repeat 4, but BA[2:0] = 7
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
9...12
13...16
17...20
21...24
25...28
29...32
RFC - 1
Note :
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
2. DQ signals are MID-LEVEL.
Page 35 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
[ Table 39 ] IDD7 Measurement - Loop Pattern
1
C
o
m
m
a
n
d
S
u
b
-
L
o
o
p
A
[
1
5
:
1
1
]
C
y
c
l
e
N
u
m
b
e
r
B
A
[
2
:
0
]
C
K
/
C
K
DDP 4Gb DDR3 SDRAM
0
0
1
2
...
nRRD
1
nRRD + 1
nRRD + 2
...
2
3
4
5
6
7
8
S
t
a
t
i
c
H
i
g
h
t
o
g
g
l
i
n
g
9
2 * nRRD
3 * nRRD
4 * nRRD
nFAW
nFAW+nRRD
nFAW+2*nRRD
nFAW+3*nRRD
nFAW+4*nRRD
2*nFAW+0
10
2*nFAW+1
2*nFAW+2
2*nFAW+nRRD
11
2*nFAW+nRRD+1
2*nFAW+nRRD+2
12
13
14
15
16
17
18
19
2*nFAW+2*nRRD
2*nFAW+3*nRRD
2*nFAW+4*nRRD
3*nFAW
3*nFAW+nRRD
3*nFAW+2*nRRD
3*nFAW+3*nRRD
3*nFAW+4*nRRD
ACT
RDA
D
ACT
RDA
D
0
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
00
00
00
00
00
00
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000
-
-
00110011
-
repeat above D Command until nRRD - 1
repeat above D Command until 2*nRRD-1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 1, but BA[2:0] = 3
D1000030000F0-
Assert and repeat above D Command until nFAW - 1, if necessary
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 1, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 1, but BA[2:0] = 7
D
ACT
RDA
D
ACT
RDA
D
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
7
0
0
0
1
1
1
00
00
00
00
00
00
00
0
0
1
0
0
1
0
0
0
0
0
0
0
0
F
F
F
F
0
0
0
0
0
0
0
0
0
0
-
-
00110011
-
-
00000000
-
Assert and repeat above D Command until 2*nFAW - 1, if necessary
Repeat above D Command until 2*nFAW + nRRD - 1
Repeat above D Command until 2*nFAW + 2*nRRD - 1
repeat Sub-Loop 10, but BA[2:0] = 2
repeat Sub-Loop 11, but BA[2:0] = 3
D1-
Assert and repeat above D Command until 3*nFAW - 1, if necessary
repeat Sub-Loop 10, but BA[2:0] = 4
repeat Sub-Loop 11, but BA[2:0] = 5
repeat Sub-Loop 10, but BA[2:0] = 6
repeat Sub-Loop 11, but BA[2:0] = 7
D1-
Assert and repeat above D Command until 4*nFAW - 1, if necessary
Note :
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL.
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.
Page 36 of 59
Rev. 1.0 March 2009
D
a
t
a
2
)
-
A
[
9
:
7
]
A
[
6
:
3
]
A
[
2
:
0
]
A
[
1
0
]
O
D
T
C
K
E
R
A
S
C
A
S
W
E
C
S
K4B4G0446B
K4B4G0846B
11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table
[ Table 40 ] IDD Specification for DDP 4Gb DDR3 B-die
1Gx4 (K4B4G0446B)
Symbol
IDD0
IDD1
IDD2P0(slow exit)
IDD2P1(fast exit)
IDD2N
IDD2NT
IDD2Q
IDD3P(fast exit)
IDD3N
IDD4R
IDD4W
IDD5B
IDD6
IDD7
DDR3-800
6-6-6
100
115
24
50
70
70
60
60
85
135
140
220
24
235
DDR3-1066
7-7-7
110
125
24
50
80
80
70
70
95
160
165
225
24
250
DDR3-1333
9-9-9
115
130
24
50
80
90
70
70
100
175
180
225
24
300
DDP 4Gb DDR3 SDRAM
DDR3-1600
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Unit
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
Notes
512Mx8 (K4B4G0846B)
Symbol
IDD0
IDD1
IDD2P0(slow exit)
IDD2P1(fast exit)
IDD2N
IDD2NT
IDD2Q
IDD3P(fast exit)
IDD3N
IDD4R
IDD4W
IDD5B
IDD6
IDD7
DDR3-800
6-6-6
100
115
24
50
70
80
64
60
85
140
145
220
24
245
DDR3-1066
7-7-7
110
125
24
60
80
80
70
70
95
165
170
225
24
270
DDR3-1333
9-9-9
115
130
24
70
80
90
80
70
100
185
190
225
24
320
DDR3-1600
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
UnitNotes
Page 37 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
12.0 Input/Output Capacitance
[ Table 41 ] Input/Output Capacitance
Parameter
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance
(CK and CK)
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-onlypins)
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input/output capacitance of ZQ pin
Symbol
CIO
CCK
CDCK
CI
CDDQS
CDI_CTRL
CDI_ADD_CMD
CDIO
CZQ
DDR3-800
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDR3-1066
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDP 4Gb DDR3 SDRAM
DDR3-1333
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
DDR3-1600
Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Units
pF
pF
pF
pF
pF
pF
pF
pF
pF
Notes
1,2,3
2,3
2,3,4
2,3,6
2,3,5
2,3,7,8
2,3,9,10
2,3,11
2, 3, 12
Note :
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER( VNA)") with V
DD
, V
DDQ
, V
SS
, V
SSQ
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary).
V
DD
=V
DDQ
=1.5V, V
BIAS
=V
DD
/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
Page 38 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600
13.1 Clock specification
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3
SDRAM device.
13.1.1 Definition for tCK (avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to
rising edge.
∑
j=1
N
tCKj
N
N=200
13.1.2 Definition for tCK (abs)
tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.
13.1.3 Definition for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:
∑
tCHj
j=1
N
N x tCK(avg)N=200
∑
j=1
N
tCLj
N x tCK(avg)N=200
13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}
tJIT(per) defines the single period jitter when the DLL is already locked.
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
tJIT(per) and tJIT(per,lck) are not subject to production test.
13.1.5 Definition for note for tJIT(cc), tJIT(cc,Ick)
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
tJIT(cc) and tJIT(cc,lck) are not subject to production test.
13.1.6 Definition for tERR(nper)
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.
Page 39 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
13.2 Refresh Parameters by Device Density
[ Table 42 ] Refresh parameters by device density
Parameter
All Bank Refresh to active/refresh cmd time
Average periodic refresh intervaltREFI
Symbol
tRFC
0 °C ≤ T
CASE
≤ 85°C
85 °C < T
CASE
≤ 95°C
1Gb
110
7.8
3.9
DDP 4Gb DDR3 SDRAM
2Gb
160
7.8
3.9
4Gb
300
7.8
3.9
8Gb
350
7.8
3.9
Units
ns
µs
µs
Note
1
Note :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or
requirements referred to in this material.
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 43 ] DDR3-800 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6 / CWL = 5
Supported CL Settings
Supported CWL Settings
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
min
15
15
15
52.5
37.5
2.5
6
5
DDR3-800
6 - 6 - 6
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
nCK
nCK
8
1,2,3
UnitsNote
[ Table 44 ] DDR3-1066 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6
CL = 7
CL = 8
Supported CL Settings
Supported CWL Settings
CWL = 5
CWL = 6
CWL = 5
CWL = 6
CWL = 5
CWL = 6
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)1.875
6,7,8
5,6
1.875
Reserved
<2.5
min
13.125
13.125
13.125
50.625
37.5
2.5
Reserved
Reserved
<2.5
DDR3-1066
7 - 7 - 7
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
nCK
nCK
8
1,2,3,6
1,2,3,4
4
1,2,3,4
4
1,2,3
UnitsNote
Page 40 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 45 ] DDR3-1333 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CWL = 5
CL = 6CWL = 6
CWL = 7
CWL = 5
CL = 7CWL = 6
CWL = 7
CWL = 5
CL = 8CWL = 6
CWL = 7
CL = 9
CWL = 5,6
CWL = 7
CWL = 5,6
CL = 10
Supported CL Settings
Supported CWL Settings
CWL = 7
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
1.5
(Optional)
6,7,8,9
5,6,7
1.5
Reserved
1.875
Reserved
Reserved
1.875
min
13.5
(13.125)
5,9
13.5
(13.125)
5,9
13.5
(13.125)
5,9
49.5
(49.125)
5,9
36
2.5
Reserved
Reserved
Reserved
DDR3-1333
9 -9 - 9
DDP 4Gb DDR3 SDRAM
Units
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
<2.5
ns
ns
ns
<2.5ns
ns
ns
<1.875
<1.875
ns
ns
ns
ns
nCK
nCK
Note
8
1,2,3,7
1,2,3,4,7
4
4
1,2,3,4,7
1,2,3,4,
4
1,2,3,7
1,2,3,4,
4
1,2,3,4
4
1,2,3
5
(Optional) Note 5,9
Reserved
Reserved
Page 41 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 46 ] DDR3-1600 Speed Bins
Speed
CL-nRCD-nRP
Parameter
Intermal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CWL = 5
CL = 6CWL = 6
CWL = 7, 8
CWL = 5
CL = 7
CWL = 6
CWL = 7
CWL = 8
CWL = 5
CL = 8
CWL = 6
CWL = 7
CWL = 8
CWL = 5,6
CL = 9CWL = 7
CWL = 8
CWL = 5,6
CL = 10CWL = 7
CWL = 8
CL = 11
Supported CL Settings
Supported CWL Settings
CWL = 5,6,7
CWL = 8
Symbol
tAA
tRCD
tRP
tRC
tRAS
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)1.25
6,7,8,9,10,11
5,6,7,8
1.5
Reserved
Reserved
1.5
TBD
Reserved
1.875
Reserved
Reserved
Reserved
1.875
min
13.75
(13.125)
5,9
13.75
(13.125)
5,9
13.75
(13.125)
5,9
48.75
(48.125)
5,9
35
2.5
Reserved
Reserved
Reserved
DDR3-1600
11-11-11
DDP 4Gb DDR3 SDRAM
Units
max
20
-
-
-
9*tREFI
3.3
ns
ns
ns
ns
ns
ns
ns
ns
ns
<2.5
ns
ns
ns
ns
<2.5ns
ns
ns
ns
<1.875
ns
ns
ns
<1.875
ns
ns
ns
<1.5ns
nCK
nCK
Note
1,2,3,8
1,2,3,4,8
4
4
1,2,3,4,8
1,2,3,4,8
4
4
1,2,3,8
1,2,3,4,8
1,2,3,4
4
1,2,3,4,8
1,2,3,4
4
1,2,3,8
1,2,3,4
4
1,2,3,5
(Optional) Note 5,9
Reserved
Reserved
Reserved
(Optional) Note 9,10
(Optional) Note 9,10
Page 42 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
13.3.1 Speed Bin Table Notes
Absolute Specification (T
OPER
; V
DDQ
= V
DD
= 1.5V +/- 0.075 V);
DDP 4Gb DDR3 SDRAM
Note :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-
filled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/
or the DIMM SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to
match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte
16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-
gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin
(Byte 21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns
(tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
Page 43 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.0 Timing Parameters by Speed Grade
[ Table 47 ] Timing Parameters by Speed Bin
Speed
Parameter
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
Clock Period
Average high pulse width
Average low pulse width
Clock Period Jitter
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
Cycle to Cycle Period Jitter during DLL locking period
Cumulative error across 2 cycles
Cumulative error across 3 cycles
Cumulative error across 4 cycles
Cumulative error across 5 cycles
Cumulative error across 6 cycles
Cumulative error across 7 cycles
Cumulative error across 8 cycles
Cumulative error across 9 cycles
Cumulative error across 10 cycles
Cumulative error across 11 cycles
Cumulative error across 12 cycles
Cumulative error across n = 13, 14 ... 49, 50 cycles
Absolute clock HIGH pulse width
Absolute clock Low pulse width
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
DQ low-impedance time from CK, CK
DQ high-impedance time from CK, CK
Data setup time to DQS, DQS referenced to
V
IH
(AC)V
IL
(AC) levels
Data hold time to DQS, DQS referenced to
V
IH
(AC)V
IL
(AC) levels
DQ and DM Input pulse width for each input
Data Strobe Timing
DQS, DQS READ Preamble
DQS, DQS differential READ Postamble
DQS, DQS output high time
DQS, DQS output low time
DQS, DQS WRITE Preamble
DQS, DQS WRITE Postamble
DQS, DQS rising edge output access time from rising
CK, CK
DQS, DQS low-impedance time (Referenced from RL-1)
DQS, DQS high-impedance time (Referenced from
RL+BL/2)
DQS, DQS differential input low pulse width
DQS, DQS differential input high pulse width
DQS, DQS rising edge to CK, CK rising edge
DQS,DQS faling edge setup time to CK, CK rising edge
DQS,DQS faling edge hold time to CK, CK rising edge
tRPRE
tRPST
tQSH
tQSL
tWPRE
tWPST
tDQSCK
tLZ(DQS)
tHZ(DQS)
tDQSL
tDQSH
tDQSS
tDSS
tDSH
0.9
0.3
0.38
0.38
0.9
0.3
-400
-800
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
400
400
400
0.55
0.55
0.25
-
-
0.9
0.3
0.38
0.38
0.9
0.3
-300
-600
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
300
300
300
0.55
0.55
0.25
-
-
tDQSQ
tQH
tLZ(DQ)
tHZ(DQ)
tDS(base)
tDH(base)
tDIPW
-
0.38
-800
-
75
150
600
200
-
400
400
-
0.38
-600
-
25
100
490
150
-
300
300
-
tCK(DLL_OF
F)
tCK(avg)
tCK(abs)
tCH(avg)
tCL(avg)
tJIT(per)
tJIT(per, lck)
tJIT(cc)
tJIT(cc, lck)
tERR(2per)
tERR(3per)
tERR(4per)
tERR(5per)
tERR(6per)
tERR(7per)
tERR(8per)
tERR(9per)
tERR(10per)
tERR(11per)
tERR(12per)
tERR(nper)
tCH(abs)
tCL(abs)
0.43
0.43
-
-
- 147
- 175
- 194
- 209
- 222
- 232
- 241
- 249
- 257
- 263
- 269
8-8-8
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
-8-ns
ps
ps
tCK(avg)
tCK(avg)
ps
ps
ps
ps
6
See Speed Bins Table
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +
tJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)max
0.47
0.47
-100
-90
200
180
0.53
0.53
100
90
0.47
0.47
-90
-80
180
160
0.53
0.53
90
80
0.47
0.47
-80
-70
160
140
0.53
0.53
80
70
0.47
0.47
-70
-60
140
120
0.53
0.53
70
60
147
175
194
209
222
232
241
249
257
263
269
- 132
- 157
- 175
- 188
- 200
- 209
- 217
- 224
- 231
- 237
- 242
132
157
175
188
200
209
217
224
231
237
242
- 118
- 140
- 155
- 168
- 177
- 186
- 193
- 200
- 205
- 210
- 215
118
140
155
168
177
186
193
200
205
210
215
-103
-122
-136
-147
-155
-163
-169
-175
-180
-184
-188
103
122
136
147
155
163
169
175
180
184
188
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps24
25
26
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
0.43
0.43
-
-
0.43
0.43
-
-
0.43
0.43
-
-
tCK(avg)
tCK(avg)
125
-
250
250
-
-
-
0.38
-450
-
10
45
360
100
-
225
225
ps
tCK(avg)
ps
ps
ps
ps
ps
13
13, g
13,14, f
13,14, f
d, 17
d, 17
28
0.38
-500
-
30
65
400
-
-
-
-
-
--
0.9
0.3
0.4
0.4
0.9
0.3
-255
-500
-
0.45
0.45
-0.25
0.2
0.2
Note 19
Note 11
-
-
-
-
255
250
250
0.55
0.55
0.25
-
-
0.9
0.3
0.4
0.4
0.9
0.3
-225
-450
-
0.45
0.45
-0.27
0.18
0.18
Note 19
Note 11
-
-
-
-
225
225
225
0.55
0.55
0.27
-
-
tCK
tCK
tCK(avg)
tCK(avg)
tCK
tCK
ps
ps
ps
tCK
tCK
tCK(avg)
tCK(avg)
tCK(avg)
13, 19, g
11, 13, b
13, g
13, g
13,f
13,14,f
12,13,14
29, 31
30, 31
c
c, 32
c, 32
Page 44 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Tabel 47 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
Command and Address Timing
DLL locking time
internal READ Command to PRECHARGE Command
delay
Delay from start of internal write transaction to internal
read command
WRITE recovery time
Mode Register Set command cycle time
Mode Register Set command update delay
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
ACTIVE to ACTIVE command period for 1KB page size
ACTIVE to ACTIVE command period for 2KB page size
Four activate window for 1KB page size
Four activate window for 2KB page size
Command and Address setup time to CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Command and Address hold time from CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Command and Address setup time to CK, CK refer-
enced to V
IH
(AC) / V
IL
(AC) levels
Control & Address Input pulse width for each input
Calibration Timing
Power-up and RESET calibration time
Normal operation Full calibration time
Normal operation short calibration time
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked
DLL
Exit Self Refresh to commands requiring a locked DLL
Minimum CKE low width for Self refresh entry to exit
timing
Valid Clock Requirement after Self Refresh Entry
(SRE) or Power-Down Entry (PDE)
Valid Clock Requirement before Self Refresh Exit
(SRX) or Power-Down Exit (PDX) or Reset Exit
tXS
tXSDLL
tCKESR
tCKSRE
tCKSRX
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
tXPR
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
tZQinitI
tZQoper
tZQCS
512
256
64
-
-
-
512
256
64
-
-
-
tDLLK
tRTP
tWTR
tWR
tMRD
tMOD
tCCD
tDAL(min)
tMPRR
tRAS
tRRD
tRRD
tFAW
tFAW
tIS(base)
tIH(base)
tIS(base)
AC150
tIPW
1-1
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
512
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
15
4
max
(12nCK,15ns
)
4
-
-
-
-
-
-
-
nCK
e
e,18
ns
nCK
e
nCK
nCKWR + roundup (tRP / tCK(AVG))
-1-1-nCK
ns
22
e
e
e
See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37
max
(4nCK,10ns)
max
(4nCK,10ns)
40
50
200
275
200 + 150
900
-
-
-
-
max
(4nCK,7.5ns)
max
(4nCK,10ns)
37.5
50
125
200
125 + 150
780
-
-
-
-
max
(4nCK,6ns)
max
(4nCK,7.5ns)
30
45
65
140
65+125
620
-
-
-
-
-
-
-
-
max
(4nCK,6ns)
max
(4nCK,7.5ns)
30
40
TBD
TBD
TBD+125
560
-
-
-
-
-
-
-
-
ns
ns
ps
ps
ps
ps
e
e
b,16
b,16
b,16,27
28
-
-
-
-
-
-
-
-
512
256
64
-
-
-
512
256
64
-
-
-
nCK
nCK
nCK23
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
max(5nCK,tR
FC + 10ns)
tDLLK(min)
tCKE(min) +
1tCK
max(5nCK,
10ns)
max(5nCK,
10ns)
-
-
-
-
-
nCK
Page 45 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
[ Table 47 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
Power Down Timing
Exit Power Down with DLL on to any valid com-
mand;Exit Percharge Power Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to com-
mands requiring a locked DLL
tXP
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
7.5ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
max
(3nCK,
7.5ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
Symbol
DDR3-800
MINMAX
DDR3-1066
MINMAX
DDP 4Gb DDR3 SDRAM
DDR3-1333
MINMAX
DDR3-1600
MINMAX
UnitsNote
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,
5.625ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
max
(3nCK,6ns)
max
(10nCK,
24ns)
max
(3nCK,5ns)
1
tCKE(min)
1
1
RL + 4 +1
WL + 4
+(tWR/
tCK(avg))
WL + 4
+WR +1
WL + 2
+(tWR/
tCK(avg))
WL +2 +WR
+1
1
tMOD(min)
-
tXPDLL----2
CKE minimum pulse width
Command pass disable delay
Power Down Entry to Exit Timing
Timing of ACT command to Power Down entry
Timing of PRE command to Power Down entry
Timing of RD/RDA command to Power Down entry
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WR command to Power Down entry
(BL4MRS)
Timing of WRA command to Power Down entry
(BL4MRS)
Timing of REF command to Power Down entry
Timing of MRS command to Power Down entry
ODT Timing
ODT high time without write command or with wirte
command and BC4
ODT high time with Write command and BL8
Asynchronous RTT tum-on delay (Power-Down with
DLL frozen)
Asynchronous RTT tum-off delay (Power-Down with
DLL frozen)
ODT turn-on
RTT_NOM and RTT_WR turn-off time from ODTLoff
reference
RTT dynamic change skew
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining
mode is programmed
DQS/DQS delay after tDQS margining mode is pro-
grammed
Setup time for tDQSS latch
Write leveling hold time from rising DQS, DQS cross-
ing to rising CK, CK crossing
Write leveling output delay
Write leveling output error
tCKE
tCPDED
tPD
tACTPDEN
tPRPDEN
tRDPDEN
tWRPDEN
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-
-
-
9*tREFI
-
-
-
-nCK9
nCK
tCK
nCK
nCK
15
20
20
tWRAPDEN----nCK10
tWRPDEN----nCK9
tWRAPDEN
tREFPDEN
tMRSPDEN
-
-
-
-
-
-
-
-
-
-
-
-
nCK10
20,21
ODTH4
ODTH8
tAONPD
tAOFPD
tAON
tAOF
tADC
4
6
2
2
-400
0.3
0.3
-
-
8.5
8.5
400
0.7
0.7
4
6
2
2
-300
0.3
0.3
-
-
8.5
8.5
300
0.7
0.7
4
6
2
2
-250
0.3
0.3
-
-
8.5
8.5
250
0.7
0.7
4
6
2
2
-225
0.3
0.3
-
-
8.5
8.5
225
0.7
0.7
nCK
nCK
ns
ns
ps
tCK(avg)
tCK(avg)
7,f
8,f
f
tWLMRD
tWLDQSEN
tWLS
tWLH
tWLO
tWLOE
40
25
325
325
0
0
-
-
-
-
9
2
40
25
245
245
0
0
-
-
-
-
9
2
40
25
195
195
0
0
-
-
-
-
9
2
40
25
165
165
0
0
-
-
-
-
7.5
2
tCK
tCK
ps
ps
ns
ns
3
3
Page 46 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.1 Jitter Notes
DDP 4Gb DDR3 SDRAM
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input
clock, counting the actual clock ) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-
eters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-
ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-
cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to
input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-
put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9
x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =
0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)
Page 47 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation"
8. For definition of RTT turn-off time tAOF see "Device Operation".
DDP 4Gb DDR3 SDRAM
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on T
OPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
V
REF
(DC) = V
REF
DQ(DC). FOr input only pins except RESET, V
REF
(DC)=V
REF
CA(DC).
See "Address/ Command Setup, Hold and Derating"
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
V
REF
(DC)= V
REF
DQ(DC). For input only pins except RESET, V
REF
(DC)=V
REF
CA(DC).
See "Data Setup, Hold and Slew Rate Derating"
18. Start of internal write transaction is definited as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-
lated as:
0.5
(1.5 x 1) + (0.15 x 15)
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
= 0.133
~
~
128ms
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of V
REF
(DC) and the consecutive crossing of V
REF
(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
Page 48 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.3 Address / Command Setup, Hold and Derating:
DDP 4Gb DDR3 SDRAM
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table
48) to the ∆tIS and ∆tIH derating value (see Table 49) respectively.
Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
V
REF
(DC) and the first crossing of V
IH
(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as
the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IL
(AC)max. If the actual signal is always earlier than the nominal slew rate
line between shaded ’V
REF
(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew
rate line anywhere between shaded ’V
REF
(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for der-
ating value (see Figure 25).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
IL
(DC)max and the first crossing of V
REF
(DC).
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
(DC). If
the actual signal is always later than the nominal slew rate line between shaded ’dc to V
REF
(DC) region’, use nominal slew rate for derating value (see
Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V
REF
(DC) region’, the slew rate of a tangent line
to the actual signal from the dc level to V
REF
(DC) level is used for derating value (see Figure 26).
For a valid transition the input signal has to remain above/below V
IH/IL
(AC) for some time tVAC (see Table 50).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V
IH/IL
(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach V
IH/IL
(AC).
For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[ Table 48 ] ADD/CMD Setup and Hold Base-Values for 1V/ns
[ps]
tIS(base)
tIH(base)
tIS(base)-AC150
DDR3-800
200
275
200 + 150
DDR3-1066
125
200
125 + 150
DDR3-1333
65
140
65+125
DDR3-1600
45
120
45+125
reference
V
IH/L(AC)
V
IH/L(DC)
V
IH/L(AC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate
Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old
of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].
[ Table 49 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based
∆tIS, ∆tIH Derating [ps] AC/DC based
AC175 Threshold -> V
IH
(AC) = V
REF
(DC) + 175mV, V
IL
(AC) = V
REF
(DC) - 175mV
CLK,CLK Differential Slew Rate
4.0 V/ns
∆tIS
2.0
1.5
CMD/
ADD
Slew
rate
V/ns
1.0
0.9
0.8
0.7
0.6
0.5
0.4
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
3.0 V/ns
∆tIS
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
2.0 V/ns
∆tIS
88
59
0
-2
-6
-11
-17
-35
-62
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
1.8 V/ns
∆tIS
96
67
8
6
2
-3
-9
-27
-54
∆tIH
58
42
8
4
-2
-8
-18
-32
-52
1.6 V/ns
∆tIS
104
75
16
14
10
5
-1
-19
-46
∆tIH
66
50
16
12
6
0
-10
-24
-44
1.4V/ns
∆tIS
112
83
24
20
13
13
7
-11
-38
∆tIH
74
58
24
20
14
8
-2
-16
-36
1.2V/ns
∆tIS
120
91
32
30
26
21
15
-2
-30
∆tIH
84
68
34
30
24
18
8
-6
-26
1.0V/ns
∆tIS
128
99
40
38
34
29
23
5
-22
∆tIH
100
84
50
46
40
34
24
10
-10
Page 49 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
∆tIS, ∆tIH Derating [ps] AC/DC based
Alternate AC150 Threshold -> V
IH
(AC) = V
REF
(DC) + 150mV, V
IL
(AC) = V
REF
(DC) - 150mV
CLK,CLK Differential Slew Rate
4.0 V/ns3.0 V/ns
∆tIS
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
2.0 V/ns
∆tIS
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
1.8 V/ns
∆tIS
83
58
8
8
8
8
7
-2
-17
∆tIH
58
42
8
4
-2
-8
-18
-32
-52
1.6 V/ns
∆tIS
91
66
16
16
16
16
15
6
-9
∆tIH
66
50
16
12
6
0
-10
-24
-44
1.4V/ns
∆tIS
99
74
24
24
24
24
23
14
-1
∆tIH
74
58
24
20
14
8
-2
-16
-36
1.2V/ns
∆tIS
107
82
32
32
32
32
31
22
7
∆tIH
84
68
34
30
24
18
8
-6
-26
1.0V/ns
∆tIS
115
90
40
40
40
40
39
30
15
∆tIH
100
84
50
46
40
34
24
10
-10
[ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold
∆tIS
2.0
1.5
CMD/
ADD
Slew
rate
V/ns
1.0
0.9
0.8
0.7
0.6
0.5
0.4
75
50
0
0
0
0
-1
-10
-25
∆tIH
50
34
0
-4
-10
-16
-26
-40
-60
[ Table 51 ] Required time t
VAC
above V
IH
(AC) {blow V
IL
(AC)} for valid transition
Slew Rate[V/ns]
min
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
< 0.5
75
57
50
38
34
29
22
13
0
0
t
VAC
@175mV [ps]
max
-
-
-
-
-
-
-
-
-
-
t
VAC
@150mV [ps]
min
175
170
167
163
162
161
159
155
150
150
max
-
-
-
-
-
-
-
-
-
-
Page 50 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
nominal
slew rate
V
REF
(DC)
nominal slew
rate
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
tVAC
V
SS
Delta TF
Setup Slew Rate
=
V
REF
(DC) - V
IL
(AC)max
Falling Signal
Delta TF
Delta TR
Setup Slew Rate
V
IH
(AC)min - V
REF
(DC)
=
Rising Signal
Delta TR
Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 51 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
V
DDQ
tDS
tDH
tDS
tDH
V
IH
(AC) min
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
nominal
slew rate
dc to V
REF
region
nominal
slew rate
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
V
REF
(DC) - V
IL
(DC)max
Rising Signal
=
Delta TR
Delta TF
Hold Slew Rate
V
IH
(DC)min - V
REF
(DC)
=
Falling Signal
Delta TF
Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 52 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
nominal
line
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
tangent
line
V
REF
(DC)
tangent
line
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
nominal
line
V
SS
Delta TR
Setup Slew Rate
tangent line[V
IH
(AC)min - V
REF
(DC)]
=
Rising Signal
Delta TR
Delta TF
Setup Slew Rate
tangent line[V
REF
(DC) - V
IL
(AC)max]
Falling Signal
=
Delta TF
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(forADD/CMD with respect to clock)
Page 53 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tDH
V
IH
(AC) min
nominal
line
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
tangent
line
nominal
line
tangent
line
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
tangent line [ V
REF
(DC) - V
IL
(DC)max ]
Rising Signal
=
Delta TR
Hold Slew Rate
tangent line [ V
IH
(DC)min - V
REF
(DC) ]
Falling Signal
=
Delta TF
Delta TF
Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 54 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
14.4 Data Setup, Hold and Slew Rate Derating:
DDP 4Gb DDR3 SDRAM
or all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see
Table 52) to the ∆ tDS and ∆tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IH
(AC)min.
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
REF
(DC) and the first crossing of V
IL
(AC)max
(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’V
REF
(DC) to ac region’, use nominal slew rate for
derating value. If the actual signal is later than the nominal slew rate line anywhere
between shaded ’V
REF
(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see
Figure 27).
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V
IL
(DC)max and the first crossing of V
REF
(DC).
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V
IH
(DC)min and the first crossing of V
REF
(DC)
(see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to V
REF
(DC) region’, use nominal slew rate for
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V
REF
(DC) region’, the slew rate of a tangent
line to the actual signal from the dc level to V
REF
(DC) level is used for derating value (see Figure 28).
For a valid transition the input signal has to remain above/below V
IH/IL
(AC) for some time tVAC (see Table 54).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V
IH/IL
(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach V
IH/IL
(AC).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization
[ Table 52 ] Data Setup and Hold Base-Value
[ps]
tDS(base)
tDH(base)
tDS(AC150)
DDR3-800
75
150
75+50
DDR3-1066
25
100
25+50
DDR3-1333
30
65
-
DDR3-1600
10
45
-
reference
V
IH/L
(AC)
V
IH/L
(DC)
V
IH/L
(AC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
[ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based
∆tDS, ∆tDH Derating [ps] AC/DC based
a
DQS,DQS Differential Slew Rate
2.0 V/ns1.8 V/ns1.6 V/ns
∆tDS∆tDH∆tDS∆tDH∆tDS∆tDH
8850----
59346742--
00881616
-2-4641412
-6-102-2106
---3-850
-----1-10
------
------
7550----
50345842--
00881616
0-4841612
0-108-2166
--8-8160
----15-10
------
------
DDR3
DQ
Slew
-
800/
rate
1066
V/ns
DDR3
DQ
Slew
-
1333/
rate
1600
V/ns
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
4.0 V/ns
∆tDS∆tDH
8850
5934
00
--
--
--
--
--
--
7550
5034
00
--
--
--
--
--
--
3.0 V/ns
∆tDS∆tDH
8850
5934
00
-2-4
--
--
--
--
--
7550
5034
00
0-4
--
--
--
--
--
1.4V/ns
∆tDS∆tDH
--
--
--
2220
1814
138
7-2
-11-16
--
--
--
--
2420
2414
248
23-2
14-16
--
1.2V/ns
∆tDS∆tDH
--
--
--
--
2624
2118
158
-2-6
-30-26
--
--
--
--
3224
3218
318
22-6
7-26
1.0V/ns
∆tDS∆tDH
--
--
--
--
--
2934
2324
610
-22-10
--
--
--
--
--
4034
3924
3010
15-10
Note : a. Cell contents shaded in red are defined as ’not supported’.
[ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
Slew Rate[V/ns]
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
<0.5
t
VAC
[ps] DDR3-800/1066
min
75
57
50
38
34
29
22
13
0
0
t
VAC
[ps] DDR3-1333/1600
min
175
170
167
163
162
161
159
155
155
150
max
-
-
-
-
-
-
-
-
-
-
max
-
-
-
-
-
-
-
-
-
-
Page 55 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
nominal
slew rate
V
REF
(DC)
nominal slew
rate
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
tVAC
V
SS
Delta TF
Setup Slew Rate
=
V
REF
(DC) - V
IL
(AC)max
Falling Signal
Delta TF
Delta TR
Setup Slew Rate
V
IH
(AC)min - V
REF
(DC)
=
Rising Signal
Delta TR
Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 56 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
V
DDQ
tDS
tDH
tDS
tDH
V
IH
(AC) min
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
nominal
slew rate
dc to V
REF
region
nominal
slew rate
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
=
Rising Signal
V
REF
(DC) - V
IL
(DC)max
Delta TR
Delta TF
V
IH
(DC)min - V
REF
(DC)
Hold Slew Rate
=
Falling Signal
Delta TF
Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 57 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
nominal
line
tDS
tVAC
tDH
V
IH
(AC) min
V
REF
to ac
region
V
IH
(DC) min
tangent
line
V
REF
(DC)
tangent
line
V
IL
(DC) max
V
REF
to ac
region
V
IL
(AC) max
nominal
line
V
SS
Delta TR
Setup Slew Rate
tangent line[V
IH
(AC)min - V
REF
(DC)]
=
Rising Signal
Delta TR
Delta TF
Setup Slew Rate
tangent line[V
REF
(DC) - V
IL
(AC)max]
Falling Signal
=
Delta TF
Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(forADD/CMD with respect to clock)
Page 58 of 59
Rev. 1.0 March 2009
K4B4G0446B
K4B4G0846B
DDP 4Gb DDR3 SDRAM
Note :Clock and Strobe are drawn on a different time scale.
tIS
CK
tIH
tIS
tIH
CK
DQS
DQS
tDS
V
DDQ
tDH
tDS
tDH
V
IH
(AC) min
nominal
line
V
IH
(DC) min
dc to V
REF
region
V
REF
(DC)
dc to V
REF
region
V
IL
(DC) max
tangent
line
nominal
line
tangent
line
V
IL
(AC) max
V
SS
Delta TR
Hold Slew Rate
tangent line [ V
REF
(DC) - V
IL
(DC)max ]
Rising Signal
=
Delta TR
Hold Slew Rate
tangent line [ V
IH
(DC)min - V
REF
(DC) ]
Falling Signal
=
Delta TF
Delta TF
Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 59 of 59
Rev. 1.0 March 2009