最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

samsung_DDR3_图文

IT圈 admin 32浏览 0评论

2024年5月20日发(作者:理依波)

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

DDP 4Gb B-die DDR3 SDRAM Specification

78 FBGA with Lead-Free & Halogen-Free

(RoHS Compliant)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,

AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE

CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-

WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-

OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT

GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar

applications where Product failure could result in loss of life or personal or physical harm, or any military or

defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Page 1 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Year

2009 - First release

History

Revision History

Revision

1.0

Month

March

Page 2 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Table Contents

1.0 Ordering Information ...................................................................................................................5

2.0 Key Features ................................................................................................................................5

3.0 Package pinout/Mechanical Dimension & Addressing ............................................................6

3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package

..............................................................6

3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package

..............................................................7

3.3 FBGA Package Dimension (x4)

.....................................................................................................8

3.4 FBGA Package Dimension (x8)

.....................................................................................................9

4.0 Input/Output Functional Description .......................................................................................10

5.0 DDR3 SDRAM Addressing ........................................................................................................11

6.0 Absolute Maximum Ratings ......................................................................................................12

6.1 Absolute Maximum DC Ratings

...................................................................................................12

6.2 DRAM Component Operating Temperature Range

.........................................................................12

7.0 AC & DC Operation Conditions ................................................................................................12

7.1 Recommended DC operating Conditions (SSTL_1.5)

.....................................................................12

8.0 AC & DC Input Measurement Levels ........................................................................................13

8.1 AC and DC Logic input levels for single-ended singnals

................................................................13

8.2 VREF Tolerances

.......................................................................................................................14

8.3 AC and DC Logic Input Levels for Ditterential Signals

...................................................................15

8.3.1 Differential signal definition

................................................................................................15

8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)

..............................15

8.3.3 Single-ended requirements for differential signals

.................................................................16

8.4 Differential Input Cross Point Voltage

..........................................................................................17

8.5 Slew Rate Definition for Single Ended Input Signals

......................................................................17

8.6 Slew rate definition for Differential Input Signals

...........................................................................17

9.0 AC and DC Output Measurement Levels .................................................................................18

9.1 Single Ended AC and DC Output Levels

.......................................................................................18

9.2 Differential AC and DC Output Levels

..........................................................................................18

9.3 Single Ended Output Slew Rate

...................................................................................................18

9.4 Differential Output Slew Rate

......................................................................................................19

9.5 Reference Load for AC Timing and Output Slew Rate

....................................................................19

9.6 Overshoot/Undershoot Specification

...........................................................................................20

9.6.1 Address and Control Overshoot and Undershoot specifications

.............................................20

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications

.................................20

9.7 34 ohm Output Driver DC Electrical Characteristics

.......................................................................21

9.7.1 Output Drive Temperature and Voltage sensitivity

.................................................................22

9.8 On-Die Termination (ODT) Levels and I-V Characteristics

...............................................................22

9.8.1 ODT DC electrical characteristics

........................................................................................23

9.8.2 ODT Temperature and Voltage sensitivity

.............................................................................24

Page 3 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

9.9 ODT Timing Definitions

..............................................................................................................25

9.9.1 Test Load for ODT Timings

.................................................................................................25

9.9.2 ODT Timing Definition

........................................................................................................25

10.0 IDD Specification Parameters and Test Conditions .............................................................28

10.1 IDD Measurement Conditions

....................................................................................................28

10.2 IDD Specifications definition

.....................................................................................................30

11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table .....................................................................37

12.0 Input/Output Capacitance .......................................................................................................38

13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ..............................39

13.1 Clock specification

.............................................................................................................39

13.1.1 Definition for tCK (avg)

.....................................................................................................39

13.1.2 Definition for tCK (abs)

.....................................................................................................39

13.1.3 Definition for tCH(avg) and tCL(avg)

...................................................................................39

13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)

........................................................................39

13.1.5 Definition for tJIT(cc), tJIT(cc,Ick)

......................................................................................39

13.1.6 Definition for tERR(nper)

...................................................................................................39

13.2 Refresh Parameters by Device Density

.......................................................................................40

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

.............................................40

13.3.1 Speed Bin

43

14.0 Timing Parameters by Speed Grade ......................................................................................44

14.1 Jitter Notes

.............................................................................................................................47

14.2 Timing Parameter Notes

...........................................................................................................48

14.3 Address / Command Setup, Hold and Derating:

...........................................................................49

14.4 Data Setup, Hold and Slew Rate Derating:

..................................................................................55

Page 4 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

1.0 Ordering Information

[ Table 1 ] Samsung DDP 4Gb DDR3 B-die ordering information table

Organization

1Gx4

512Mx8

DDR3-800 (6-6-6)

K4B4G0446B-MCF7

K4B4G0846B-MCF7

DDR3-1066 (7-7-7)

K4B4G0446B-MCF8

K4B4G0846B-MCF8

DDP 4Gb DDR3 SDRAM

DDR3-1333 (9-9-9)

K4B4G0446B-MCH9

K4B4G0846B-MCH9

Package

78 FBGA

78 FBGA

Note :

1. Speed bin is in order of CL-tRCD-tRP.

2.0 Key Features

[ Table 2 ] DDP 4Gb DDR3 B-die Speed bins

Speed

tCK(min)

CAS Latency

tRCD(min)

tRP(min)

tRAS(min)

tRC(min)

DDR3-800

6-6-6

2.5

6

15

15

37.5

52.5

DDR3-1066

7-7-7

1.875

7

13.125

13.125

37.5

50.625

DDR3-1333

9-9-9

1.5

9

13.5

13.5

36

49.5

Unit

ns

nCK

ns

ns

ns

ns

•JEDEC standard 1.5V ± 0.075V Power Supply

•V

DDQ

= 1.5V ± 0.075V

•400 MHz f

CK

for 800Mb/sec/pin, 533MHz f

CK

for 1066Mb/sec/pin,

667MHz f

CK

for 1333Mb/sec/pin

•8 Banks

•Posted CAS

•Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10

•Programmable Additive Latency: 0, CL-2 or CL-1 clock

•Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6

(DDR3-1066) and 7 (DDR3-1333)

•8-bit pre-fetch

•Burst Length: 8 (Interleave without any limit, sequential with starting

address “000” only), 4 with tCCD = 4 which does not allow seamless

read or write [either On the fly using A12 or MRS]

•Bi-directional Differential Data-Strobe

•Internal(self) calibration : Internal self calibration through ZQ pin

(RZQ : 240 ohm ± 1%)

•On Die Termination using ODT pin

•Average Refresh Period 7.8us at lower than T

CASE

85°C, 3.9us at

85°C < T

CASE

< 95 °C

•Asynchronous Reset

•Package : 78 balls FBGA - x4/x8

•All of Lead-Free products are compliant for RoHS

•All of products are Halogen-free

The DDP 4Gb DDR3 SDRAM B-die is organized as a 128Mbit x 4 I/Os x

8banks, 64Mbit x 8 I/Os x 8banks. This synchronous device achieves high

speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR3-

1333) for general applications.

The chip is designed to comply with the following key DDR3 SDRAM fea-

tures such as posted CAS, Programmable CWL, Internal (Self) Calibra-

tion, On Die Termination using ODT pin and Asynchronous Reset .

All of the control and address inputs are synchronized with a pair of exter-

nally supplied differential clocks. Inputs are latched at the crosspoint of dif-

ferential clocks (CK rising and CK falling). All I/Os are synchronized with a

pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-

ion. The address bus is used to convey row, column, and bank address

information in a RAS/CAS multiplexing style. The DDR3 device operates

with a single 1.5V±0.075V power supply and 1.5V ±0.075V V

DDQ

.

The 4Gb DDR3 B-die device is available in 78ball FBGAs(x4/x8).

Note : 1. The functionality described and the timing specifications included

in this data sheet are for the DLL Enabled mode of operation.

Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device

Operation & Timing Diagram”.

Page 5 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

3.0 Package pinout/Mechanical Dimension & Addressing

3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package

DDP 4Gb DDR3 SDRAM

1

A

B

C

D

E

F

G

H

J

K

L

M

N

V

SS

V

SS

V

DDQ

V

SSQ

V

REFDQ

ODT1

ODT0

CS1

V

SS

V

DD

V

SS

V

DD

V

SS

2

V

DD

V

SSQ

DQ2

NC

V

DDQ

V

SS

V

DD

CS0

BA0

A3

A5

A7

RESET

3

NC

DQ0

DQS

DQS

NC

RAS

CAS

WE

BA2

A0

A2

A9

A13

45 67

NC

DM

DQ1

V

DD

NC

CK

CK

A10/AP

NC

A12/BC

A1

A11

A14

8

V

SS

V

SSQ

DQ3

V

SS

NC

V

SS

V

DD

ZQ0

V

REFCA

BA1

A4

A6

A8

9

V

DD

V

DDQ

V

SSQ

V

SSQ

V

DDQ

CKE1

CKE0

ZQ1

V

SS

V

DD

V

SS

V

DD

V

SS

A

B

C

D

E

F

G

H

J

K

L

M

N

123456789

Ball Locations (x4)

A

B

C

Populated ball

Ball not populated

D

E

F

G

H

Top view

(See the balls through the package)

J

K

L

M

N

Page 6 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package

1

A

B

C

D

E

F

G

H

J

K

L

M

N

V

SS

V

SS

V

DDQ

V

SSQ

V

REFDQ

ODT1

ODT0

CS1

V

SS

V

DD

V

SS

V

DD

V

SS

2

V

DD

V

SSQ

DQ2

DQ6

V

DDQ

V

SS

V

DD

CS0

BA0

A3

A5

A7

RESET

3

NC

DQ0

DQS

DQS

DQ4

RAS

CAS

WE

BA2

A0

A2

A9

A13

45 67

NU/TDQS

DM/TDQS

DQ1

V

DD

DQ7

CK

CK

A10/AP

NC

A12/BC

A1

A11

A14

8

V

SS

V

SSQ

DQ3

V

SS

DQ5

V

SS

V

DD

ZQ0

V

REFCA

BA1

A4

A6

A8

9

V

DD

V

DDQ

V

SSQ

V

SSQ

V

DDQ

CKE1

CKE0

ZQ1

V

SS

V

DD

V

SS

V

DD

V

SS

A

B

C

D

E

F

G

H

J

K

L

M

N

123456789

Ball Locations (x8)

A

B

C

Populated ball

Ball not populated

D

E

F

G

H

Top view

(See the balls through the package)

J

K

L

M

N

Page 7 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.3 FBGA Package Dimension (x4)

Units : Millimeters

A

#A1 INDEX MARK

B

10.00 ± 0.10

0.80 x 8 = 6.40

(Datum A)

0.801.603.20

987654321

A

B

C

D

E

F

G

H

J

K

L

M

N

4

.

8

0

0

.

8

0

(Datum B)

0

.

8

0

x

1

2

=

9

.

6

0

78 - ∅0.45 Solder ball

(Post Reflow ∅0.50 ± 0.05)

0.2MAB

BOTTOM VIEW

0

.

8

0

1

1

.

5

0

±

0

.

1

0

#A1

10.00 ± 0.10

1

1

.

5

0

±

0

.

1

0

0

.

1

0

M

A

X

0.35 ± 0.05

1.40 ± 0.10

TOP VIEW

Page 8 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.4 FBGA Package Dimension (x8)

Units : Millimeters

A

#A1 INDEX MARK

B

10.00 ± 0.10

0.80 x 8 = 6.40

(Datum A)

0.801.603.20

987654321

A

B

C

D

E

F

G

H

J

K

L

M

N

4

.

8

0

0

.

8

0

(Datum B)

0

.

8

0

x

1

2

=

9

.

6

0

78 - ∅0.45 Solder ball

(Post Reflow ∅0.50 ± 0.05)

0.2MAB

BOTTOM VIEW

0

.

8

0

1

1

.

5

0

±

0

.

1

0

#A1

10.00 ± 0.10

1

1

.

5

0

±

0

.

1

0

0

.

1

0

M

A

X

0.35 ± 0.05

1.40 ± 0.10

TOP VIEW

Page 9 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

4.0 Input/Output Functional Description

[ Table 3 ] Input/Output function description

Symbol

CK, CK

Type

Input

Function

DDP 4Gb DDR3 SDRAM

Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of

the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK

Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and

output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or

Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V

REFCA

has become

stable during the power on and initialization sequence, it must be maintained during all operations (including Self-

Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT

and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.

Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on

systems with multiple Ranks. CS is considered part of the command code.

On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When

enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode

Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-

grammed to disable ODT.

Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.

Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-

dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of

DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.

Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being

applied. Bank address also determines if the mode register or extended mode register is to be accessed during a

MRS cycle.

Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands

to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,

see below)

The address inputs also provide the op-code during Mode Register Set commands.

Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-

formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)

A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or

all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.

Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-

formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details

Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.

RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and

20% of V

DD

, i.e. 1.20V for DC high and 0.30V for DC low.

Data Input/ Output: Bi-directional data bus.

Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the

x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data

strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-

ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and

does not support single-ended.

Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in

MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When

disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/

x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.

No Connect: No internal electrical connection is present.

CKEInput

CSInput

ODTInput

RAS, CAS, WE

DM

(DMU), (DML)

Input

Input

BA0 - BA2Input

A0 - A14Input

A10 / APInput

A12 / BC

Input

RESET

DQ

Input

Input/Output

DQS, (DQS)

Input/Output

TDQS, (TDQS)Output

NC

V

DDQ

V

SSQ

V

DD

V

SS

V

REFDQ

V

REFCA

ZQ

Supply

Supply

Supply

Supply

Supply

Supply

Supply

DQ Power Supply: 1.5V +/- 0.075V

DQ Ground

Power Supply: 1.5V +/- 0.075V

Ground

Reference voltage for DQ

Reference voltage for CA

Reference Pin for ZQ calibration

Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.

Page 10 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

5.0 DDR3 SDRAM Addressing

1Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

256Mb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9,

A

11

A

12

/BC

1 KB

DDP 4Gb DDR3 SDRAM

128Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9

A

12

/BC

1 KB

64Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

12

A

0

- A

9

A

12

/BC

2 KB

2Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

512Mb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9,

A

11

A

12

/BC

1 KB

256Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9

A

12

/BC

1 KB

128Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9

A

12

/BC

2 KB

4Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

1Gb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11

A

12

/BC

1 KB

512Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9

A

12

/BC

1 KB

256Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9

A

12

/BC

2 KB

8Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

2Gb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11,

A

13

A

12

/BC

2 KB

1Gb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11

A

12

/BC

2 KB

512Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9

A

12

/BC

2 KB

Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifierswhen an ACTIVE command is registered.

Page size is per bank, calculated as follows: page size = 2

COLBITS

* ORG

÷

8

where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits

Page 11 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

6.0 Absolute Maximum Ratings

6.1 Absolute Maximum DC Ratings

[ Table 4 ] Absolute Maximum DC Ratings

Symbol

V

DD

V

DDQ

V

IN,

V

OUT

T

STG

Parameter

Voltage on V

DD

pin relative to Vss

Voltage on V

DDQ

pin relative to Vss

Voltage on any pin relative to Vss

Storage Temperature

Rating

DDP 4Gb DDR3 SDRAM

Units

V

V

V

Notes

1,3

1,3

1

-0.4 V ~ 1.975 V

-0.4 V ~ 1.975 V

-0.4 V ~ 1.975 V

-55 to +100°C 1, 2

Note :

1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2

standard.

3. V

DD

and V

DDQ

must be within 300mV of each other at all times;and V

REF

must be not greater than 0.6 x V

DDQ

, When V

DD

and V

DDQ

are less than

500mV; V

REF

may be equal to or less than 300mV.

6.2 DRAM Component Operating Temperature Range

[ Table 5 ] Temperature Range

Symbol

T

OPER

Parameter

Operating Temperature Range

rating

0 to 95

Unit

°C

Notes

1, 2, 3

Note :

1. Operating Temperature T

OPER

is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the

JEDEC document JESD51-2.

2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-

perature must be maintained between 0-85°C under all operating conditions

3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-

teed in this range, but the following additional conditions apply:

a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component

with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.

b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with

Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =

0b)

7.0 AC & DC Operation Conditions

7.1 Recommended DC operating Conditions (SSTL_1.5)

[ Table 6 ] Recommended DC Operating Conditions

Symbol

V

DD

V

DDQ

Supply Voltage

Supply Voltage for Output

Parameter

Rating

Min.

1.425

1.425

Typ.

1.5

1.5

Max.

1.575

1.575

Units

V

V

Notes

1,2

1,2

Note :

1. Under all conditions V

DDQ

must be less than or equal to V

DD

.

2. V

DDQ

tracks with V

DD

. AC parameters are measured with V

DD

and V

DDQ

tied together.

Page 12 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.0 AC & DC Input Measurement Levels

8.1 AC and DC Logic input levels for single-ended singnals

[ Table 7 ] Single Ended AC and DC input levels for Command and Address

Symbol

V

(DC)

V

(DC)

V

(AC)

V

(AC)

Parameter

DC input logic high

DC input logic low

AC input logic high

AC input logic low

DDR3-800/1066

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

-

-

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

-

-

0.51*V

DD

DDP 4Gb DDR3 SDRAM

DDR3-1333/1600

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

V

REF

+150

-

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

-

V

REF

-150

0.51*V

DD

Unit

mV

mV

mV

mV

mV

mV

V

Notes

1

1

1,2

1,2

1,2

1,2

3,4

V

(AC150)

AC input logic high

V

(AC150)

AC input logic lowM

V

REFCA

(DC)

Reference Voltage for ADD,

CMD inuts

Note :

1. For input only pins except RESET, V

REF

= V

REFCA

(DC)

2. See 9.6 "Overshoot and Undershoot specifications"

3. The AC peak noise on V

REF

may not allow V

REF

to deviate from V

REF

(DC) by more than

±

1% V

DD

(for reference : approx.

±

15mV)

4. For reference : approx. V

DD

/2

±

15mV

[ Table 8 ] Single Ended AC and DC input levels for DQ and DM

SymbolParameter

DDR3-800/1066

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

V

REF

+ 150

Note 2

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

Note 2

V

REF

- 150

0.51*V

DD

Min.

V

REF

+ 100

V

SS

V

REF

+ 150

-

-

-

0.49*V

DD

DDR3-1333

Max.

V

DD

V

REF

- 100

-

V

REF

- 150

-

-

0.51*V

DD

Unit

mV

mV

mV

mV

mV

mV

V

Notes

1

1

1,2,5

1,2,5

1,2,5

1,2,5

3,4

V

(DC100)

DC input logic high

V

(DC100)

DC input logic low

V

(AC175)

AC input logic high

V

(AC175)

AC input logic low

V

(AC150)

AC input logic high

V

(AC150)

AC input logic low

V

REF

DQ

(DC)

I/O Reference Voltage(DQ)

Note :

1. For input only pins except RESET, V

REF

= V

REFDQ

(DC)

2. See "Overshoot and Undershoot specifications"

3. The AC peak noise on V

REF

may not allow V

REF

to deviate from V

REF

(DC) by more than

±

1% V

DD

(for reference : approx.

±

15mV)

4. For reference : approx. V

DD

/2

±

15mV

5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).

Page 13 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.2 V

REF

Tolerances

DDP 4Gb DDR3 SDRAM

The dc-tolerance limits and ac-noise limits for the reference voltages V

REFCA

and V

REFDQ

are illustrate in Figure 1. It shows a valid reference voltage

V

REF

(t) as a function of time. (V

REF

stands for V

REFCA

and V

REFDQ

likewise).

V

REF

(DC) is the linear average of V

REF

(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Fur-

thermore V

REF

(t) may temporarily deviate from V

REF

(DC) by no more than ± 1% V

DD

.

voltage

V

DD

V

SS

time

Figure 1. Illustration of V

REF

(DC) tolerance and V

REF

ac-noise limits

The voltage levels for setup and hold time measurements V

IH

(AC), V

IH

(DC), V

IL

(AC) and V

IL

(DC) are dependent on V

REF

.

"V

REF

" shall be understood as V

REF

(DC), as defined in Figure 1.

This clarifies, that dc-variations of V

REF

affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to

which setup and hold is measured. System timing and voltage budgets need to account for V

REF

(DC) deviations from the optimum position within the

data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V

REF

ac-noise. Timing

and voltage effects due to ac-noise on V

REF

up to the specified limit (+/-1% of V

DD

) are included in DRAM timings and their associated deratings.

Page 14 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.3 AC and DC Logic Input Levels for Ditterential Signals

8.3.1 Differential signal definition

tDVAC

V

IH

.

D

i

f

f

e

r

e

n

t

i

a

l

I

n

p

u

t

V

o

l

t

a

g

e

(

i.

e

.

D

Q

S

-

D

Q

S

,

C

K

-

C

K

)

DDP 4Gb DDR3 SDRAM

V

IH

.

0.0

half cycle

V

IL

.

V

IL

.

tDVAC

time

Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC

8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)

[ Table 9 ] Defferential AC and DC Input Levels

Symbol

V

IHdiff

V

ILdiff

V

IHdiff

(AC)

V

ILdiff

(AC)

Parameter

differential input high

differential input low

differential input high ac

differential input low ac

DDR3-800/1066/1333/1600

min

+0.2

note 3

2 x (V

IH

(AC)-V

REF

)

note 3

max

note 3

-0.2

note 3

2 x (V

REF

- V

IL

(AC))

unit

V

V

V

V

Note

1

1

2

2

Notes:

1. Used to define a differential signal slew-rate.

2. for CK - CK use V

IH

/V

IL

(AC) of ADD/CMD and V

REFCA

; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use V

IH

/V

IL

(AC) of DQs and V

REFDQ

; if a

reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective

limits (V

IH

(DC) max, V

IL

(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet

Specification "

[ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS

Slew Rate [V/ns]

> 4.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

< 1.0

tDVAC [ps] @ |V

IH/Ldiff

(AC)| = 350mV

min

75

57

50

38

34

29

22

13

0

0

max

-

-

-

-

-

-

-

-

-

-

tDVAC [ps] @ |V

IH/Ldiff

(AC)| = 300mV

min

175

170

167

163

162

161

159

155

150

150

max

-

-

-

-

-

-

-

-

-

-

Page 15 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.3.3 Single-ended requirements for differential signals

DDP 4Gb DDR3 SDRAM

Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for

single-ended signals.

CK and CK have to approximately reach V

SEH

min / V

SEL

max (approximately equal to the ac-levels ( V

IH

(AC) / V

IL

(AC) ) for ADD/CMD signals) in every

half-cycle.

DQS, DQSL, DQSU, DQS, DQSL have to reach V

SEH

min / V

SEL

max (approximately the ac-levels ( V

IH

(AC) / V

IL

(AC) ) for DQ signals) in every half-cycle

preceeding and following a valid transition.

Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V

IH

150(AC)/V

IL

150(AC) is used for ADD/CMD sig-

nals, then these ac-levels apply also for the single-ended signals CK and CK .

V

DD

or V

DDQ

V

SEH

min

V

SEH

V

DD

/2 or V

DDQ

/2

CK or DQS

V

SEL

max

V

SEL

time

Figure 3 : Single-ended requirement for differential signals.

V

SS

or V

SSQ

Note that while ADD/CMD and DQ signal requirements are with respect to V

REF

, the single-ended components of differential signals have a requirement

with respect to V

DD

/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-

ended components of differential signals the requirement to reach V

SEL

max, V

SEH

min has no bearing on timing, but adds a restriction on the common

mode charateristics of these signals.

[ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU

Symbol

V

SEH

V

SEL

Parameter

Single-ended high-level for strobes

Single-ended high-level for CK, CK

Single-ended low-level for strobes

Single-ended low-level for CK, CK

DDR3-800/1066/1333/1600

Min

(V

DD

/2)+0.175

(V

DD

/2)+0.175

Note3

Note3

Max

Note3

Note3

(V

DD

/2)-0.175

(V

DD

/2)-0.175

Unit

V

V

V

V

Notes

1, 2

1, 2

1,2

1,2

Notes:

1. For CK, CK use V

IH

/V

IL

(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use V

IH

/V

IL

(AC) of DQs.

2. V

IH

(AC)/V

IL

(AC) for DQs is based on V

REFDQ

; V

IH

(AC)/V

IL

(AC) for ADD/CMD is based on V

REFCA

; if a reduced ac-high or ac-low level is used for a

signal group, then the reduced level applies also here

3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective

limits (V

IH

(DC) max, V

IL

(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot

Specification"

Page 16 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.4 Differential Input Cross Point Voltage

DDP 4Gb DDR3 SDRAM

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input

signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage V

IX

is measured from the actual

cross point of true and complement signal to the mid level between of V

DD

and V

SS

.

V

DD

CK, DQS

V

IX

V

DD

/2

V

IX

V

IX

CK, DQS

V

SS

Figure 4. V

IX

Definition

[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)

Symbol

V

IX

V

IX

Parameter

Differential Input Cross Point Voltage relative to V

DD

/2 for CK,CK

Differential Input Cross Point Voltage relative to V

DD

/2 for DQS,DQS

DDR3-800/1066/1333/1600

Min

-150

-175

-150

Max

150

175

150

Unit

mV

mV

mV

1

Notes

Note :

1. Extended range for V

IX

is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing V

SEL

/

V

SEH

of at least V

DD

/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for V

SEL

and V

SEH

stan-

dard values.

8.5 Slew Rate Definition for Single Ended Input Signals

See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.

See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data nominal slew rate for a falling signal is

defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

8.6 Slew rate definition for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.

[ Table 13 ] Differential input slew rate definition

Description

Differential input slew rate for rising edge (CK-CK and DQS-DQS)

Differential input slew rate for falling edge (CK-CK and DQS-DQS)

Measured

From

V

ILdiffmax

V

IHdiffmin

To

V

IHdiffmin

V

ILdiffmax

Defined by

V

IHdiffmin

- V

ILdiffmax

Delta TRdiff

V

IHdiffmin

- V

ILdiffmax

Delta TFdiff

Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds

V

IHdiffmin

0

V

ILdiffmax

delta TFdiff

delta TRdiff

Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK

Page 17 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.0 AC and DC Output Measurement Levels

9.1 Single Ended AC and DC Output Levels

[ Table 14 ] Single Ended AC and DC output levels

Symbol

V

OH

(DC)

V

OM

(DC)

V

OL

(DC)

V

OH

(AC)

V

OL

(AC)

Parameter

DC output high measurement level (for IV curve linearity)

DC output mid measurement level (for IV curve linearity)

DC output low measurement level (for IV curve linearity)

AC output high measurement level (for output SR)

AC output low measurement level (for output SR)

DDP 4Gb DDR3 SDRAM

DDR3-800/1066/1333/1600

0.8 x V

DDQ

0.5 x V

DDQ

0.2 x V

DDQ

V

TT

+ 0.1 x V

DDQ

V

TT

- 0.1 x V

DDQ

Units

V

V

V

V

V

Notes

1

1

Note : 1. The swing of +/-0.1 x V

DDQ

is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40

and an effective test load of 25

to V

TT

=V

DDQ

/2.

9.2 Differential AC and DC Output Levels

[ Table 15 ] Differential AC and DC output levels

Symbol

V

OHdiff

(AC)

V

OLdiff

(DC)

Parameter

AC differential output high measurement level (for output SR)

AC differential output low measurement level (for output SR)

DDR3-800/1066/1333/1600

+0.2 x V

DDQ

-0.2 x V

DDQ

Units

V

V

Notes

1

1

Note : 1. The swing of +/-0.2xV

DDQ

is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40

and an effective test load of 25

to V

TT

=V

DDQ

/2 at each of the differential outputs.

9.3 Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V

OL

(AC) and V

OH

(AC)

for single ended signals as shown in Table 16 and figure 6.

[ Table 16 ] Single Ended Output slew rate definition

Description

Single ended output slew rate for rising edge

Single ended output slew rate for falling edge

Measured

From

V

OL

(AC)

V

OH

(AC)

To

V

OH

(AC)

V

OL

(AC)

Defined by

V

OH

(AC)-V

OL

(AC)

Delta TRse

V

OH

(AC)-V

OL

(AC)

Delta TFse

Note : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 17 ] Single Ended Output slew rate

Parameter

Single ended output slew rate

Symbol

SRQse

DDR3-800

Min

2.5

Max

5

DDR3-1066

Min

2.5

Max

5

DDR3-1333

Min

2.5

Max

5

DDR3-1600

Min

TBD

Max

5

Units

V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output

se : Singe-ended Signals

For Ron = RZQ/7 setting

V

OH(AC)

V

TT

V

OL(AC)

delta

TFse

delta

TRse

Figure 6. Single Ended Output Slew Rate definition

Page 18 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.4 Differential Output Slew Rate

DDP 4Gb DDR3 SDRAM

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V

OLdiff

(AC) and

V

OHdiff

(AC) for differential signals as shown inTable 18 and figure 7.

[ Table 18 ] Differential Output slew rate definition

Description

Differential output slew rate for rising edge

Differential output slew rate for falling edge

Measured

From

V

OLdiff

(AC)

V

OHdiff

(AC)

To

V

OHdiff

(AC)

V

OLdiff

(AC)

Defined by

V

OHdiff

(AC)-V

OLdiff

(AC)

Delta TRdiff

V

OHdiff

(AC)-V

OLdiff

(AC)

Delta TFdiff

Note : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 19 ] Differential Output slew rate

Parameter

Differential output slew rate

Symbol

SRQse

DDR3-800

Min

5

Max

10

DDR3-1066

Min

5

Max

10

DDR3-1333

Min

5

Max

10

DDR3-1600

Min

TBD

Max

10

Units

V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output

diff : Singe-ended Signals

For Ron = RZQ/7 setting

V

OHdiff

(AC)

V

TT

V

OLdiff

(AC)

delta

TFdiff

delta

TRdiff

Figure 7. Differential Output Slew Rate definition

9.5 Reference Load for AC Timing and Output Slew Rate

Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate

measurements.

It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. Sys-

tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their

production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

V

DDQ

CK/CK

DUT

DQ

DQS

DQS

V

TT

= V

DDQ

/2

25

Reference

Point

Figure 8. Reference Load for AC Timing and Output Slew Rate

Page 19 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.6 Overshoot/Undershoot Specification

9.6.1 Address and Control Overshoot and Undershoot specifications

DDP 4Gb DDR3 SDRAM

[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)

Parameter

Maximum peak amplitude allowed for overshoot area (See Figure 9)

Maximum peak amplitude allowed for undershoot area (See Figure 9)

Maximum overshoot area above V

DD

(See Figure 9)

Maximum undershoot area below V

SS

(See Figure 9)

Specification

DDR3-800

0.4V

0.4V

0.67V-ns

0.67V-ns

DDR3-1066

0.4V

0.4V

0.5V-ns

0.5V-ns

DDR3-1333

0.4V

0.4V

0.4V-ns

0.4V-ns

DDR3-1600

0.4V

0.4V

0.33V-ns

0.33V-ns

Unit

V

V

V-ns

V-ns

MaximumAmplitude

OvershootArea

Volts

(V)

V

DD

V

SS

MaximumAmplitude

Time (ns)

UndershootArea

Figure 9. Address and Control Overshoot and Undershoot definition

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications

[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)

Parameter

Maximum peak amplitude allowed for overshoot area (See Figure 11)

Maximum peak amplitude allowed for undershoot area (See Figure 11)

Maximum overshoot area above V

DDQ

(See Figure 11)

Maximum undershoot area below V

SSQ

(See Figure 11)

Specification

DDR3-800

0.4V

0.4V

0.25V-ns

0.25V-ns

DDR3-1066

0.4V

0.4V

0.19V-ns

0.19V-ns

DDR3-1333

0.4V

0.4V

0.15V-ns

0.15V-ns

DDR3-1600

0.4V

0.4V

0.13V-ns

0.13V-ns

Unit

V

V

V-ns

V-ns

MaximumAmplitude

OvershootArea

Volts

(V)

V

DDQ

V

SSQ

MaximumAmplitude

Time (ns)

UndershootArea

Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition

Page 20 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.7 34 ohm Output Driver DC Electrical Characteristics

DDP 4Gb DDR3 SDRAM

A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ

as follows:

RON

34

= RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)

RON

40

= RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm)

The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows

RONpu =

V

DDQ

-V

OUT

l Iout l

V

OUT

l Iout l

under the condition that RONpu is turned off

under the condition that RONpd is turned off

RONpd =

Output Driver : Definition of Voltages and Currents

Output Driver

V

DDQ

Ipu

To

other

circuity

RON

Pu

DQ

RON

Ipd

Iout

Vout

V

SSQ

Pd

Figure 11. Output Driver : Definition of Voltages and Currents

[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;

entire operating temperature range; after proper ZQ calibration

RONnomResistorVout

V

OLdc

= 0.2 x V

DDQ

RON34pd

34Ohms

RON34pu

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

RON40pd

40Ohms

RON40pu

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

Mismatch between Pull-up and Pull-down,

MMpupd

V

OMdc

= 0.5 x V

DDQ

Min

0.6

0.9

0.9

0.9

0.9

0.6

0.6

0.9

0.9

0.9

0.9

0.6

-10

Nom

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Max

1.1

1.1

1.4

1.4

1.1

1.1

1.1

1.1

1.4

1.4

1.1

1.1

10%

RZQ/6

RZQ/7

UnitsNotes

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,4

Note :

1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-

tion, see following section on voltage and temperature sensitivity

2. The tolerance limits are specified under the condition that V

DDQ

= V

DD

and that V

SSQ

= V

SS

3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V

DDQ

. Other calibration schemes may be used to achieve the linearity spec shown

above, e.g. calibration at 0.2 X V

DDQ

and 0.8 X V

DDQ

4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V

DDQ

:

MMpupd=

RONpu - RONpd

RONnom

x 100

Page 21 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.7.1 Output Drive Temperature and Voltage sensitivity

DDP 4Gb DDR3 SDRAM

If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24.

∆T = T - T(@calibration); ∆V = V

DDQ

- V

DDQ

(@calibration); V

DD

= V

DDQ

*dR

ON

dT and dR

ON

dV are not subject to production test but are verified by design and characterization

[ Table 23 ] Output Driver Sensitivity Definition

Min

RONPU@V

OHDC

RON@V

OMDC

RONPD@

VOLDC

0.6 - dR

ON

dTH * |

∆T| - dR

ON

dVH * |∆V|

0.9 - dR

ON

dTM * |

∆T| - dR

ON

dVM * |∆V|

0.6 - dR

ON

dTL * |

∆T| - dR

ON

dVL * |∆V|

Max

1.1 + dR

ON

dTH * |

∆T| + dR

ON

dVH * |∆V|

1.1 + dR

ON

dTM * |

∆T| + dR

ON

dVM * |∆V|

1.1 + dR

ON

dTL * |

∆T| + dR

ON

dVL * |∆V|

Units

RZQ/7

RZQ/7

RZQ/7

[ Table 24 ] Output Driver Voltage and Temperature Sensitivity

Speed Bin

Min

dR

ON

dTM

dR

ON

dVM

dR

ON

dTL

dR

ON

dVL

dR

ON

dTH

dR

ON

dVH

0

0

0

0

0

0

800/1066/1333

Max

1.5

0.15

1.5

0.15

1.5

0.15

Min

0

0

0

0

0

0

1600

Max

1.5

0.13

1.5

0.13

1.5

0.13

Units

%/°C

%/mV

%/°C

%/mV

%/°C

%/mV

9.8 On-Die Termination (ODT) Levels and I-V Characteristics

On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.

ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.

A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as

follows :

V

DDQ

-V

OUT

l Iout l

V

OUT

l Iout l

under the condition that RTTpu is turned off

RTTpu =

under the condition that RTTpd is turned off

RTTpd =

On-Die Termination : Definition of Voltages and Currents

Chip in Termination Mode

ODT

V

DDQ

Ipu

To

other

circuitry

like

RCV,

...

Iout=Ipd-Ipu

Pu

RTT

DQ

RTT

Ipd

Iout

Pd

V

OUT

V

SSQ

Figure 12. On-Die Termination : Definition of Voltages and Currents

Page 22 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.8.1 ODT DC electrical characteristics

DDP 4Gb DDR3 SDRAM

Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT

60pd120,

RTT

60pu120,

RTT

120pd240,

RTT

120pu240,

RTT

40pd80,

RTT

40pu80,

RTT

30pd60,

RTT

30pu60,

RTT

20pd40,

RTT

20pu40

are not specification requirements, but can be used as design guide lines:

[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operationg temperature range ;

after proper ZQ calibration.

MR1 (A9,A6,A2)RTTRESISTORVout

V

OL

(DC) 0.2XV

DDQ

RTT

120pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,1,0)120 ohm

RTT

120pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

120

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,0,1)60 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

40pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,1,1)40 ohm

RTT

40pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

40

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(1,0,1)30 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(1,0,0)20 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

Min

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

-5

Nom

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Max

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

5

Unit

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/4

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/6

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/8

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/12

%

Notes

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,5,6

Deviation of V

M

w.r.t V

DDQ

/2, ∆VM

Page 23 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :

1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage

changes after calibration, see following section on voltage and temperature sensitivity

2. The tolerance limits are specified under the condition that V

DDQ

= V

DD

and that V

SSQ

= V

SS

3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV

DDQ

. Other calibration schemes may be used to achieve the linearity

spec shown above, e.g. calibration at 0.2XV

DDQ

and 0.8XV

DDQ

.

4. Not a specification requirement, but a design guide line

5. Measurement definition for RTT:

Apply V

IH

(AC) to pin under test and measure current I(V

IH

(AC)), then apply V

IL

(AC) to pin under test and measure current I(V

IL

(AC)) perspectively

RTT =

V

IH

(AC) - V

IL

(AC)

I(V

IH

(AC)) - I(V

IL

(AC))

6. Measurement definition for V

M

and

V

M

: Measure voltage (V

M

) at test pin (midpoint) with no load

V

M

=

2 x

V

M

V

DDQ

- 1

x 100

9.8.2 ODT Temperature and Voltage sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to table below

∆T = T - T(@calibration); ∆V = V

DDQ

- V

DDQ

(@calibration); V

DD

= V

DDQ

[ Table 26 ] ODT Sensitivity Definition

Min

RTT

0.9 - dR

TT

dT * |

∆T| - dR

TT

dV * |∆V|

Max

1.6 + dR

TT

dT * |

∆T| + dR

TT

dV * |∆V|

Units

RZQ/2,4,6,8,12

[ Table 27 ] ODT Voltage and Temperature Sensitivity

Min

dR

TT

dT

dR

TT

dV

0

0

Max

1.5

0.15

Units

%/°C

%/mV

These parameters may not be subject to production test. They are verified by design and characterization.

Page 24 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.9 ODT Timing Definitions

9.9.1 Test Load for ODT Timings

Different than for timing measurements, the reference load for ODT timings is defined in Figgure 13.

DDP 4Gb DDR3 SDRAM

V

DDQ

CK,CK

DUT

DQ, DM

DQS , DQS

TDQS , TDQS

RTT

=25 ohm

V

TT

=

V

SSQ

V

SSQ

Timing Reference Points

Figure 13. ODT Timing Reference Load

9.9.2 ODT Timing Definition

Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided

in Table 29.

[ Table 28 ] ODT Timing Definitions

Symbol

tAON

tAONPD

tAOF

tAOFPD

tADC

Begin Point Definition

Rising edge of CK - CK defined by the end point of ODTLon

Rising edge of CK - CK with ODT being first registered high

Rising edge of CK - CK defined by the end point of ODTLoff

Rising edge of CK - CK with ODT being first registered low

Rising edge of CK - CK defined by the end point of ODTLcnw,

ODTLcwn4 of ODTLcwn8

End Point Definition

Extrapolated point at V

SSQ

Extrapolated point at V

SSQ

End point: Extrapolated point at V

RTT_Nom

End point: Extrapolated point at V

RTT_Nom

End point: Extrapolated point at V

RTT_Wr

and V

RTT_Nom

respectively

Figute

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

[ Table 29 ] Reference Settings for ODT Timing Measurements

Measured

Parameter

tAON

tAONPD

tAOF

tAOFPD

tADC

RTT_Nom Setting

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/12

RTT_Wr Setting

NA

NA

NA

NA

NA

NA

NA

NA

R

ZQ

/2

V

SW1

[V]

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.20

V

SW2

[V]

0.10

0.20

0.10

0.20

0.10

0.20

0.10

0.20

0.30

Note

Page 25 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Begin point : Rising edge of CK - CK

defined by the end point of ODTLon

CK

V

TT

CK

t

AON

T

SW2

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW1

V

SW2

V

SW1

V

SSQ

V

SSQ

End point Extrapolated point at V

SSQ

Figure 14. Definition of tAON

Begin point : Rising edge of CK - CK

with ODT being first registered high

CK

V

TT

CK

t

AONPD

T

SW2

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW1

V

SW2

V

SW1

V

SSQ

V

SSQ

End point Extrapolated point at V

SSQ

Figure 15. Definition of tAONPD

Begin point : Rising edge of CK - CK

defined by the end point of ODTLoff

CK

V

TT

CK

t

AOF

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

End point Extrapolated point at V

RTT_Nom

T

SW2

V

SW2

V

SW1

T

SW1

V

SSQ

TD_TAON_DEF

Figure 16. Definition of tAOF

Page 26 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

Begin point : Rising edge of CK - CK

with ODT being first registered low

DDP 4Gb DDR3 SDRAM

CK

V

TT

CK

t

AOFPD

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

End point Extrapolated point at V

RTT_Nom

T

SW2

V

SW2

V

SW1

T

SW1

V

SSQ

Figure 17. Definition of tAOFPD

Begin point : Rising edge of CK - CK

defined by the end point of ODTLcnw

Begin point : Rising edge of CK - CK defined by

the end point of ODTLcwn4 or ODTLcwn8

CK

V

TT

CK

t

ADC

t

ADC

End point Extrapolated point at V

RTT_Nom

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW21

End point

Extrapolated point

T

SW11

at V

RTT_Nom

V

SW1

T

SW22

T

SW12

V

RTT_Nom

V

SW2

V

RTT_Wr

End point Extrapolated point at V

RTT_Wr

V

SSQ

Figure 18. Definition of tADC

Page 27 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

10.0 IDD Specification Parameters and Test Conditions

10.1 IDD Measurement Conditions

DDP 4Gb DDR3 SDRAM

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and

IDDQ measurements.

- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and

IDD7) are measured as time-averaged currents with all V

DD

balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in

IDD currents.

- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V

DDQ

balls of the DDR3 SDRAM under test tied

together. Any IDD current is not included in IDDQ currents.

Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO

power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V

DD

and V

DDQ

are using one merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply :

- "0" and "LOW" is defined as V

IN

<= V

IL

AC(max).

- "1" and "HIGH" is defined as V

IN

>= V

IH

AC(min).

- "FLOATING" is defined as inputs are V

REF

= V

DD

/ 2.

- Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30.

- Basic IDD and IDDQ Measurement Conditions are described in Table 31.

- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39.

- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting

RON = RZQ/7 (34 Ohm in MR1);

Qoff = 0B (Output Buffer enabled in MR1);

RTT_Nom = RZQ/6 (40 Ohm in MR1);

RTT_Wr = RZQ/2 (120 Ohm in MR2);

TDQS Feature disabled in MR1

- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.

- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}

- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}

Timing parameters are listed in the following table:

[ Table 30 ] Timing used for IDD and IDDQ Measured-Loop Patterns.

Parameter Bin

tCKmin(IDD)

CL(IDD) 5

tRCDmin(IDD)

tRCmin(IDD)

tRASmin(IDD)

tRPmin(IDD)

tFAW(IDD)

tRRD(IDD)

x4/x8

x16

x4/x8

x16

5

16

20

4

4

36

44

64

120

140

5

20

15

66

DDR3-800

5-5-5

2.5

6

6

21

6

6

26

6-6-6

DDR3-1066

6-6-67-7-7

1.875

7

7

27

20

7

20

27

4

6

48

59

86

160

187

878

20

30

4

5

60

74

107

200

234

8

8

28

7

7

31

8

8

32

24

91089

24

32

5

6

72

88

128

240

280

8-8-87-7-7

DDR3-1333

8-8-89-9-9

1.5

9

9

33

10

10

34

8

8

36

9

9

37

28

1011

10-10-108-8-8

DDR3-1600

9-9-910-10-10

1.25

10

10

38

11

11

39

11-11-11

Unit

ns

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

tRFC(IDD) - 512Mb

tRFC(IDD) - 1Gb

tRFC(IDD) - 2Gb

tRFC(IDD) - 4Gb

tRFC(IDD) - 8Gb

Page 28 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 31 ] Basic IDD and IDDQ Measurement Conditions

SymbolDescription

Operating One Bank Active-Precharge Current

IDD0

DDP 4Gb DDR3 SDRAM

CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address

Inputs: partially toggling according to Table 32 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...

(see Table32); Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 32

Operating One Bank Active-Read-Precharge Current

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between ACT, RD and PRE; Command, Address,

Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...

(see Table33); Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 33

Precharge Standby Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT

Signal: stable at 0; Pattern Details: see Table 34

Precharge Standby ODT Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 35 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT

Signal: toggling according to Table 35 ; Pattern Details: see Table 35

Precharge Standby ODT IDDQ Current

Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current

Precharge Power-Down Current Slow Exit

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pecharge

Power Down Mode: Slow Exi

c)

Precharge Power-Down Current Fast Exit

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pecharge

Power Down Mode: Fast Exit

c)

Precharge Quiet Standby Current

IDD1

IDD2N

DD2NT

DDQ2NT

(optional)

IDD2P0

IDD2P1

IDD2Q CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0

Active Standby Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Sig-

nal: stable at 0; Pattern Details: see Table 34

Active Power-Down Current

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0

Operating Burst Read Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling

according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank

Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Regis-

ters

b)

; ODT Signal: stable at 0; Pattern Details: see Table 36

Operating Burst Read IDDQ Current

Same definition like for IDD4R, however measuring IDDQ current instead of IDD current

Operating Burst Write Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-

gling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0;

Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers

b)

;

ODT Signal: stable at HIGH; Pattern Details: see Table 37

Burst Refresh Current

CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially

toggling according to Table 38 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:

Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 38

Self Refresh Current: Normal Temperature Range

TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled

d)

; Self-Refresh Temperature Range (SRT): Normal

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Self-Refresh operation;

Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

IDD3N

IDD3P

IDD4R

IDDQ4R

(optional)

IDD4W

IDD5B

IDD6

Page 29 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 31 ] Basic IDD and IDDQ Measurement Conditions

SymbolDescription

Self-Refresh Current: Extended Temperature Range (optional)

f

)

IDD6ET

DDP 4Gb DDR3 SDRAM

TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled

d)

; Self-Refresh Temperature Range (SRT): Extended

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Extended Temperature

Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

Auto Self-Refresh Current (optional)

f

)

TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled

d)

; Self-Refresh Temperature Range (SRT): Normal

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Auto

Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

Operating Bank Interleave Read Current

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8

a, g)

; AL: CL-1; CS: High between ACT and RDA; Command,

Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one

according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output

Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 39

IDD6TC

IDD7

a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B

b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B

c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit

d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature

e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range

f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device

10.2 IDD Specifications definition

Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot.

Only the following changes will be done to Chapter 10.2:

Table 53 "IDD Specification Example 512M DDR3", add the following Rows:

- Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT".

- Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT".

- Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R".

Page 30 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

(optional)

DDP 4Gb DDR3 SDRAM

I

DD

I

DDQ

V

DD

RESET

CK/CK

CKE

CS

RAS, CAS, WE

A, BA

ODT

ZQ

V

DDQ

DQS, DQS

DQ, DM,

TDQS, TDQS

R

TT

= 25 Ohm

V

DDQ

/2

V

SS

V

SSQ

[Note: DIMM level Output test load condition may be different from above ]

Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements

Application specific

memory channel

environment

IDDQ

Test Load

Channel

IO Power

Simulation

IDDQ

Simulation

IDDQ

Measurement

Correlation

Correction

Channel IO Power

Number

Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.

Page 31 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 32 ] IDD0 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1,2

3,4

...

nRAS

...

1*nRC + 0

1*nRC + 1, 2

ACT

D,D

D, D

PRE

ACT

D, D

D, D

PRE

0

1

1

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

F

0

0

0

0

0

0

0

0

repeat 4 until nRAS - 1, truncate if necessary

-

-

-

-

repeat 4 until nRC - 1, truncate if necessary

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1*nRC + 3, 4

...

1*nRC + nRAS

...

1

2

3

4

5

6

7

2*nRC

4*nRC

6*nRC

8*nRC

10*nRC

12*nRC

14*nRC

repeat 4 until 1*nRC + nRAS - 1, truncate if necessary

4 until 2*nRC - 1, truncate if necessary

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driben LOW all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 32 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 33 ] IDD1 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1,2

3,4

...

nRCD

...

nRAS

...

1*nRC+0

1*nRC + 1, 2

ACT

D,D

D, D

RD

PRE

ACT

D, D

D, D

RD

PRE

0

1

1

0

0

0

1

1

0

0

0

0

1

1

0

0

0

1

1

0

1

0

1

0

1

1

0

1

0

1

1

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

F

F

0

0

0

0

0

0

0

0

0

0

repeat 4 until nRCD- 1, truncate if necessary

00000000

-

-

-

-

00110011

-

repeat 4 until nRAS - 1, truncate if necessary

repeat 4 until nRC - 1, truncate if necessary

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1*nRC + 3, 4

...

1*nRC + nRCD

...

1*nRC + nRAS

...

1

2

3

4

5

6

7

2*nRC

4*nRC

6*nRC

8*nRC

10*nRC

12*nRC

14*nRC

repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary

repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary

repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

[ Table 34 ] IDD2 and IDD3N Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

-

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

C

K

E

R

A

S

C

A

S

O

D

T

00

1

2

3

D

D

D

D

1

1

1

1

0

0

1

1

0

0

1

1

W

E

C

S

0

0

1

1

0

0

0

0

0

0

0

0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

F

F

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1

2

3

4

5

6

7

4-7

8-11

12-15

16-19

20-23

24-27

28-31

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 33 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 35 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1

2

3

D

D

D

D

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

F

F

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1

2

3

4

5

6

7

4-7

8-11

12-15

16-19

20-23

24-27

28-31

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7

Note :

1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

[ Table 36 ] IDD4R and IDDQ4R Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

00000000

-

-

00110011

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

00

1

2,3

4

5

RD

D

D,D

RD

D

D,D

0

1

1

0

1

1

1

0

1

1

0

1

0

0

1

0

0

1

W

E

C

S

1

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

6,7

1

2

3

4

5

6

7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

repeat Sub-Loop 0, but BA[2:0] = 1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 0, but BA[2:0] = 3

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 0, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 0, but BA[2:0] = 7

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

Page 34 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 37 ] IDD4W Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1

2,3

4

5

WR

D

D,D

WR

D

D,D

0

1

1

0

1

1

1

0

1

1

0

1

0

0

1

0

0

1

0

0

1

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

00000000

-

-

00110011

-

-

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

6,7

1

2

3

4

5

6

7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

repeat Sub-Loop 0, but BA[2:0] = 1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 0, but BA[2:0] = 3

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 0, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 0, but BA[2:0] = 7

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

[ Table 38 ] IDD5B Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

0

1

0

1,2

3,4

5...8

REF

D

D,D

0

1

1

0

0

1

0

0

1

W

E

C

S

1

0

1

0

0

0

0

0

0

00

00

00

0

0

0

0

0

0

0

0

F

0

0

0

repeat 4, but BA[2:0] = 1

repeat 4, but BA[2:0] = 2

repeat 4, but BA[2:0] = 3

repeat 4, but BA[2:0] = 4

repeat 4, but BA[2:0] = 5

repeat 4, but BA[2:0] = 6

repeat 4, but BA[2:0] = 7

repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

9...12

13...16

17...20

21...24

25...28

29...32

RFC - 1

Note :

1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 35 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 39 ] IDD7 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

0

0

1

2

...

nRRD

1

nRRD + 1

nRRD + 2

...

2

3

4

5

6

7

8

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

9

2 * nRRD

3 * nRRD

4 * nRRD

nFAW

nFAW+nRRD

nFAW+2*nRRD

nFAW+3*nRRD

nFAW+4*nRRD

2*nFAW+0

10

2*nFAW+1

2*nFAW+2

2*nFAW+nRRD

11

2*nFAW+nRRD+1

2*nFAW+nRRD+2

12

13

14

15

16

17

18

19

2*nFAW+2*nRRD

2*nFAW+3*nRRD

2*nFAW+4*nRRD

3*nFAW

3*nFAW+nRRD

3*nFAW+2*nRRD

3*nFAW+3*nRRD

3*nFAW+4*nRRD

ACT

RDA

D

ACT

RDA

D

0

0

1

0

0

1

0

1

0

0

1

0

1

0

0

1

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

00

00

00

00

00

00

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

00000000

-

-

00110011

-

repeat above D Command until nRRD - 1

repeat above D Command until 2*nRRD-1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 1, but BA[2:0] = 3

D1000030000F0-

Assert and repeat above D Command until nFAW - 1, if necessary

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 1, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 1, but BA[2:0] = 7

D

ACT

RDA

D

ACT

RDA

D

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

7

0

0

0

1

1

1

00

00

00

00

00

00

00

0

0

1

0

0

1

0

0

0

0

0

0

0

0

F

F

F

F

0

0

0

0

0

0

0

0

0

0

-

-

00110011

-

-

00000000

-

Assert and repeat above D Command until 2*nFAW - 1, if necessary

Repeat above D Command until 2*nFAW + nRRD - 1

Repeat above D Command until 2*nFAW + 2*nRRD - 1

repeat Sub-Loop 10, but BA[2:0] = 2

repeat Sub-Loop 11, but BA[2:0] = 3

D1-

Assert and repeat above D Command until 3*nFAW - 1, if necessary

repeat Sub-Loop 10, but BA[2:0] = 4

repeat Sub-Loop 11, but BA[2:0] = 5

repeat Sub-Loop 10, but BA[2:0] = 6

repeat Sub-Loop 11, but BA[2:0] = 7

D1-

Assert and repeat above D Command until 4*nFAW - 1, if necessary

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.

Page 36 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table

[ Table 40 ] IDD Specification for DDP 4Gb DDR3 B-die

1Gx4 (K4B4G0446B)

Symbol

IDD0

IDD1

IDD2P0(slow exit)

IDD2P1(fast exit)

IDD2N

IDD2NT

IDD2Q

IDD3P(fast exit)

IDD3N

IDD4R

IDD4W

IDD5B

IDD6

IDD7

DDR3-800

6-6-6

100

115

24

50

70

70

60

60

85

135

140

220

24

235

DDR3-1066

7-7-7

110

125

24

50

80

80

70

70

95

160

165

225

24

250

DDR3-1333

9-9-9

115

130

24

50

80

90

70

70

100

175

180

225

24

300

DDP 4Gb DDR3 SDRAM

DDR3-1600

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Unit

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

Notes

512Mx8 (K4B4G0846B)

Symbol

IDD0

IDD1

IDD2P0(slow exit)

IDD2P1(fast exit)

IDD2N

IDD2NT

IDD2Q

IDD3P(fast exit)

IDD3N

IDD4R

IDD4W

IDD5B

IDD6

IDD7

DDR3-800

6-6-6

100

115

24

50

70

80

64

60

85

140

145

220

24

245

DDR3-1066

7-7-7

110

125

24

60

80

80

70

70

95

165

170

225

24

270

DDR3-1333

9-9-9

115

130

24

70

80

90

80

70

100

185

190

225

24

320

DDR3-1600

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

UnitNotes

Page 37 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

12.0 Input/Output Capacitance

[ Table 41 ] Input/Output Capacitance

Parameter

Input/output capacitance

(DQ, DM, DQS, DQS, TDQS, TDQS)

Input capacitance

(CK and CK)

Input capacitance delta

(CK and CK)

Input capacitance

(All other input-only pins)

Input capacitance delta

(DQS and DQS)

Input capacitance delta

(All control input-only pins)

Input capacitance delta

(all ADD and CMD input-onlypins)

Input/output capacitance delta

(DQ, DM, DQS, DQS, TDQS, TDQS)

Input/output capacitance of ZQ pin

Symbol

CIO

CCK

CDCK

CI

CDDQS

CDI_CTRL

CDI_ADD_CMD

CDIO

CZQ

DDR3-800

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDR3-1066

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDP 4Gb DDR3 SDRAM

DDR3-1333

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDR3-1600

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Units

pF

pF

pF

pF

pF

pF

pF

pF

pF

Notes

1,2,3

2,3

2,3,4

2,3,6

2,3,5

2,3,7,8

2,3,9,10

2,3,11

2, 3, 12

Note :

1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS

2. This parameter is not subject to production test. It is verified by design and characterization.

The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK

ANALYZER( VNA)") with V

DD

, V

DDQ

, V

SS

, V

SSQ

applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary).

V

DD

=V

DDQ

=1.5V, V

BIAS

=V

DD

/2 and on-die termination off.

3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here

4. Absolute value of CCK-CCK

5. Absolute value of CIO(DQS)-CIO(DQS)

6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.

7. CDI_CTRL applies to ODT, CS and CKE

8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))

9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE

10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))

11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))

12. Maximum external load capacitance on ZQ pin: 5pF

Page 38 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600

13.1 Clock specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3

SDRAM device.

13.1.1 Definition for tCK (avg)

tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to

rising edge.

j=1

N

tCKj

N

N=200

13.1.2 Definition for tCK (abs)

tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.

13.1.3 Definition for tCH(avg) and tCL(avg)

tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:

tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:

tCHj

j=1

N

N x tCK(avg)N=200

j=1

N

tCLj

N x tCK(avg)N=200

13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)

tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}

tJIT(per) defines the single period jitter when the DLL is already locked.

tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.

tJIT(per) and tJIT(per,lck) are not subject to production test.

13.1.5 Definition for note for tJIT(cc), tJIT(cc,Ick)

tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}

tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.

tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.

tJIT(cc) and tJIT(cc,lck) are not subject to production test.

13.1.6 Definition for tERR(nper)

tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.

Page 39 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

13.2 Refresh Parameters by Device Density

[ Table 42 ] Refresh parameters by device density

Parameter

All Bank Refresh to active/refresh cmd time

Average periodic refresh intervaltREFI

Symbol

tRFC

0 °C ≤ T

CASE

≤ 85°C

85 °C < T

CASE

≤ 95°C

1Gb

110

7.8

3.9

DDP 4Gb DDR3 SDRAM

2Gb

160

7.8

3.9

4Gb

300

7.8

3.9

8Gb

350

7.8

3.9

Units

ns

µs

µs

Note

1

Note :

1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or

requirements referred to in this material.

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

[ Table 43 ] DDR3-800 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CL = 6 / CWL = 5

Supported CL Settings

Supported CWL Settings

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

min

15

15

15

52.5

37.5

2.5

6

5

DDR3-800

6 - 6 - 6

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

nCK

nCK

8

1,2,3

UnitsNote

[ Table 44 ] DDR3-1066 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CL = 6

CL = 7

CL = 8

Supported CL Settings

Supported CWL Settings

CWL = 5

CWL = 6

CWL = 5

CWL = 6

CWL = 5

CWL = 6

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)1.875

6,7,8

5,6

1.875

Reserved

<2.5

min

13.125

13.125

13.125

50.625

37.5

2.5

Reserved

Reserved

<2.5

DDR3-1066

7 - 7 - 7

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

nCK

nCK

8

1,2,3,6

1,2,3,4

4

1,2,3,4

4

1,2,3

UnitsNote

Page 40 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 45 ] DDR3-1333 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CWL = 5

CL = 6CWL = 6

CWL = 7

CWL = 5

CL = 7CWL = 6

CWL = 7

CWL = 5

CL = 8CWL = 6

CWL = 7

CL = 9

CWL = 5,6

CWL = 7

CWL = 5,6

CL = 10

Supported CL Settings

Supported CWL Settings

CWL = 7

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

1.5

(Optional)

6,7,8,9

5,6,7

1.5

Reserved

1.875

Reserved

Reserved

1.875

min

13.5

(13.125)

5,9

13.5

(13.125)

5,9

13.5

(13.125)

5,9

49.5

(49.125)

5,9

36

2.5

Reserved

Reserved

Reserved

DDR3-1333

9 -9 - 9

DDP 4Gb DDR3 SDRAM

Units

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

<2.5

ns

ns

ns

<2.5ns

ns

ns

<1.875

<1.875

ns

ns

ns

ns

nCK

nCK

Note

8

1,2,3,7

1,2,3,4,7

4

4

1,2,3,4,7

1,2,3,4,

4

1,2,3,7

1,2,3,4,

4

1,2,3,4

4

1,2,3

5

(Optional) Note 5,9

Reserved

Reserved

Page 41 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 46 ] DDR3-1600 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CWL = 5

CL = 6CWL = 6

CWL = 7, 8

CWL = 5

CL = 7

CWL = 6

CWL = 7

CWL = 8

CWL = 5

CL = 8

CWL = 6

CWL = 7

CWL = 8

CWL = 5,6

CL = 9CWL = 7

CWL = 8

CWL = 5,6

CL = 10CWL = 7

CWL = 8

CL = 11

Supported CL Settings

Supported CWL Settings

CWL = 5,6,7

CWL = 8

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)1.25

6,7,8,9,10,11

5,6,7,8

1.5

Reserved

Reserved

1.5

TBD

Reserved

1.875

Reserved

Reserved

Reserved

1.875

min

13.75

(13.125)

5,9

13.75

(13.125)

5,9

13.75

(13.125)

5,9

48.75

(48.125)

5,9

35

2.5

Reserved

Reserved

Reserved

DDR3-1600

11-11-11

DDP 4Gb DDR3 SDRAM

Units

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

<2.5

ns

ns

ns

ns

<2.5ns

ns

ns

ns

<1.875

ns

ns

ns

<1.875

ns

ns

ns

<1.5ns

nCK

nCK

Note

1,2,3,8

1,2,3,4,8

4

4

1,2,3,4,8

1,2,3,4,8

4

4

1,2,3,8

1,2,3,4,8

1,2,3,4

4

1,2,3,4,8

1,2,3,4

4

1,2,3,8

1,2,3,4

4

1,2,3,5

(Optional) Note 5,9

Reserved

Reserved

Reserved

(Optional) Note 9,10

(Optional) Note 9,10

Page 42 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

13.3.1 Speed Bin Table Notes

Absolute Specification (T

OPER

; V

DDQ

= V

DD

= 1.5V +/- 0.075 V);

DDP 4Gb DDR3 SDRAM

Note :

1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-

filled: Requirements from CL setting as well as requirements from CWL setting.

2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-

cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-

ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".

3. tCK(AVG).MAX limits: Calculate tCK(AVG) = / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns

or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.

4. "Reserved" settings are not allowed. User must program a different value.

5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/

or the DIMM SPD information if and how this setting is supported.

6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to

match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte

16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-

gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin

(Byte 21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns

(tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).

Page 43 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.0 Timing Parameters by Speed Grade

[ Table 47 ] Timing Parameters by Speed Bin

Speed

Parameter

Clock Timing

Minimum Clock Cycle Time (DLL off mode)

Average Clock Period

Clock Period

Average high pulse width

Average low pulse width

Clock Period Jitter

Clock Period Jitter during DLL locking period

Cycle to Cycle Period Jitter

Cycle to Cycle Period Jitter during DLL locking period

Cumulative error across 2 cycles

Cumulative error across 3 cycles

Cumulative error across 4 cycles

Cumulative error across 5 cycles

Cumulative error across 6 cycles

Cumulative error across 7 cycles

Cumulative error across 8 cycles

Cumulative error across 9 cycles

Cumulative error across 10 cycles

Cumulative error across 11 cycles

Cumulative error across 12 cycles

Cumulative error across n = 13, 14 ... 49, 50 cycles

Absolute clock HIGH pulse width

Absolute clock Low pulse width

Data Timing

DQS,DQS to DQ skew, per group, per access

DQ output hold time from DQS, DQS

DQ low-impedance time from CK, CK

DQ high-impedance time from CK, CK

Data setup time to DQS, DQS referenced to

V

IH

(AC)V

IL

(AC) levels

Data hold time to DQS, DQS referenced to

V

IH

(AC)V

IL

(AC) levels

DQ and DM Input pulse width for each input

Data Strobe Timing

DQS, DQS READ Preamble

DQS, DQS differential READ Postamble

DQS, DQS output high time

DQS, DQS output low time

DQS, DQS WRITE Preamble

DQS, DQS WRITE Postamble

DQS, DQS rising edge output access time from rising

CK, CK

DQS, DQS low-impedance time (Referenced from RL-1)

DQS, DQS high-impedance time (Referenced from

RL+BL/2)

DQS, DQS differential input low pulse width

DQS, DQS differential input high pulse width

DQS, DQS rising edge to CK, CK rising edge

DQS,DQS faling edge setup time to CK, CK rising edge

DQS,DQS faling edge hold time to CK, CK rising edge

tRPRE

tRPST

tQSH

tQSL

tWPRE

tWPST

tDQSCK

tLZ(DQS)

tHZ(DQS)

tDQSL

tDQSH

tDQSS

tDSS

tDSH

0.9

0.3

0.38

0.38

0.9

0.3

-400

-800

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

400

400

400

0.55

0.55

0.25

-

-

0.9

0.3

0.38

0.38

0.9

0.3

-300

-600

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

300

300

300

0.55

0.55

0.25

-

-

tDQSQ

tQH

tLZ(DQ)

tHZ(DQ)

tDS(base)

tDH(base)

tDIPW

-

0.38

-800

-

75

150

600

200

-

400

400

-

0.38

-600

-

25

100

490

150

-

300

300

-

tCK(DLL_OF

F)

tCK(avg)

tCK(abs)

tCH(avg)

tCL(avg)

tJIT(per)

tJIT(per, lck)

tJIT(cc)

tJIT(cc, lck)

tERR(2per)

tERR(3per)

tERR(4per)

tERR(5per)

tERR(6per)

tERR(7per)

tERR(8per)

tERR(9per)

tERR(10per)

tERR(11per)

tERR(12per)

tERR(nper)

tCH(abs)

tCL(abs)

0.43

0.43

-

-

- 147

- 175

- 194

- 209

- 222

- 232

- 241

- 249

- 257

- 263

- 269

8-8-8

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

-8-ns

ps

ps

tCK(avg)

tCK(avg)

ps

ps

ps

ps

6

See Speed Bins Table

tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +

tJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)max

0.47

0.47

-100

-90

200

180

0.53

0.53

100

90

0.47

0.47

-90

-80

180

160

0.53

0.53

90

80

0.47

0.47

-80

-70

160

140

0.53

0.53

80

70

0.47

0.47

-70

-60

140

120

0.53

0.53

70

60

147

175

194

209

222

232

241

249

257

263

269

- 132

- 157

- 175

- 188

- 200

- 209

- 217

- 224

- 231

- 237

- 242

132

157

175

188

200

209

217

224

231

237

242

- 118

- 140

- 155

- 168

- 177

- 186

- 193

- 200

- 205

- 210

- 215

118

140

155

168

177

186

193

200

205

210

215

-103

-122

-136

-147

-155

-163

-169

-175

-180

-184

-188

103

122

136

147

155

163

169

175

180

184

188

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps24

25

26

tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min

tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max

0.43

0.43

-

-

0.43

0.43

-

-

0.43

0.43

-

-

tCK(avg)

tCK(avg)

125

-

250

250

-

-

-

0.38

-450

-

10

45

360

100

-

225

225

ps

tCK(avg)

ps

ps

ps

ps

ps

13

13, g

13,14, f

13,14, f

d, 17

d, 17

28

0.38

-500

-

30

65

400

-

-

-

-

-

--

0.9

0.3

0.4

0.4

0.9

0.3

-255

-500

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

255

250

250

0.55

0.55

0.25

-

-

0.9

0.3

0.4

0.4

0.9

0.3

-225

-450

-

0.45

0.45

-0.27

0.18

0.18

Note 19

Note 11

-

-

-

-

225

225

225

0.55

0.55

0.27

-

-

tCK

tCK

tCK(avg)

tCK(avg)

tCK

tCK

ps

ps

ps

tCK

tCK

tCK(avg)

tCK(avg)

tCK(avg)

13, 19, g

11, 13, b

13, g

13, g

13,f

13,14,f

12,13,14

29, 31

30, 31

c

c, 32

c, 32

Page 44 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Tabel 47 ] Timing Parameters by Speed Bin (Cont.)

Speed

Parameter

Command and Address Timing

DLL locking time

internal READ Command to PRECHARGE Command

delay

Delay from start of internal write transaction to internal

read command

WRITE recovery time

Mode Register Set command cycle time

Mode Register Set command update delay

CAS# to CAS# command delay

Auto precharge write recovery + precharge time

Multi-Purpose Register Recovery Time

ACTIVE to PRECHARGE command period

ACTIVE to ACTIVE command period for 1KB page size

ACTIVE to ACTIVE command period for 2KB page size

Four activate window for 1KB page size

Four activate window for 2KB page size

Command and Address setup time to CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Command and Address hold time from CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Command and Address setup time to CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Control & Address Input pulse width for each input

Calibration Timing

Power-up and RESET calibration time

Normal operation Full calibration time

Normal operation short calibration time

Reset Timing

Exit Reset from CKE HIGH to a valid command

Self Refresh Timing

Exit Self Refresh to commands not requiring a locked

DLL

Exit Self Refresh to commands requiring a locked DLL

Minimum CKE low width for Self refresh entry to exit

timing

Valid Clock Requirement after Self Refresh Entry

(SRE) or Power-Down Entry (PDE)

Valid Clock Requirement before Self Refresh Exit

(SRX) or Power-Down Exit (PDX) or Reset Exit

tXS

tXSDLL

tCKESR

tCKSRE

tCKSRX

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

tXPR

max(5nCK,

tRFC + 10ns)

-

max(5nCK,

tRFC + 10ns)

-

tZQinitI

tZQoper

tZQCS

512

256

64

-

-

-

512

256

64

-

-

-

tDLLK

tRTP

tWTR

tWR

tMRD

tMOD

tCCD

tDAL(min)

tMPRR

tRAS

tRRD

tRRD

tFAW

tFAW

tIS(base)

tIH(base)

tIS(base)

AC150

tIPW

1-1

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

nCK

e

e,18

ns

nCK

e

nCK

nCKWR + roundup (tRP / tCK(AVG))

-1-1-nCK

ns

22

e

e

e

See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37

max

(4nCK,10ns)

max

(4nCK,10ns)

40

50

200

275

200 + 150

900

-

-

-

-

max

(4nCK,7.5ns)

max

(4nCK,10ns)

37.5

50

125

200

125 + 150

780

-

-

-

-

max

(4nCK,6ns)

max

(4nCK,7.5ns)

30

45

65

140

65+125

620

-

-

-

-

-

-

-

-

max

(4nCK,6ns)

max

(4nCK,7.5ns)

30

40

TBD

TBD

TBD+125

560

-

-

-

-

-

-

-

-

ns

ns

ps

ps

ps

ps

e

e

b,16

b,16

b,16,27

28

-

-

-

-

-

-

-

-

512

256

64

-

-

-

512

256

64

-

-

-

nCK

nCK

nCK23

max(5nCK,

tRFC + 10ns)

-

max(5nCK,

tRFC + 10ns)

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

nCK

Page 45 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 47 ] Timing Parameters by Speed Bin (Cont.)

Speed

Parameter

Power Down Timing

Exit Power Down with DLL on to any valid com-

mand;Exit Percharge Power Down with DLL

frozen to commands not requiring a locked DLL

Exit Precharge Power Down with DLL frozen to com-

mands requiring a locked DLL

tXP

max

(3nCK,

7.5ns)

max

(10nCK,

24ns)

max

(3nCK,

7.5ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

max

(3nCK,

7.5ns)

max

(10nCK,

24ns)

max

(3nCK,

5.625ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

max

(3nCK,6ns)

max

(10nCK,

24ns)

max

(3nCK,

5.625ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

max

(3nCK,6ns)

max

(10nCK,

24ns)

max

(3nCK,5ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

tXPDLL----2

CKE minimum pulse width

Command pass disable delay

Power Down Entry to Exit Timing

Timing of ACT command to Power Down entry

Timing of PRE command to Power Down entry

Timing of RD/RDA command to Power Down entry

Timing of WR command to Power Down entry

(BL8OTF, BL8MRS, BL4OTF)

Timing of WRA command to Power Down entry

(BL8OTF, BL8MRS, BL4OTF)

Timing of WR command to Power Down entry

(BL4MRS)

Timing of WRA command to Power Down entry

(BL4MRS)

Timing of REF command to Power Down entry

Timing of MRS command to Power Down entry

ODT Timing

ODT high time without write command or with wirte

command and BC4

ODT high time with Write command and BL8

Asynchronous RTT tum-on delay (Power-Down with

DLL frozen)

Asynchronous RTT tum-off delay (Power-Down with

DLL frozen)

ODT turn-on

RTT_NOM and RTT_WR turn-off time from ODTLoff

reference

RTT dynamic change skew

Write Leveling Timing

First DQS pulse rising edge after tDQSS margining

mode is programmed

DQS/DQS delay after tDQS margining mode is pro-

grammed

Setup time for tDQSS latch

Write leveling hold time from rising DQS, DQS cross-

ing to rising CK, CK crossing

Write leveling output delay

Write leveling output error

tCKE

tCPDED

tPD

tACTPDEN

tPRPDEN

tRDPDEN

tWRPDEN

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-nCK9

nCK

tCK

nCK

nCK

15

20

20

tWRAPDEN----nCK10

tWRPDEN----nCK9

tWRAPDEN

tREFPDEN

tMRSPDEN

-

-

-

-

-

-

-

-

-

-

-

-

nCK10

20,21

ODTH4

ODTH8

tAONPD

tAOFPD

tAON

tAOF

tADC

4

6

2

2

-400

0.3

0.3

-

-

8.5

8.5

400

0.7

0.7

4

6

2

2

-300

0.3

0.3

-

-

8.5

8.5

300

0.7

0.7

4

6

2

2

-250

0.3

0.3

-

-

8.5

8.5

250

0.7

0.7

4

6

2

2

-225

0.3

0.3

-

-

8.5

8.5

225

0.7

0.7

nCK

nCK

ns

ns

ps

tCK(avg)

tCK(avg)

7,f

8,f

f

tWLMRD

tWLDQSEN

tWLS

tWLH

tWLO

tWLOE

40

25

325

325

0

0

-

-

-

-

9

2

40

25

245

245

0

0

-

-

-

-

9

2

40

25

195

195

0

0

-

-

-

-

9

2

40

25

165

165

0

0

-

-

-

-

7.5

2

tCK

tCK

ps

ps

ns

ns

3

3

Page 46 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.1 Jitter Notes

DDP 4Gb DDR3 SDRAM

Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input

clock, counting the actual clock ) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another

Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.

Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge

to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),

tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-

eters should be met whether clock jitter is present or not.

Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-

ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the

clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.

Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe

signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =

RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the

device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For

DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-

cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to

input clock jitter.

Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,

where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)

For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,

then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =

tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =

- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)

Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=

12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.

Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-

put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =

2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9

x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =

0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)

Page 47 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.2 Timing Parameter Notes

1. Actual value dependant upon measurement level definitions which are TBD.

2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.

3. The max values are system dependent.

4. WR as programmed in mode register

5. Value must be rounded-up to next higher integer value

6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.

7. For definition of RTT turn-on time tAON see "Device Operation"

8. For definition of RTT turn-off time tAOF see "Device Operation".

DDP 4Gb DDR3 SDRAM

9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.

10. WR in clock cycles as programmed in MR0

11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.

12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated

by TBD

13. Value is valid for RON34

14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.

15. tREFI depends on T

OPER

16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,

V

REF

(DC) = V

REF

DQ(DC). FOr input only pins except RESET, V

REF

(DC)=V

REF

CA(DC).

See "Address/ Command Setup, Hold and Derating"

17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,

V

REF

(DC)= V

REF

DQ(DC). For input only pins except RESET, V

REF

(DC)=V

REF

CA(DC).

See "Data Setup, Hold and Slew Rate Derating"

18. Start of internal write transaction is definited as follows ;

For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.

For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL

For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL

19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"

20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down

IDD spec will not be applied until finishing those operations.

21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time

such as tXPDLL(min) is also required. See "Device Operation".

22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.

23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming

the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The

appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.

One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-

ject to in the application, is illustrated. The interval could be defined by the following formula:

ZQCorrection

(TSens x Tdriftrate) + (VSens x Vdriftrate)

where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-

lated as:

0.5

(1.5 x 1) + (0.15 x 15)

24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.

= 0.133

~

~

128ms

25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.

26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.

27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-

nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].

28. Pulse width of a input signal is defined as the width between the first crossing of V

REF

(DC) and the consecutive crossing of V

REF

(DC)

29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.

30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.

31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

Page 48 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.3 Address / Command Setup, Hold and Derating:

DDP 4Gb DDR3 SDRAM

For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table

48) to the ∆tIS and ∆tIH derating value (see Table 49) respectively.

Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of

V

REF

(DC) and the first crossing of V

IH

(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as

the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IL

(AC)max. If the actual signal is always earlier than the nominal slew rate

line between shaded ’V

REF

(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew

rate line anywhere between shaded ’V

REF

(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for der-

ating value (see Figure 25).

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

IL

(DC)max and the first crossing of V

REF

(DC).

Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

(DC). If

the actual signal is always later than the nominal slew rate line between shaded ’dc to V

REF

(DC) region’, use nominal slew rate for derating value (see

Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V

REF

(DC) region’, the slew rate of a tangent line

to the actual signal from the dc level to V

REF

(DC) level is used for derating value (see Figure 26).

For a valid transition the input signal has to remain above/below V

IH/IL

(AC) for some time tVAC (see Table 50).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V

IH/IL

(AC) at the time of the rising clock

transition) a valid input signal is still required to complete the transition and reach V

IH/IL

(AC).

For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

[ Table 48 ] ADD/CMD Setup and Hold Base-Values for 1V/ns

[ps]

tIS(base)

tIH(base)

tIS(base)-AC150

DDR3-800

200

275

200 + 150

DDR3-1066

125

200

125 + 150

DDR3-1333

65

140

65+125

DDR3-1600

45

120

45+125

reference

V

IH/L(AC)

V

IH/L(DC)

V

IH/L(AC)

Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate

Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old

of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].

[ Table 49 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based

∆tIS, ∆tIH Derating [ps] AC/DC based

AC175 Threshold -> V

IH

(AC) = V

REF

(DC) + 175mV, V

IL

(AC) = V

REF

(DC) - 175mV

CLK,CLK Differential Slew Rate

4.0 V/ns

∆tIS

2.0

1.5

CMD/

ADD

Slew

rate

V/ns

1.0

0.9

0.8

0.7

0.6

0.5

0.4

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

3.0 V/ns

∆tIS

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

2.0 V/ns

∆tIS

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

1.8 V/ns

∆tIS

96

67

8

6

2

-3

-9

-27

-54

∆tIH

58

42

8

4

-2

-8

-18

-32

-52

1.6 V/ns

∆tIS

104

75

16

14

10

5

-1

-19

-46

∆tIH

66

50

16

12

6

0

-10

-24

-44

1.4V/ns

∆tIS

112

83

24

20

13

13

7

-11

-38

∆tIH

74

58

24

20

14

8

-2

-16

-36

1.2V/ns

∆tIS

120

91

32

30

26

21

15

-2

-30

∆tIH

84

68

34

30

24

18

8

-6

-26

1.0V/ns

∆tIS

128

99

40

38

34

29

23

5

-22

∆tIH

100

84

50

46

40

34

24

10

-10

Page 49 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

∆tIS, ∆tIH Derating [ps] AC/DC based

Alternate AC150 Threshold -> V

IH

(AC) = V

REF

(DC) + 150mV, V

IL

(AC) = V

REF

(DC) - 150mV

CLK,CLK Differential Slew Rate

4.0 V/ns3.0 V/ns

∆tIS

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

2.0 V/ns

∆tIS

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

1.8 V/ns

∆tIS

83

58

8

8

8

8

7

-2

-17

∆tIH

58

42

8

4

-2

-8

-18

-32

-52

1.6 V/ns

∆tIS

91

66

16

16

16

16

15

6

-9

∆tIH

66

50

16

12

6

0

-10

-24

-44

1.4V/ns

∆tIS

99

74

24

24

24

24

23

14

-1

∆tIH

74

58

24

20

14

8

-2

-16

-36

1.2V/ns

∆tIS

107

82

32

32

32

32

31

22

7

∆tIH

84

68

34

30

24

18

8

-6

-26

1.0V/ns

∆tIS

115

90

40

40

40

40

39

30

15

∆tIH

100

84

50

46

40

34

24

10

-10

[ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold

∆tIS

2.0

1.5

CMD/

ADD

Slew

rate

V/ns

1.0

0.9

0.8

0.7

0.6

0.5

0.4

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

[ Table 51 ] Required time t

VAC

above V

IH

(AC) {blow V

IL

(AC)} for valid transition

Slew Rate[V/ns]

min

>2.0

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

< 0.5

75

57

50

38

34

29

22

13

0

0

t

VAC

@175mV [ps]

max

-

-

-

-

-

-

-

-

-

-

t

VAC

@150mV [ps]

min

175

170

167

163

162

161

159

155

150

150

max

-

-

-

-

-

-

-

-

-

-

Page 50 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

nominal

slew rate

V

REF

(DC)

nominal slew

rate

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

tVAC

V

SS

Delta TF

Setup Slew Rate

=

V

REF

(DC) - V

IL

(AC)max

Falling Signal

Delta TF

Delta TR

Setup Slew Rate

V

IH

(AC)min - V

REF

(DC)

=

Rising Signal

Delta TR

Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS

(for ADD/CMD with respect to clock).

Page 51 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

V

DDQ

tDS

tDH

tDS

tDH

V

IH

(AC) min

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

nominal

slew rate

dc to V

REF

region

nominal

slew rate

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

V

REF

(DC) - V

IL

(DC)max

Rising Signal

=

Delta TR

Delta TF

Hold Slew Rate

V

IH

(DC)min - V

REF

(DC)

=

Falling Signal

Delta TF

Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock).

Page 52 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

nominal

line

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

tangent

line

V

REF

(DC)

tangent

line

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

nominal

line

V

SS

Delta TR

Setup Slew Rate

tangent line[V

IH

(AC)min - V

REF

(DC)]

=

Rising Signal

Delta TR

Delta TF

Setup Slew Rate

tangent line[V

REF

(DC) - V

IL

(AC)max]

Falling Signal

=

Delta TF

Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS

(forADD/CMD with respect to clock)

Page 53 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tDH

V

IH

(AC) min

nominal

line

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

tangent

line

nominal

line

tangent

line

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

tangent line [ V

REF

(DC) - V

IL

(DC)max ]

Rising Signal

=

Delta TR

Hold Slew Rate

tangent line [ V

IH

(DC)min - V

REF

(DC) ]

Falling Signal

=

Delta TF

Delta TF

Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock)

Page 54 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.4 Data Setup, Hold and Slew Rate Derating:

DDP 4Gb DDR3 SDRAM

or all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see

Table 52) to the ∆ tDS and ∆tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.

Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IH

(AC)min.

Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IL

(AC)max

(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’V

REF

(DC) to ac region’, use nominal slew rate for

derating value. If the actual signal is later than the nominal slew rate line anywhere

between shaded ’V

REF

(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see

Figure 27).

Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

IL

(DC)max and the first crossing of V

REF

(DC).

Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

(DC)

(see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to V

REF

(DC) region’, use nominal slew rate for

derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V

REF

(DC) region’, the slew rate of a tangent

line to the actual signal from the dc level to V

REF

(DC) level is used for derating value (see Figure 28).

For a valid transition the input signal has to remain above/below V

IH/IL

(AC) for some time tVAC (see Table 54).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V

IH/IL

(AC) at the time of the rising clock

transition) a valid input signal is still required to complete the transition and reach V

IH/IL

(AC).

For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization

[ Table 52 ] Data Setup and Hold Base-Value

[ps]

tDS(base)

tDH(base)

tDS(AC150)

DDR3-800

75

150

75+50

DDR3-1066

25

100

25+50

DDR3-1333

30

65

-

DDR3-1600

10

45

-

reference

V

IH/L

(AC)

V

IH/L

(DC)

V

IH/L

(AC)

Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)

[ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based

∆tDS, ∆tDH Derating [ps] AC/DC based

a

DQS,DQS Differential Slew Rate

2.0 V/ns1.8 V/ns1.6 V/ns

∆tDS∆tDH∆tDS∆tDH∆tDS∆tDH

8850----

59346742--

00881616

-2-4641412

-6-102-2106

---3-850

-----1-10

------

------

7550----

50345842--

00881616

0-4841612

0-108-2166

--8-8160

----15-10

------

------

DDR3

DQ

Slew

-

800/

rate

1066

V/ns

DDR3

DQ

Slew

-

1333/

rate

1600

V/ns

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

4.0 V/ns

∆tDS∆tDH

8850

5934

00

--

--

--

--

--

--

7550

5034

00

--

--

--

--

--

--

3.0 V/ns

∆tDS∆tDH

8850

5934

00

-2-4

--

--

--

--

--

7550

5034

00

0-4

--

--

--

--

--

1.4V/ns

∆tDS∆tDH

--

--

--

2220

1814

138

7-2

-11-16

--

--

--

--

2420

2414

248

23-2

14-16

--

1.2V/ns

∆tDS∆tDH

--

--

--

--

2624

2118

158

-2-6

-30-26

--

--

--

--

3224

3218

318

22-6

7-26

1.0V/ns

∆tDS∆tDH

--

--

--

--

--

2934

2324

610

-22-10

--

--

--

--

--

4034

3924

3010

15-10

Note : a. Cell contents shaded in red are defined as ’not supported’.

[ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition

Slew Rate[V/ns]

>2.0

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

<0.5

t

VAC

[ps] DDR3-800/1066

min

75

57

50

38

34

29

22

13

0

0

t

VAC

[ps] DDR3-1333/1600

min

175

170

167

163

162

161

159

155

155

150

max

-

-

-

-

-

-

-

-

-

-

max

-

-

-

-

-

-

-

-

-

-

Page 55 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

nominal

slew rate

V

REF

(DC)

nominal slew

rate

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

tVAC

V

SS

Delta TF

Setup Slew Rate

=

V

REF

(DC) - V

IL

(AC)max

Falling Signal

Delta TF

Delta TR

Setup Slew Rate

V

IH

(AC)min - V

REF

(DC)

=

Rising Signal

Delta TR

Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS

(for ADD/CMD with respect to clock).

Page 56 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

V

DDQ

tDS

tDH

tDS

tDH

V

IH

(AC) min

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

nominal

slew rate

dc to V

REF

region

nominal

slew rate

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

=

Rising Signal

V

REF

(DC) - V

IL

(DC)max

Delta TR

Delta TF

V

IH

(DC)min - V

REF

(DC)

Hold Slew Rate

=

Falling Signal

Delta TF

Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock).

Page 57 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

nominal

line

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

tangent

line

V

REF

(DC)

tangent

line

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

nominal

line

V

SS

Delta TR

Setup Slew Rate

tangent line[V

IH

(AC)min - V

REF

(DC)]

=

Rising Signal

Delta TR

Delta TF

Setup Slew Rate

tangent line[V

REF

(DC) - V

IL

(AC)max]

Falling Signal

=

Delta TF

Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS

(forADD/CMD with respect to clock)

Page 58 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tDH

V

IH

(AC) min

nominal

line

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

tangent

line

nominal

line

tangent

line

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

tangent line [ V

REF

(DC) - V

IL

(DC)max ]

Rising Signal

=

Delta TR

Hold Slew Rate

tangent line [ V

IH

(DC)min - V

REF

(DC) ]

Falling Signal

=

Delta TF

Delta TF

Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock)

Page 59 of 59

Rev. 1.0 March 2009

2024年5月20日发(作者:理依波)

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

DDP 4Gb B-die DDR3 SDRAM Specification

78 FBGA with Lead-Free & Halogen-Free

(RoHS Compliant)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,

AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE

CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-

WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-

OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT

GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar

applications where Product failure could result in loss of life or personal or physical harm, or any military or

defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Page 1 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Year

2009 - First release

History

Revision History

Revision

1.0

Month

March

Page 2 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Table Contents

1.0 Ordering Information ...................................................................................................................5

2.0 Key Features ................................................................................................................................5

3.0 Package pinout/Mechanical Dimension & Addressing ............................................................6

3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package

..............................................................6

3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package

..............................................................7

3.3 FBGA Package Dimension (x4)

.....................................................................................................8

3.4 FBGA Package Dimension (x8)

.....................................................................................................9

4.0 Input/Output Functional Description .......................................................................................10

5.0 DDR3 SDRAM Addressing ........................................................................................................11

6.0 Absolute Maximum Ratings ......................................................................................................12

6.1 Absolute Maximum DC Ratings

...................................................................................................12

6.2 DRAM Component Operating Temperature Range

.........................................................................12

7.0 AC & DC Operation Conditions ................................................................................................12

7.1 Recommended DC operating Conditions (SSTL_1.5)

.....................................................................12

8.0 AC & DC Input Measurement Levels ........................................................................................13

8.1 AC and DC Logic input levels for single-ended singnals

................................................................13

8.2 VREF Tolerances

.......................................................................................................................14

8.3 AC and DC Logic Input Levels for Ditterential Signals

...................................................................15

8.3.1 Differential signal definition

................................................................................................15

8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)

..............................15

8.3.3 Single-ended requirements for differential signals

.................................................................16

8.4 Differential Input Cross Point Voltage

..........................................................................................17

8.5 Slew Rate Definition for Single Ended Input Signals

......................................................................17

8.6 Slew rate definition for Differential Input Signals

...........................................................................17

9.0 AC and DC Output Measurement Levels .................................................................................18

9.1 Single Ended AC and DC Output Levels

.......................................................................................18

9.2 Differential AC and DC Output Levels

..........................................................................................18

9.3 Single Ended Output Slew Rate

...................................................................................................18

9.4 Differential Output Slew Rate

......................................................................................................19

9.5 Reference Load for AC Timing and Output Slew Rate

....................................................................19

9.6 Overshoot/Undershoot Specification

...........................................................................................20

9.6.1 Address and Control Overshoot and Undershoot specifications

.............................................20

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications

.................................20

9.7 34 ohm Output Driver DC Electrical Characteristics

.......................................................................21

9.7.1 Output Drive Temperature and Voltage sensitivity

.................................................................22

9.8 On-Die Termination (ODT) Levels and I-V Characteristics

...............................................................22

9.8.1 ODT DC electrical characteristics

........................................................................................23

9.8.2 ODT Temperature and Voltage sensitivity

.............................................................................24

Page 3 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

9.9 ODT Timing Definitions

..............................................................................................................25

9.9.1 Test Load for ODT Timings

.................................................................................................25

9.9.2 ODT Timing Definition

........................................................................................................25

10.0 IDD Specification Parameters and Test Conditions .............................................................28

10.1 IDD Measurement Conditions

....................................................................................................28

10.2 IDD Specifications definition

.....................................................................................................30

11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table .....................................................................37

12.0 Input/Output Capacitance .......................................................................................................38

13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ..............................39

13.1 Clock specification

.............................................................................................................39

13.1.1 Definition for tCK (avg)

.....................................................................................................39

13.1.2 Definition for tCK (abs)

.....................................................................................................39

13.1.3 Definition for tCH(avg) and tCL(avg)

...................................................................................39

13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)

........................................................................39

13.1.5 Definition for tJIT(cc), tJIT(cc,Ick)

......................................................................................39

13.1.6 Definition for tERR(nper)

...................................................................................................39

13.2 Refresh Parameters by Device Density

.......................................................................................40

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

.............................................40

13.3.1 Speed Bin

43

14.0 Timing Parameters by Speed Grade ......................................................................................44

14.1 Jitter Notes

.............................................................................................................................47

14.2 Timing Parameter Notes

...........................................................................................................48

14.3 Address / Command Setup, Hold and Derating:

...........................................................................49

14.4 Data Setup, Hold and Slew Rate Derating:

..................................................................................55

Page 4 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

1.0 Ordering Information

[ Table 1 ] Samsung DDP 4Gb DDR3 B-die ordering information table

Organization

1Gx4

512Mx8

DDR3-800 (6-6-6)

K4B4G0446B-MCF7

K4B4G0846B-MCF7

DDR3-1066 (7-7-7)

K4B4G0446B-MCF8

K4B4G0846B-MCF8

DDP 4Gb DDR3 SDRAM

DDR3-1333 (9-9-9)

K4B4G0446B-MCH9

K4B4G0846B-MCH9

Package

78 FBGA

78 FBGA

Note :

1. Speed bin is in order of CL-tRCD-tRP.

2.0 Key Features

[ Table 2 ] DDP 4Gb DDR3 B-die Speed bins

Speed

tCK(min)

CAS Latency

tRCD(min)

tRP(min)

tRAS(min)

tRC(min)

DDR3-800

6-6-6

2.5

6

15

15

37.5

52.5

DDR3-1066

7-7-7

1.875

7

13.125

13.125

37.5

50.625

DDR3-1333

9-9-9

1.5

9

13.5

13.5

36

49.5

Unit

ns

nCK

ns

ns

ns

ns

•JEDEC standard 1.5V ± 0.075V Power Supply

•V

DDQ

= 1.5V ± 0.075V

•400 MHz f

CK

for 800Mb/sec/pin, 533MHz f

CK

for 1066Mb/sec/pin,

667MHz f

CK

for 1333Mb/sec/pin

•8 Banks

•Posted CAS

•Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10

•Programmable Additive Latency: 0, CL-2 or CL-1 clock

•Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6

(DDR3-1066) and 7 (DDR3-1333)

•8-bit pre-fetch

•Burst Length: 8 (Interleave without any limit, sequential with starting

address “000” only), 4 with tCCD = 4 which does not allow seamless

read or write [either On the fly using A12 or MRS]

•Bi-directional Differential Data-Strobe

•Internal(self) calibration : Internal self calibration through ZQ pin

(RZQ : 240 ohm ± 1%)

•On Die Termination using ODT pin

•Average Refresh Period 7.8us at lower than T

CASE

85°C, 3.9us at

85°C < T

CASE

< 95 °C

•Asynchronous Reset

•Package : 78 balls FBGA - x4/x8

•All of Lead-Free products are compliant for RoHS

•All of products are Halogen-free

The DDP 4Gb DDR3 SDRAM B-die is organized as a 128Mbit x 4 I/Os x

8banks, 64Mbit x 8 I/Os x 8banks. This synchronous device achieves high

speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR3-

1333) for general applications.

The chip is designed to comply with the following key DDR3 SDRAM fea-

tures such as posted CAS, Programmable CWL, Internal (Self) Calibra-

tion, On Die Termination using ODT pin and Asynchronous Reset .

All of the control and address inputs are synchronized with a pair of exter-

nally supplied differential clocks. Inputs are latched at the crosspoint of dif-

ferential clocks (CK rising and CK falling). All I/Os are synchronized with a

pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-

ion. The address bus is used to convey row, column, and bank address

information in a RAS/CAS multiplexing style. The DDR3 device operates

with a single 1.5V±0.075V power supply and 1.5V ±0.075V V

DDQ

.

The 4Gb DDR3 B-die device is available in 78ball FBGAs(x4/x8).

Note : 1. The functionality described and the timing specifications included

in this data sheet are for the DLL Enabled mode of operation.

Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device

Operation & Timing Diagram”.

Page 5 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

3.0 Package pinout/Mechanical Dimension & Addressing

3.1 x4 DDP Package Pinout (Top view) : 78ball FBGA Package

DDP 4Gb DDR3 SDRAM

1

A

B

C

D

E

F

G

H

J

K

L

M

N

V

SS

V

SS

V

DDQ

V

SSQ

V

REFDQ

ODT1

ODT0

CS1

V

SS

V

DD

V

SS

V

DD

V

SS

2

V

DD

V

SSQ

DQ2

NC

V

DDQ

V

SS

V

DD

CS0

BA0

A3

A5

A7

RESET

3

NC

DQ0

DQS

DQS

NC

RAS

CAS

WE

BA2

A0

A2

A9

A13

45 67

NC

DM

DQ1

V

DD

NC

CK

CK

A10/AP

NC

A12/BC

A1

A11

A14

8

V

SS

V

SSQ

DQ3

V

SS

NC

V

SS

V

DD

ZQ0

V

REFCA

BA1

A4

A6

A8

9

V

DD

V

DDQ

V

SSQ

V

SSQ

V

DDQ

CKE1

CKE0

ZQ1

V

SS

V

DD

V

SS

V

DD

V

SS

A

B

C

D

E

F

G

H

J

K

L

M

N

123456789

Ball Locations (x4)

A

B

C

Populated ball

Ball not populated

D

E

F

G

H

Top view

(See the balls through the package)

J

K

L

M

N

Page 6 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.2 x8 DDP Package Pinout (Top view) : 78ball FBGA Package

1

A

B

C

D

E

F

G

H

J

K

L

M

N

V

SS

V

SS

V

DDQ

V

SSQ

V

REFDQ

ODT1

ODT0

CS1

V

SS

V

DD

V

SS

V

DD

V

SS

2

V

DD

V

SSQ

DQ2

DQ6

V

DDQ

V

SS

V

DD

CS0

BA0

A3

A5

A7

RESET

3

NC

DQ0

DQS

DQS

DQ4

RAS

CAS

WE

BA2

A0

A2

A9

A13

45 67

NU/TDQS

DM/TDQS

DQ1

V

DD

DQ7

CK

CK

A10/AP

NC

A12/BC

A1

A11

A14

8

V

SS

V

SSQ

DQ3

V

SS

DQ5

V

SS

V

DD

ZQ0

V

REFCA

BA1

A4

A6

A8

9

V

DD

V

DDQ

V

SSQ

V

SSQ

V

DDQ

CKE1

CKE0

ZQ1

V

SS

V

DD

V

SS

V

DD

V

SS

A

B

C

D

E

F

G

H

J

K

L

M

N

123456789

Ball Locations (x8)

A

B

C

Populated ball

Ball not populated

D

E

F

G

H

Top view

(See the balls through the package)

J

K

L

M

N

Page 7 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.3 FBGA Package Dimension (x4)

Units : Millimeters

A

#A1 INDEX MARK

B

10.00 ± 0.10

0.80 x 8 = 6.40

(Datum A)

0.801.603.20

987654321

A

B

C

D

E

F

G

H

J

K

L

M

N

4

.

8

0

0

.

8

0

(Datum B)

0

.

8

0

x

1

2

=

9

.

6

0

78 - ∅0.45 Solder ball

(Post Reflow ∅0.50 ± 0.05)

0.2MAB

BOTTOM VIEW

0

.

8

0

1

1

.

5

0

±

0

.

1

0

#A1

10.00 ± 0.10

1

1

.

5

0

±

0

.

1

0

0

.

1

0

M

A

X

0.35 ± 0.05

1.40 ± 0.10

TOP VIEW

Page 8 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

3.4 FBGA Package Dimension (x8)

Units : Millimeters

A

#A1 INDEX MARK

B

10.00 ± 0.10

0.80 x 8 = 6.40

(Datum A)

0.801.603.20

987654321

A

B

C

D

E

F

G

H

J

K

L

M

N

4

.

8

0

0

.

8

0

(Datum B)

0

.

8

0

x

1

2

=

9

.

6

0

78 - ∅0.45 Solder ball

(Post Reflow ∅0.50 ± 0.05)

0.2MAB

BOTTOM VIEW

0

.

8

0

1

1

.

5

0

±

0

.

1

0

#A1

10.00 ± 0.10

1

1

.

5

0

±

0

.

1

0

0

.

1

0

M

A

X

0.35 ± 0.05

1.40 ± 0.10

TOP VIEW

Page 9 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

4.0 Input/Output Functional Description

[ Table 3 ] Input/Output function description

Symbol

CK, CK

Type

Input

Function

DDP 4Gb DDR3 SDRAM

Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of

the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK

Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and

output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or

Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V

REFCA

has become

stable during the power on and initialization sequence, it must be maintained during all operations (including Self-

Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT

and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.

Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on

systems with multiple Ranks. CS is considered part of the command code.

On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When

enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode

Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-

grammed to disable ODT.

Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.

Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-

dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of

DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.

Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being

applied. Bank address also determines if the mode register or extended mode register is to be accessed during a

MRS cycle.

Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands

to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,

see below)

The address inputs also provide the op-code during Mode Register Set commands.

Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-

formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)

A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or

all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.

Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-

formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details

Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.

RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and

20% of V

DD

, i.e. 1.20V for DC high and 0.30V for DC low.

Data Input/ Output: Bi-directional data bus.

Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the

x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data

strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-

ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and

does not support single-ended.

Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in

MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When

disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/

x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.

No Connect: No internal electrical connection is present.

CKEInput

CSInput

ODTInput

RAS, CAS, WE

DM

(DMU), (DML)

Input

Input

BA0 - BA2Input

A0 - A14Input

A10 / APInput

A12 / BC

Input

RESET

DQ

Input

Input/Output

DQS, (DQS)

Input/Output

TDQS, (TDQS)Output

NC

V

DDQ

V

SSQ

V

DD

V

SS

V

REFDQ

V

REFCA

ZQ

Supply

Supply

Supply

Supply

Supply

Supply

Supply

DQ Power Supply: 1.5V +/- 0.075V

DQ Ground

Power Supply: 1.5V +/- 0.075V

Ground

Reference voltage for DQ

Reference voltage for CA

Reference Pin for ZQ calibration

Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.

Page 10 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

5.0 DDR3 SDRAM Addressing

1Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

256Mb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9,

A

11

A

12

/BC

1 KB

DDP 4Gb DDR3 SDRAM

128Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9

A

12

/BC

1 KB

64Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

12

A

0

- A

9

A

12

/BC

2 KB

2Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

512Mb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9,

A

11

A

12

/BC

1 KB

256Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9

A

12

/BC

1 KB

128Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

13

A

0

- A

9

A

12

/BC

2 KB

4Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

1Gb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11

A

12

/BC

1 KB

512Mb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9

A

12

/BC

1 KB

256Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

14

A

0

- A

9

A

12

/BC

2 KB

8Gb

Configuration

# of Bank

Bank Address

Auto precharge

Row Address

Column Address

BC switch on the fly

Page size

*1

2Gb x 4

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11,

A

13

A

12

/BC

2 KB

1Gb x 8

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9,

A

11

A

12

/BC

2 KB

512Mb x 16

8

BA0 - BA2

A

10

/AP

A

0

- A

15

A

0

- A

9

A

12

/BC

2 KB

Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifierswhen an ACTIVE command is registered.

Page size is per bank, calculated as follows: page size = 2

COLBITS

* ORG

÷

8

where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits

Page 11 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

6.0 Absolute Maximum Ratings

6.1 Absolute Maximum DC Ratings

[ Table 4 ] Absolute Maximum DC Ratings

Symbol

V

DD

V

DDQ

V

IN,

V

OUT

T

STG

Parameter

Voltage on V

DD

pin relative to Vss

Voltage on V

DDQ

pin relative to Vss

Voltage on any pin relative to Vss

Storage Temperature

Rating

DDP 4Gb DDR3 SDRAM

Units

V

V

V

Notes

1,3

1,3

1

-0.4 V ~ 1.975 V

-0.4 V ~ 1.975 V

-0.4 V ~ 1.975 V

-55 to +100°C 1, 2

Note :

1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2

standard.

3. V

DD

and V

DDQ

must be within 300mV of each other at all times;and V

REF

must be not greater than 0.6 x V

DDQ

, When V

DD

and V

DDQ

are less than

500mV; V

REF

may be equal to or less than 300mV.

6.2 DRAM Component Operating Temperature Range

[ Table 5 ] Temperature Range

Symbol

T

OPER

Parameter

Operating Temperature Range

rating

0 to 95

Unit

°C

Notes

1, 2, 3

Note :

1. Operating Temperature T

OPER

is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the

JEDEC document JESD51-2.

2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-

perature must be maintained between 0-85°C under all operating conditions

3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-

teed in this range, but the following additional conditions apply:

a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component

with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.

b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with

Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =

0b)

7.0 AC & DC Operation Conditions

7.1 Recommended DC operating Conditions (SSTL_1.5)

[ Table 6 ] Recommended DC Operating Conditions

Symbol

V

DD

V

DDQ

Supply Voltage

Supply Voltage for Output

Parameter

Rating

Min.

1.425

1.425

Typ.

1.5

1.5

Max.

1.575

1.575

Units

V

V

Notes

1,2

1,2

Note :

1. Under all conditions V

DDQ

must be less than or equal to V

DD

.

2. V

DDQ

tracks with V

DD

. AC parameters are measured with V

DD

and V

DDQ

tied together.

Page 12 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.0 AC & DC Input Measurement Levels

8.1 AC and DC Logic input levels for single-ended singnals

[ Table 7 ] Single Ended AC and DC input levels for Command and Address

Symbol

V

(DC)

V

(DC)

V

(AC)

V

(AC)

Parameter

DC input logic high

DC input logic low

AC input logic high

AC input logic low

DDR3-800/1066

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

-

-

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

-

-

0.51*V

DD

DDP 4Gb DDR3 SDRAM

DDR3-1333/1600

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

V

REF

+150

-

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

-

V

REF

-150

0.51*V

DD

Unit

mV

mV

mV

mV

mV

mV

V

Notes

1

1

1,2

1,2

1,2

1,2

3,4

V

(AC150)

AC input logic high

V

(AC150)

AC input logic lowM

V

REFCA

(DC)

Reference Voltage for ADD,

CMD inuts

Note :

1. For input only pins except RESET, V

REF

= V

REFCA

(DC)

2. See 9.6 "Overshoot and Undershoot specifications"

3. The AC peak noise on V

REF

may not allow V

REF

to deviate from V

REF

(DC) by more than

±

1% V

DD

(for reference : approx.

±

15mV)

4. For reference : approx. V

DD

/2

±

15mV

[ Table 8 ] Single Ended AC and DC input levels for DQ and DM

SymbolParameter

DDR3-800/1066

Min.

V

REF

+ 100

V

SS

V

REF

+ 175

-

V

REF

+ 150

Note 2

0.49*V

DD

Max.

V

DD

V

REF

- 100

-

V

REF

- 175

Note 2

V

REF

- 150

0.51*V

DD

Min.

V

REF

+ 100

V

SS

V

REF

+ 150

-

-

-

0.49*V

DD

DDR3-1333

Max.

V

DD

V

REF

- 100

-

V

REF

- 150

-

-

0.51*V

DD

Unit

mV

mV

mV

mV

mV

mV

V

Notes

1

1

1,2,5

1,2,5

1,2,5

1,2,5

3,4

V

(DC100)

DC input logic high

V

(DC100)

DC input logic low

V

(AC175)

AC input logic high

V

(AC175)

AC input logic low

V

(AC150)

AC input logic high

V

(AC150)

AC input logic low

V

REF

DQ

(DC)

I/O Reference Voltage(DQ)

Note :

1. For input only pins except RESET, V

REF

= V

REFDQ

(DC)

2. See "Overshoot and Undershoot specifications"

3. The AC peak noise on V

REF

may not allow V

REF

to deviate from V

REF

(DC) by more than

±

1% V

DD

(for reference : approx.

±

15mV)

4. For reference : approx. V

DD

/2

±

15mV

5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).

Page 13 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.2 V

REF

Tolerances

DDP 4Gb DDR3 SDRAM

The dc-tolerance limits and ac-noise limits for the reference voltages V

REFCA

and V

REFDQ

are illustrate in Figure 1. It shows a valid reference voltage

V

REF

(t) as a function of time. (V

REF

stands for V

REFCA

and V

REFDQ

likewise).

V

REF

(DC) is the linear average of V

REF

(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Fur-

thermore V

REF

(t) may temporarily deviate from V

REF

(DC) by no more than ± 1% V

DD

.

voltage

V

DD

V

SS

time

Figure 1. Illustration of V

REF

(DC) tolerance and V

REF

ac-noise limits

The voltage levels for setup and hold time measurements V

IH

(AC), V

IH

(DC), V

IL

(AC) and V

IL

(DC) are dependent on V

REF

.

"V

REF

" shall be understood as V

REF

(DC), as defined in Figure 1.

This clarifies, that dc-variations of V

REF

affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to

which setup and hold is measured. System timing and voltage budgets need to account for V

REF

(DC) deviations from the optimum position within the

data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V

REF

ac-noise. Timing

and voltage effects due to ac-noise on V

REF

up to the specified limit (+/-1% of V

DD

) are included in DRAM timings and their associated deratings.

Page 14 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.3 AC and DC Logic Input Levels for Ditterential Signals

8.3.1 Differential signal definition

tDVAC

V

IH

.

D

i

f

f

e

r

e

n

t

i

a

l

I

n

p

u

t

V

o

l

t

a

g

e

(

i.

e

.

D

Q

S

-

D

Q

S

,

C

K

-

C

K

)

DDP 4Gb DDR3 SDRAM

V

IH

.

0.0

half cycle

V

IL

.

V

IL

.

tDVAC

time

Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC

8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)

[ Table 9 ] Defferential AC and DC Input Levels

Symbol

V

IHdiff

V

ILdiff

V

IHdiff

(AC)

V

ILdiff

(AC)

Parameter

differential input high

differential input low

differential input high ac

differential input low ac

DDR3-800/1066/1333/1600

min

+0.2

note 3

2 x (V

IH

(AC)-V

REF

)

note 3

max

note 3

-0.2

note 3

2 x (V

REF

- V

IL

(AC))

unit

V

V

V

V

Note

1

1

2

2

Notes:

1. Used to define a differential signal slew-rate.

2. for CK - CK use V

IH

/V

IL

(AC) of ADD/CMD and V

REFCA

; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use V

IH

/V

IL

(AC) of DQs and V

REFDQ

; if a

reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective

limits (V

IH

(DC) max, V

IL

(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet

Specification "

[ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS

Slew Rate [V/ns]

> 4.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

< 1.0

tDVAC [ps] @ |V

IH/Ldiff

(AC)| = 350mV

min

75

57

50

38

34

29

22

13

0

0

max

-

-

-

-

-

-

-

-

-

-

tDVAC [ps] @ |V

IH/Ldiff

(AC)| = 300mV

min

175

170

167

163

162

161

159

155

150

150

max

-

-

-

-

-

-

-

-

-

-

Page 15 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.3.3 Single-ended requirements for differential signals

DDP 4Gb DDR3 SDRAM

Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for

single-ended signals.

CK and CK have to approximately reach V

SEH

min / V

SEL

max (approximately equal to the ac-levels ( V

IH

(AC) / V

IL

(AC) ) for ADD/CMD signals) in every

half-cycle.

DQS, DQSL, DQSU, DQS, DQSL have to reach V

SEH

min / V

SEL

max (approximately the ac-levels ( V

IH

(AC) / V

IL

(AC) ) for DQ signals) in every half-cycle

preceeding and following a valid transition.

Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V

IH

150(AC)/V

IL

150(AC) is used for ADD/CMD sig-

nals, then these ac-levels apply also for the single-ended signals CK and CK .

V

DD

or V

DDQ

V

SEH

min

V

SEH

V

DD

/2 or V

DDQ

/2

CK or DQS

V

SEL

max

V

SEL

time

Figure 3 : Single-ended requirement for differential signals.

V

SS

or V

SSQ

Note that while ADD/CMD and DQ signal requirements are with respect to V

REF

, the single-ended components of differential signals have a requirement

with respect to V

DD

/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-

ended components of differential signals the requirement to reach V

SEL

max, V

SEH

min has no bearing on timing, but adds a restriction on the common

mode charateristics of these signals.

[ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU

Symbol

V

SEH

V

SEL

Parameter

Single-ended high-level for strobes

Single-ended high-level for CK, CK

Single-ended low-level for strobes

Single-ended low-level for CK, CK

DDR3-800/1066/1333/1600

Min

(V

DD

/2)+0.175

(V

DD

/2)+0.175

Note3

Note3

Max

Note3

Note3

(V

DD

/2)-0.175

(V

DD

/2)-0.175

Unit

V

V

V

V

Notes

1, 2

1, 2

1,2

1,2

Notes:

1. For CK, CK use V

IH

/V

IL

(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use V

IH

/V

IL

(AC) of DQs.

2. V

IH

(AC)/V

IL

(AC) for DQs is based on V

REFDQ

; V

IH

(AC)/V

IL

(AC) for ADD/CMD is based on V

REFCA

; if a reduced ac-high or ac-low level is used for a

signal group, then the reduced level applies also here

3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective

limits (V

IH

(DC) max, V

IL

(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot

Specification"

Page 16 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

8.4 Differential Input Cross Point Voltage

DDP 4Gb DDR3 SDRAM

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input

signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage V

IX

is measured from the actual

cross point of true and complement signal to the mid level between of V

DD

and V

SS

.

V

DD

CK, DQS

V

IX

V

DD

/2

V

IX

V

IX

CK, DQS

V

SS

Figure 4. V

IX

Definition

[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)

Symbol

V

IX

V

IX

Parameter

Differential Input Cross Point Voltage relative to V

DD

/2 for CK,CK

Differential Input Cross Point Voltage relative to V

DD

/2 for DQS,DQS

DDR3-800/1066/1333/1600

Min

-150

-175

-150

Max

150

175

150

Unit

mV

mV

mV

1

Notes

Note :

1. Extended range for V

IX

is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing V

SEL

/

V

SEH

of at least V

DD

/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for V

SEL

and V

SEH

stan-

dard values.

8.5 Slew Rate Definition for Single Ended Input Signals

See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.

See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data nominal slew rate for a falling signal is

defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

8.6 Slew rate definition for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.

[ Table 13 ] Differential input slew rate definition

Description

Differential input slew rate for rising edge (CK-CK and DQS-DQS)

Differential input slew rate for falling edge (CK-CK and DQS-DQS)

Measured

From

V

ILdiffmax

V

IHdiffmin

To

V

IHdiffmin

V

ILdiffmax

Defined by

V

IHdiffmin

- V

ILdiffmax

Delta TRdiff

V

IHdiffmin

- V

ILdiffmax

Delta TFdiff

Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds

V

IHdiffmin

0

V

ILdiffmax

delta TFdiff

delta TRdiff

Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK

Page 17 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.0 AC and DC Output Measurement Levels

9.1 Single Ended AC and DC Output Levels

[ Table 14 ] Single Ended AC and DC output levels

Symbol

V

OH

(DC)

V

OM

(DC)

V

OL

(DC)

V

OH

(AC)

V

OL

(AC)

Parameter

DC output high measurement level (for IV curve linearity)

DC output mid measurement level (for IV curve linearity)

DC output low measurement level (for IV curve linearity)

AC output high measurement level (for output SR)

AC output low measurement level (for output SR)

DDP 4Gb DDR3 SDRAM

DDR3-800/1066/1333/1600

0.8 x V

DDQ

0.5 x V

DDQ

0.2 x V

DDQ

V

TT

+ 0.1 x V

DDQ

V

TT

- 0.1 x V

DDQ

Units

V

V

V

V

V

Notes

1

1

Note : 1. The swing of +/-0.1 x V

DDQ

is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40

and an effective test load of 25

to V

TT

=V

DDQ

/2.

9.2 Differential AC and DC Output Levels

[ Table 15 ] Differential AC and DC output levels

Symbol

V

OHdiff

(AC)

V

OLdiff

(DC)

Parameter

AC differential output high measurement level (for output SR)

AC differential output low measurement level (for output SR)

DDR3-800/1066/1333/1600

+0.2 x V

DDQ

-0.2 x V

DDQ

Units

V

V

Notes

1

1

Note : 1. The swing of +/-0.2xV

DDQ

is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40

and an effective test load of 25

to V

TT

=V

DDQ

/2 at each of the differential outputs.

9.3 Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V

OL

(AC) and V

OH

(AC)

for single ended signals as shown in Table 16 and figure 6.

[ Table 16 ] Single Ended Output slew rate definition

Description

Single ended output slew rate for rising edge

Single ended output slew rate for falling edge

Measured

From

V

OL

(AC)

V

OH

(AC)

To

V

OH

(AC)

V

OL

(AC)

Defined by

V

OH

(AC)-V

OL

(AC)

Delta TRse

V

OH

(AC)-V

OL

(AC)

Delta TFse

Note : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 17 ] Single Ended Output slew rate

Parameter

Single ended output slew rate

Symbol

SRQse

DDR3-800

Min

2.5

Max

5

DDR3-1066

Min

2.5

Max

5

DDR3-1333

Min

2.5

Max

5

DDR3-1600

Min

TBD

Max

5

Units

V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output

se : Singe-ended Signals

For Ron = RZQ/7 setting

V

OH(AC)

V

TT

V

OL(AC)

delta

TFse

delta

TRse

Figure 6. Single Ended Output Slew Rate definition

Page 18 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.4 Differential Output Slew Rate

DDP 4Gb DDR3 SDRAM

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V

OLdiff

(AC) and

V

OHdiff

(AC) for differential signals as shown inTable 18 and figure 7.

[ Table 18 ] Differential Output slew rate definition

Description

Differential output slew rate for rising edge

Differential output slew rate for falling edge

Measured

From

V

OLdiff

(AC)

V

OHdiff

(AC)

To

V

OHdiff

(AC)

V

OLdiff

(AC)

Defined by

V

OHdiff

(AC)-V

OLdiff

(AC)

Delta TRdiff

V

OHdiff

(AC)-V

OLdiff

(AC)

Delta TFdiff

Note : Output slew rate is verified by design and characterization, and may not be subject to production test.

[ Table 19 ] Differential Output slew rate

Parameter

Differential output slew rate

Symbol

SRQse

DDR3-800

Min

5

Max

10

DDR3-1066

Min

5

Max

10

DDR3-1333

Min

5

Max

10

DDR3-1600

Min

TBD

Max

10

Units

V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output

diff : Singe-ended Signals

For Ron = RZQ/7 setting

V

OHdiff

(AC)

V

TT

V

OLdiff

(AC)

delta

TFdiff

delta

TRdiff

Figure 7. Differential Output Slew Rate definition

9.5 Reference Load for AC Timing and Output Slew Rate

Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate

measurements.

It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. Sys-

tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their

production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

V

DDQ

CK/CK

DUT

DQ

DQS

DQS

V

TT

= V

DDQ

/2

25

Reference

Point

Figure 8. Reference Load for AC Timing and Output Slew Rate

Page 19 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.6 Overshoot/Undershoot Specification

9.6.1 Address and Control Overshoot and Undershoot specifications

DDP 4Gb DDR3 SDRAM

[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)

Parameter

Maximum peak amplitude allowed for overshoot area (See Figure 9)

Maximum peak amplitude allowed for undershoot area (See Figure 9)

Maximum overshoot area above V

DD

(See Figure 9)

Maximum undershoot area below V

SS

(See Figure 9)

Specification

DDR3-800

0.4V

0.4V

0.67V-ns

0.67V-ns

DDR3-1066

0.4V

0.4V

0.5V-ns

0.5V-ns

DDR3-1333

0.4V

0.4V

0.4V-ns

0.4V-ns

DDR3-1600

0.4V

0.4V

0.33V-ns

0.33V-ns

Unit

V

V

V-ns

V-ns

MaximumAmplitude

OvershootArea

Volts

(V)

V

DD

V

SS

MaximumAmplitude

Time (ns)

UndershootArea

Figure 9. Address and Control Overshoot and Undershoot definition

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications

[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)

Parameter

Maximum peak amplitude allowed for overshoot area (See Figure 11)

Maximum peak amplitude allowed for undershoot area (See Figure 11)

Maximum overshoot area above V

DDQ

(See Figure 11)

Maximum undershoot area below V

SSQ

(See Figure 11)

Specification

DDR3-800

0.4V

0.4V

0.25V-ns

0.25V-ns

DDR3-1066

0.4V

0.4V

0.19V-ns

0.19V-ns

DDR3-1333

0.4V

0.4V

0.15V-ns

0.15V-ns

DDR3-1600

0.4V

0.4V

0.13V-ns

0.13V-ns

Unit

V

V

V-ns

V-ns

MaximumAmplitude

OvershootArea

Volts

(V)

V

DDQ

V

SSQ

MaximumAmplitude

Time (ns)

UndershootArea

Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition

Page 20 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.7 34 ohm Output Driver DC Electrical Characteristics

DDP 4Gb DDR3 SDRAM

A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ

as follows:

RON

34

= RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)

RON

40

= RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm)

The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows

RONpu =

V

DDQ

-V

OUT

l Iout l

V

OUT

l Iout l

under the condition that RONpu is turned off

under the condition that RONpd is turned off

RONpd =

Output Driver : Definition of Voltages and Currents

Output Driver

V

DDQ

Ipu

To

other

circuity

RON

Pu

DQ

RON

Ipd

Iout

Vout

V

SSQ

Pd

Figure 11. Output Driver : Definition of Voltages and Currents

[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;

entire operating temperature range; after proper ZQ calibration

RONnomResistorVout

V

OLdc

= 0.2 x V

DDQ

RON34pd

34Ohms

RON34pu

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

RON40pd

40Ohms

RON40pu

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

V

OLdc

= 0.2 x V

DDQ

V

OMdc

= 0.5 x V

DDQ

V

OHdc

= 0.8 x V

DDQ

Mismatch between Pull-up and Pull-down,

MMpupd

V

OMdc

= 0.5 x V

DDQ

Min

0.6

0.9

0.9

0.9

0.9

0.6

0.6

0.9

0.9

0.9

0.9

0.6

-10

Nom

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Max

1.1

1.1

1.4

1.4

1.1

1.1

1.1

1.1

1.4

1.4

1.1

1.1

10%

RZQ/6

RZQ/7

UnitsNotes

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,4

Note :

1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-

tion, see following section on voltage and temperature sensitivity

2. The tolerance limits are specified under the condition that V

DDQ

= V

DD

and that V

SSQ

= V

SS

3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V

DDQ

. Other calibration schemes may be used to achieve the linearity spec shown

above, e.g. calibration at 0.2 X V

DDQ

and 0.8 X V

DDQ

4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V

DDQ

:

MMpupd=

RONpu - RONpd

RONnom

x 100

Page 21 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.7.1 Output Drive Temperature and Voltage sensitivity

DDP 4Gb DDR3 SDRAM

If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24.

∆T = T - T(@calibration); ∆V = V

DDQ

- V

DDQ

(@calibration); V

DD

= V

DDQ

*dR

ON

dT and dR

ON

dV are not subject to production test but are verified by design and characterization

[ Table 23 ] Output Driver Sensitivity Definition

Min

RONPU@V

OHDC

RON@V

OMDC

RONPD@

VOLDC

0.6 - dR

ON

dTH * |

∆T| - dR

ON

dVH * |∆V|

0.9 - dR

ON

dTM * |

∆T| - dR

ON

dVM * |∆V|

0.6 - dR

ON

dTL * |

∆T| - dR

ON

dVL * |∆V|

Max

1.1 + dR

ON

dTH * |

∆T| + dR

ON

dVH * |∆V|

1.1 + dR

ON

dTM * |

∆T| + dR

ON

dVM * |∆V|

1.1 + dR

ON

dTL * |

∆T| + dR

ON

dVL * |∆V|

Units

RZQ/7

RZQ/7

RZQ/7

[ Table 24 ] Output Driver Voltage and Temperature Sensitivity

Speed Bin

Min

dR

ON

dTM

dR

ON

dVM

dR

ON

dTL

dR

ON

dVL

dR

ON

dTH

dR

ON

dVH

0

0

0

0

0

0

800/1066/1333

Max

1.5

0.15

1.5

0.15

1.5

0.15

Min

0

0

0

0

0

0

1600

Max

1.5

0.13

1.5

0.13

1.5

0.13

Units

%/°C

%/mV

%/°C

%/mV

%/°C

%/mV

9.8 On-Die Termination (ODT) Levels and I-V Characteristics

On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.

ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.

A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as

follows :

V

DDQ

-V

OUT

l Iout l

V

OUT

l Iout l

under the condition that RTTpu is turned off

RTTpu =

under the condition that RTTpd is turned off

RTTpd =

On-Die Termination : Definition of Voltages and Currents

Chip in Termination Mode

ODT

V

DDQ

Ipu

To

other

circuitry

like

RCV,

...

Iout=Ipd-Ipu

Pu

RTT

DQ

RTT

Ipd

Iout

Pd

V

OUT

V

SSQ

Figure 12. On-Die Termination : Definition of Voltages and Currents

Page 22 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.8.1 ODT DC electrical characteristics

DDP 4Gb DDR3 SDRAM

Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT

60pd120,

RTT

60pu120,

RTT

120pd240,

RTT

120pu240,

RTT

40pd80,

RTT

40pu80,

RTT

30pd60,

RTT

30pu60,

RTT

20pd40,

RTT

20pu40

are not specification requirements, but can be used as design guide lines:

[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operationg temperature range ;

after proper ZQ calibration.

MR1 (A9,A6,A2)RTTRESISTORVout

V

OL

(DC) 0.2XV

DDQ

RTT

120pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,1,0)120 ohm

RTT

120pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

120

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,0,1)60 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

40pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(0,1,1)40 ohm

RTT

40pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

40

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(1,0,1)30 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

V

OL

(DC) 0.2XV

DDQ

RTT

60pd240

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

(1,0,0)20 ohm

RTT

60pu240

V

OL

(DC) 0.2XV

DDQ

0.5XV

DDQ

V

OH

(DC) 0.8XV

DDQ

RTT

60

V

IL

(AC) to V

IH

(AC)

Min

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

0.6

0.9

0.9

0.9

0.9

0.6

0.9

-5

Nom

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Max

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

1.1

1.1

1.4

1.4

1.1

1.1

1.6

5

Unit

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/2

R

ZQ

/4

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/3

R

ZQ

/6

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/4

R

ZQ

/8

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/6

R

ZQ

/12

%

Notes

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,5

1,2,5,6

Deviation of V

M

w.r.t V

DDQ

/2, ∆VM

Page 23 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :

1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage

changes after calibration, see following section on voltage and temperature sensitivity

2. The tolerance limits are specified under the condition that V

DDQ

= V

DD

and that V

SSQ

= V

SS

3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV

DDQ

. Other calibration schemes may be used to achieve the linearity

spec shown above, e.g. calibration at 0.2XV

DDQ

and 0.8XV

DDQ

.

4. Not a specification requirement, but a design guide line

5. Measurement definition for RTT:

Apply V

IH

(AC) to pin under test and measure current I(V

IH

(AC)), then apply V

IL

(AC) to pin under test and measure current I(V

IL

(AC)) perspectively

RTT =

V

IH

(AC) - V

IL

(AC)

I(V

IH

(AC)) - I(V

IL

(AC))

6. Measurement definition for V

M

and

V

M

: Measure voltage (V

M

) at test pin (midpoint) with no load

V

M

=

2 x

V

M

V

DDQ

- 1

x 100

9.8.2 ODT Temperature and Voltage sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to table below

∆T = T - T(@calibration); ∆V = V

DDQ

- V

DDQ

(@calibration); V

DD

= V

DDQ

[ Table 26 ] ODT Sensitivity Definition

Min

RTT

0.9 - dR

TT

dT * |

∆T| - dR

TT

dV * |∆V|

Max

1.6 + dR

TT

dT * |

∆T| + dR

TT

dV * |∆V|

Units

RZQ/2,4,6,8,12

[ Table 27 ] ODT Voltage and Temperature Sensitivity

Min

dR

TT

dT

dR

TT

dV

0

0

Max

1.5

0.15

Units

%/°C

%/mV

These parameters may not be subject to production test. They are verified by design and characterization.

Page 24 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

9.9 ODT Timing Definitions

9.9.1 Test Load for ODT Timings

Different than for timing measurements, the reference load for ODT timings is defined in Figgure 13.

DDP 4Gb DDR3 SDRAM

V

DDQ

CK,CK

DUT

DQ, DM

DQS , DQS

TDQS , TDQS

RTT

=25 ohm

V

TT

=

V

SSQ

V

SSQ

Timing Reference Points

Figure 13. ODT Timing Reference Load

9.9.2 ODT Timing Definition

Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided

in Table 29.

[ Table 28 ] ODT Timing Definitions

Symbol

tAON

tAONPD

tAOF

tAOFPD

tADC

Begin Point Definition

Rising edge of CK - CK defined by the end point of ODTLon

Rising edge of CK - CK with ODT being first registered high

Rising edge of CK - CK defined by the end point of ODTLoff

Rising edge of CK - CK with ODT being first registered low

Rising edge of CK - CK defined by the end point of ODTLcnw,

ODTLcwn4 of ODTLcwn8

End Point Definition

Extrapolated point at V

SSQ

Extrapolated point at V

SSQ

End point: Extrapolated point at V

RTT_Nom

End point: Extrapolated point at V

RTT_Nom

End point: Extrapolated point at V

RTT_Wr

and V

RTT_Nom

respectively

Figute

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

[ Table 29 ] Reference Settings for ODT Timing Measurements

Measured

Parameter

tAON

tAONPD

tAOF

tAOFPD

tADC

RTT_Nom Setting

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/4

R

ZQ

/12

R

ZQ

/12

RTT_Wr Setting

NA

NA

NA

NA

NA

NA

NA

NA

R

ZQ

/2

V

SW1

[V]

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.20

V

SW2

[V]

0.10

0.20

0.10

0.20

0.10

0.20

0.10

0.20

0.30

Note

Page 25 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Begin point : Rising edge of CK - CK

defined by the end point of ODTLon

CK

V

TT

CK

t

AON

T

SW2

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW1

V

SW2

V

SW1

V

SSQ

V

SSQ

End point Extrapolated point at V

SSQ

Figure 14. Definition of tAON

Begin point : Rising edge of CK - CK

with ODT being first registered high

CK

V

TT

CK

t

AONPD

T

SW2

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW1

V

SW2

V

SW1

V

SSQ

V

SSQ

End point Extrapolated point at V

SSQ

Figure 15. Definition of tAONPD

Begin point : Rising edge of CK - CK

defined by the end point of ODTLoff

CK

V

TT

CK

t

AOF

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

End point Extrapolated point at V

RTT_Nom

T

SW2

V

SW2

V

SW1

T

SW1

V

SSQ

TD_TAON_DEF

Figure 16. Definition of tAOF

Page 26 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

Begin point : Rising edge of CK - CK

with ODT being first registered low

DDP 4Gb DDR3 SDRAM

CK

V

TT

CK

t

AOFPD

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

End point Extrapolated point at V

RTT_Nom

T

SW2

V

SW2

V

SW1

T

SW1

V

SSQ

Figure 17. Definition of tAOFPD

Begin point : Rising edge of CK - CK

defined by the end point of ODTLcnw

Begin point : Rising edge of CK - CK defined by

the end point of ODTLcwn4 or ODTLcwn8

CK

V

TT

CK

t

ADC

t

ADC

End point Extrapolated point at V

RTT_Nom

V

RTT_Nom

DQ, DM

DQS , DQS

TDQS , TDQS

T

SW21

End point

Extrapolated point

T

SW11

at V

RTT_Nom

V

SW1

T

SW22

T

SW12

V

RTT_Nom

V

SW2

V

RTT_Wr

End point Extrapolated point at V

RTT_Wr

V

SSQ

Figure 18. Definition of tADC

Page 27 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

10.0 IDD Specification Parameters and Test Conditions

10.1 IDD Measurement Conditions

DDP 4Gb DDR3 SDRAM

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and

IDDQ measurements.

- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and

IDD7) are measured as time-averaged currents with all V

DD

balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in

IDD currents.

- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V

DDQ

balls of the DDR3 SDRAM under test tied

together. Any IDD current is not included in IDDQ currents.

Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO

power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V

DD

and V

DDQ

are using one merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply :

- "0" and "LOW" is defined as V

IN

<= V

IL

AC(max).

- "1" and "HIGH" is defined as V

IN

>= V

IH

AC(min).

- "FLOATING" is defined as inputs are V

REF

= V

DD

/ 2.

- Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30.

- Basic IDD and IDDQ Measurement Conditions are described in Table 31.

- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39.

- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting

RON = RZQ/7 (34 Ohm in MR1);

Qoff = 0B (Output Buffer enabled in MR1);

RTT_Nom = RZQ/6 (40 Ohm in MR1);

RTT_Wr = RZQ/2 (120 Ohm in MR2);

TDQS Feature disabled in MR1

- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.

- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}

- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}

Timing parameters are listed in the following table:

[ Table 30 ] Timing used for IDD and IDDQ Measured-Loop Patterns.

Parameter Bin

tCKmin(IDD)

CL(IDD) 5

tRCDmin(IDD)

tRCmin(IDD)

tRASmin(IDD)

tRPmin(IDD)

tFAW(IDD)

tRRD(IDD)

x4/x8

x16

x4/x8

x16

5

16

20

4

4

36

44

64

120

140

5

20

15

66

DDR3-800

5-5-5

2.5

6

6

21

6

6

26

6-6-6

DDR3-1066

6-6-67-7-7

1.875

7

7

27

20

7

20

27

4

6

48

59

86

160

187

878

20

30

4

5

60

74

107

200

234

8

8

28

7

7

31

8

8

32

24

91089

24

32

5

6

72

88

128

240

280

8-8-87-7-7

DDR3-1333

8-8-89-9-9

1.5

9

9

33

10

10

34

8

8

36

9

9

37

28

1011

10-10-108-8-8

DDR3-1600

9-9-910-10-10

1.25

10

10

38

11

11

39

11-11-11

Unit

ns

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

nCK

tRFC(IDD) - 512Mb

tRFC(IDD) - 1Gb

tRFC(IDD) - 2Gb

tRFC(IDD) - 4Gb

tRFC(IDD) - 8Gb

Page 28 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 31 ] Basic IDD and IDDQ Measurement Conditions

SymbolDescription

Operating One Bank Active-Precharge Current

IDD0

DDP 4Gb DDR3 SDRAM

CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address

Inputs: partially toggling according to Table 32 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...

(see Table32); Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 32

Operating One Bank Active-Read-Precharge Current

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between ACT, RD and PRE; Command, Address,

Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...

(see Table33); Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 33

Precharge Standby Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT

Signal: stable at 0; Pattern Details: see Table 34

Precharge Standby ODT Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 35 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT

Signal: toggling according to Table 35 ; Pattern Details: see Table 35

Precharge Standby ODT IDDQ Current

Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current

Precharge Power-Down Current Slow Exit

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pecharge

Power Down Mode: Slow Exi

c)

Precharge Power-Down Current Fast Exit

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pecharge

Power Down Mode: Fast Exit

c)

Precharge Quiet Standby Current

IDD1

IDD2N

DD2NT

DDQ2NT

(optional)

IDD2P0

IDD2P1

IDD2Q CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0

Active Standby Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling

according to Table 34 ; Data IO: MID-LEVEL; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Sig-

nal: stable at 0; Pattern Details: see Table 34

Active Power-Down Current

CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:

MID-LEVEL;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0

Operating Burst Read Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling

according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank

Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Regis-

ters

b)

; ODT Signal: stable at 0; Pattern Details: see Table 36

Operating Burst Read IDDQ Current

Same definition like for IDD4R, however measuring IDDQ current instead of IDD current

Operating Burst Write Current

CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-

gling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0;

Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers

b)

;

ODT Signal: stable at HIGH; Pattern Details: see Table 37

Burst Refresh Current

CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8

a)

; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially

toggling according to Table 38 ; Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:

Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 38

Self Refresh Current: Normal Temperature Range

TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled

d)

; Self-Refresh Temperature Range (SRT): Normal

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Self-Refresh operation;

Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

IDD3N

IDD3P

IDD4R

IDDQ4R

(optional)

IDD4W

IDD5B

IDD6

Page 29 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 31 ] Basic IDD and IDDQ Measurement Conditions

SymbolDescription

Self-Refresh Current: Extended Temperature Range (optional)

f

)

IDD6ET

DDP 4Gb DDR3 SDRAM

TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled

d)

; Self-Refresh Temperature Range (SRT): Extended

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL;DM:stable at 0; Bank Activity: Extended Temperature

Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

Auto Self-Refresh Current (optional)

f

)

TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled

d)

; Self-Refresh Temperature Range (SRT): Normal

e)

; CKE: Low; External clock: Off; CK and CK:

LOW; CL: see Table 30 ; BL: 8

a)

; AL: 0; CS, Command, Address, Bank Address, Data IO: MID-LEVEL; DM:stable at 0; Bank Activity: Auto

Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: MID-LEVEL

Operating Bank Interleave Read Current

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8

a, g)

; AL: CL-1; CS: High between ACT and RDA; Command,

Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one

according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output

Buffer and RTT: Enabled in Mode Registers

b)

; ODT Signal: stable at 0; Pattern Details: see Table 39

IDD6TC

IDD7

a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B

b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B

c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit

d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature

e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range

f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device

10.2 IDD Specifications definition

Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot.

Only the following changes will be done to Chapter 10.2:

Table 53 "IDD Specification Example 512M DDR3", add the following Rows:

- Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT".

- Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT".

- Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R".

Page 30 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

(optional)

DDP 4Gb DDR3 SDRAM

I

DD

I

DDQ

V

DD

RESET

CK/CK

CKE

CS

RAS, CAS, WE

A, BA

ODT

ZQ

V

DDQ

DQS, DQS

DQ, DM,

TDQS, TDQS

R

TT

= 25 Ohm

V

DDQ

/2

V

SS

V

SSQ

[Note: DIMM level Output test load condition may be different from above ]

Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements

Application specific

memory channel

environment

IDDQ

Test Load

Channel

IO Power

Simulation

IDDQ

Simulation

IDDQ

Measurement

Correlation

Correction

Channel IO Power

Number

Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.

Page 31 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 32 ] IDD0 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1,2

3,4

...

nRAS

...

1*nRC + 0

1*nRC + 1, 2

ACT

D,D

D, D

PRE

ACT

D, D

D, D

PRE

0

1

1

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

F

0

0

0

0

0

0

0

0

repeat 4 until nRAS - 1, truncate if necessary

-

-

-

-

repeat 4 until nRC - 1, truncate if necessary

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1*nRC + 3, 4

...

1*nRC + nRAS

...

1

2

3

4

5

6

7

2*nRC

4*nRC

6*nRC

8*nRC

10*nRC

12*nRC

14*nRC

repeat 4 until 1*nRC + nRAS - 1, truncate if necessary

4 until 2*nRC - 1, truncate if necessary

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driben LOW all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 32 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 33 ] IDD1 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1,2

3,4

...

nRCD

...

nRAS

...

1*nRC+0

1*nRC + 1, 2

ACT

D,D

D, D

RD

PRE

ACT

D, D

D, D

RD

PRE

0

1

1

0

0

0

1

1

0

0

0

0

1

1

0

0

0

1

1

0

1

0

1

0

1

1

0

1

0

1

1

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

F

F

0

0

0

0

0

0

0

0

0

0

repeat 4 until nRCD- 1, truncate if necessary

00000000

-

-

-

-

00110011

-

repeat 4 until nRAS - 1, truncate if necessary

repeat 4 until nRC - 1, truncate if necessary

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1*nRC + 3, 4

...

1*nRC + nRCD

...

1*nRC + nRAS

...

1

2

3

4

5

6

7

2*nRC

4*nRC

6*nRC

8*nRC

10*nRC

12*nRC

14*nRC

repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary

repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary

repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

[ Table 34 ] IDD2 and IDD3N Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

-

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

C

K

E

R

A

S

C

A

S

O

D

T

00

1

2

3

D

D

D

D

1

1

1

1

0

0

1

1

0

0

1

1

W

E

C

S

0

0

1

1

0

0

0

0

0

0

0

0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

F

F

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1

2

3

4

5

6

7

4-7

8-11

12-15

16-19

20-23

24-27

28-31

repeat Sub-Loop 0, use BA[2:0] = 1 instead

repeat Sub-Loop 0, use BA[2:0] = 2 instead

repeat Sub-Loop 0, use BA[2:0] = 3 instead

repeat Sub-Loop 0, use BA[2:0] = 4 instead

repeat Sub-Loop 0, use BA[2:0] = 5 instead

repeat Sub-Loop 0, use BA[2:0] = 6 instead

repeat Sub-Loop 0, use BA[2:0] = 7 instead

Note :

1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 33 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 35 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1

2

3

D

D

D

D

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

F

F

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

1

2

3

4

5

6

7

4-7

8-11

12-15

16-19

20-23

24-27

28-31

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6

repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7

Note :

1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

[ Table 36 ] IDD4R and IDDQ4R Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

00000000

-

-

00110011

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

00

1

2,3

4

5

RD

D

D,D

RD

D

D,D

0

1

1

0

1

1

1

0

1

1

0

1

0

0

1

0

0

1

W

E

C

S

1

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

6,7

1

2

3

4

5

6

7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

repeat Sub-Loop 0, but BA[2:0] = 1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 0, but BA[2:0] = 3

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 0, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 0, but BA[2:0] = 7

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

Page 34 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 37 ] IDD4W Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

00

1

2,3

4

5

WR

D

D,D

WR

D

D,D

0

1

1

0

1

1

1

0

1

1

0

1

0

0

1

0

0

1

0

0

1

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

00000000

-

-

00110011

-

-

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

6,7

1

2

3

4

5

6

7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

repeat Sub-Loop 0, but BA[2:0] = 1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 0, but BA[2:0] = 3

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 0, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 0, but BA[2:0] = 7

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

[ Table 38 ] IDD5B Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

D

a

t

a

2

)

-

-

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

0

1

0

1,2

3,4

5...8

REF

D

D,D

0

1

1

0

0

1

0

0

1

W

E

C

S

1

0

1

0

0

0

0

0

0

00

00

00

0

0

0

0

0

0

0

0

F

0

0

0

repeat 4, but BA[2:0] = 1

repeat 4, but BA[2:0] = 2

repeat 4, but BA[2:0] = 3

repeat 4, but BA[2:0] = 4

repeat 4, but BA[2:0] = 5

repeat 4, but BA[2:0] = 6

repeat 4, but BA[2:0] = 7

repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

9...12

13...16

17...20

21...24

25...28

29...32

RFC - 1

Note :

1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

Page 35 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

[ Table 39 ] IDD7 Measurement - Loop Pattern

1

C

o

m

m

a

n

d

S

u

b

-

L

o

o

p

A

[

1

5

:

1

1

]

C

y

c

l

e

N

u

m

b

e

r

B

A

[

2

:

0

]

C

K

/

C

K

DDP 4Gb DDR3 SDRAM

0

0

1

2

...

nRRD

1

nRRD + 1

nRRD + 2

...

2

3

4

5

6

7

8

S

t

a

t

i

c

H

i

g

h

t

o

g

g

l

i

n

g

9

2 * nRRD

3 * nRRD

4 * nRRD

nFAW

nFAW+nRRD

nFAW+2*nRRD

nFAW+3*nRRD

nFAW+4*nRRD

2*nFAW+0

10

2*nFAW+1

2*nFAW+2

2*nFAW+nRRD

11

2*nFAW+nRRD+1

2*nFAW+nRRD+2

12

13

14

15

16

17

18

19

2*nFAW+2*nRRD

2*nFAW+3*nRRD

2*nFAW+4*nRRD

3*nFAW

3*nFAW+nRRD

3*nFAW+2*nRRD

3*nFAW+3*nRRD

3*nFAW+4*nRRD

ACT

RDA

D

ACT

RDA

D

0

0

1

0

0

1

0

1

0

0

1

0

1

0

0

1

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

00

00

00

00

00

00

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

0

0

0

00000000

-

-

00110011

-

repeat above D Command until nRRD - 1

repeat above D Command until 2*nRRD-1

repeat Sub-Loop 0, but BA[2:0] = 2

repeat Sub-Loop 1, but BA[2:0] = 3

D1000030000F0-

Assert and repeat above D Command until nFAW - 1, if necessary

repeat Sub-Loop 0, but BA[2:0] = 4

repeat Sub-Loop 1, but BA[2:0] = 5

repeat Sub-Loop 0, but BA[2:0] = 6

repeat Sub-Loop 1, but BA[2:0] = 7

D

ACT

RDA

D

ACT

RDA

D

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

7

0

0

0

1

1

1

00

00

00

00

00

00

00

0

0

1

0

0

1

0

0

0

0

0

0

0

0

F

F

F

F

0

0

0

0

0

0

0

0

0

0

-

-

00110011

-

-

00000000

-

Assert and repeat above D Command until 2*nFAW - 1, if necessary

Repeat above D Command until 2*nFAW + nRRD - 1

Repeat above D Command until 2*nFAW + 2*nRRD - 1

repeat Sub-Loop 10, but BA[2:0] = 2

repeat Sub-Loop 11, but BA[2:0] = 3

D1-

Assert and repeat above D Command until 3*nFAW - 1, if necessary

repeat Sub-Loop 10, but BA[2:0] = 4

repeat Sub-Loop 11, but BA[2:0] = 5

repeat Sub-Loop 10, but BA[2:0] = 6

repeat Sub-Loop 11, but BA[2:0] = 7

D1-

Assert and repeat above D Command until 4*nFAW - 1, if necessary

Note :

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.

Page 36 of 59

Rev. 1.0 March 2009

D

a

t

a

2

)

-

A

[

9

:

7

]

A

[

6

:

3

]

A

[

2

:

0

]

A

[

1

0

]

O

D

T

C

K

E

R

A

S

C

A

S

W

E

C

S

K4B4G0446B

K4B4G0846B

11.0 DDP 4Gb DDR3 SDRAM B-die IDD Spec Table

[ Table 40 ] IDD Specification for DDP 4Gb DDR3 B-die

1Gx4 (K4B4G0446B)

Symbol

IDD0

IDD1

IDD2P0(slow exit)

IDD2P1(fast exit)

IDD2N

IDD2NT

IDD2Q

IDD3P(fast exit)

IDD3N

IDD4R

IDD4W

IDD5B

IDD6

IDD7

DDR3-800

6-6-6

100

115

24

50

70

70

60

60

85

135

140

220

24

235

DDR3-1066

7-7-7

110

125

24

50

80

80

70

70

95

160

165

225

24

250

DDR3-1333

9-9-9

115

130

24

50

80

90

70

70

100

175

180

225

24

300

DDP 4Gb DDR3 SDRAM

DDR3-1600

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Unit

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

Notes

512Mx8 (K4B4G0846B)

Symbol

IDD0

IDD1

IDD2P0(slow exit)

IDD2P1(fast exit)

IDD2N

IDD2NT

IDD2Q

IDD3P(fast exit)

IDD3N

IDD4R

IDD4W

IDD5B

IDD6

IDD7

DDR3-800

6-6-6

100

115

24

50

70

80

64

60

85

140

145

220

24

245

DDR3-1066

7-7-7

110

125

24

60

80

80

70

70

95

165

170

225

24

270

DDR3-1333

9-9-9

115

130

24

70

80

90

80

70

100

185

190

225

24

320

DDR3-1600

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

mA

UnitNotes

Page 37 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

12.0 Input/Output Capacitance

[ Table 41 ] Input/Output Capacitance

Parameter

Input/output capacitance

(DQ, DM, DQS, DQS, TDQS, TDQS)

Input capacitance

(CK and CK)

Input capacitance delta

(CK and CK)

Input capacitance

(All other input-only pins)

Input capacitance delta

(DQS and DQS)

Input capacitance delta

(All control input-only pins)

Input capacitance delta

(all ADD and CMD input-onlypins)

Input/output capacitance delta

(DQ, DM, DQS, DQS, TDQS, TDQS)

Input/output capacitance of ZQ pin

Symbol

CIO

CCK

CDCK

CI

CDDQS

CDI_CTRL

CDI_ADD_CMD

CDIO

CZQ

DDR3-800

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDR3-1066

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDP 4Gb DDR3 SDRAM

DDR3-1333

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

DDR3-1600

Min

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Max

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

TBD

Units

pF

pF

pF

pF

pF

pF

pF

pF

pF

Notes

1,2,3

2,3

2,3,4

2,3,6

2,3,5

2,3,7,8

2,3,9,10

2,3,11

2, 3, 12

Note :

1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS

2. This parameter is not subject to production test. It is verified by design and characterization.

The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK

ANALYZER( VNA)") with V

DD

, V

DDQ

, V

SS

, V

SSQ

applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary).

V

DD

=V

DDQ

=1.5V, V

BIAS

=V

DD

/2 and on-die termination off.

3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here

4. Absolute value of CCK-CCK

5. Absolute value of CIO(DQS)-CIO(DQS)

6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.

7. CDI_CTRL applies to ODT, CS and CKE

8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))

9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE

10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))

11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))

12. Maximum external load capacitance on ZQ pin: 5pF

Page 38 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600

13.1 Clock specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3

SDRAM device.

13.1.1 Definition for tCK (avg)

tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to

rising edge.

j=1

N

tCKj

N

N=200

13.1.2 Definition for tCK (abs)

tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.

13.1.3 Definition for tCH(avg) and tCL(avg)

tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:

tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:

tCHj

j=1

N

N x tCK(avg)N=200

j=1

N

tCLj

N x tCK(avg)N=200

13.1.4 Definition for note for tJIT(per), tJIT(per,Ick)

tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}

tJIT(per) defines the single period jitter when the DLL is already locked.

tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.

tJIT(per) and tJIT(per,lck) are not subject to production test.

13.1.5 Definition for note for tJIT(cc), tJIT(cc,Ick)

tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}

tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.

tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.

tJIT(cc) and tJIT(cc,lck) are not subject to production test.

13.1.6 Definition for tERR(nper)

tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.

Page 39 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

13.2 Refresh Parameters by Device Density

[ Table 42 ] Refresh parameters by device density

Parameter

All Bank Refresh to active/refresh cmd time

Average periodic refresh intervaltREFI

Symbol

tRFC

0 °C ≤ T

CASE

≤ 85°C

85 °C < T

CASE

≤ 95°C

1Gb

110

7.8

3.9

DDP 4Gb DDR3 SDRAM

2Gb

160

7.8

3.9

4Gb

300

7.8

3.9

8Gb

350

7.8

3.9

Units

ns

µs

µs

Note

1

Note :

1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or

requirements referred to in this material.

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

[ Table 43 ] DDR3-800 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CL = 6 / CWL = 5

Supported CL Settings

Supported CWL Settings

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

min

15

15

15

52.5

37.5

2.5

6

5

DDR3-800

6 - 6 - 6

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

nCK

nCK

8

1,2,3

UnitsNote

[ Table 44 ] DDR3-1066 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CL = 6

CL = 7

CL = 8

Supported CL Settings

Supported CWL Settings

CWL = 5

CWL = 6

CWL = 5

CWL = 6

CWL = 5

CWL = 6

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)1.875

6,7,8

5,6

1.875

Reserved

<2.5

min

13.125

13.125

13.125

50.625

37.5

2.5

Reserved

Reserved

<2.5

DDR3-1066

7 - 7 - 7

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

nCK

nCK

8

1,2,3,6

1,2,3,4

4

1,2,3,4

4

1,2,3

UnitsNote

Page 40 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 45 ] DDR3-1333 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CWL = 5

CL = 6CWL = 6

CWL = 7

CWL = 5

CL = 7CWL = 6

CWL = 7

CWL = 5

CL = 8CWL = 6

CWL = 7

CL = 9

CWL = 5,6

CWL = 7

CWL = 5,6

CL = 10

Supported CL Settings

Supported CWL Settings

CWL = 7

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

1.5

(Optional)

6,7,8,9

5,6,7

1.5

Reserved

1.875

Reserved

Reserved

1.875

min

13.5

(13.125)

5,9

13.5

(13.125)

5,9

13.5

(13.125)

5,9

49.5

(49.125)

5,9

36

2.5

Reserved

Reserved

Reserved

DDR3-1333

9 -9 - 9

DDP 4Gb DDR3 SDRAM

Units

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

<2.5

ns

ns

ns

<2.5ns

ns

ns

<1.875

<1.875

ns

ns

ns

ns

nCK

nCK

Note

8

1,2,3,7

1,2,3,4,7

4

4

1,2,3,4,7

1,2,3,4,

4

1,2,3,7

1,2,3,4,

4

1,2,3,4

4

1,2,3

5

(Optional) Note 5,9

Reserved

Reserved

Page 41 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 46 ] DDR3-1600 Speed Bins

Speed

CL-nRCD-nRP

Parameter

Intermal read command to first data

ACT to internal read or write delay time

PRE command period

ACT to ACT or REF command period

ACT to PRE command period

CWL = 5

CL = 6CWL = 6

CWL = 7, 8

CWL = 5

CL = 7

CWL = 6

CWL = 7

CWL = 8

CWL = 5

CL = 8

CWL = 6

CWL = 7

CWL = 8

CWL = 5,6

CL = 9CWL = 7

CWL = 8

CWL = 5,6

CL = 10CWL = 7

CWL = 8

CL = 11

Supported CL Settings

Supported CWL Settings

CWL = 5,6,7

CWL = 8

Symbol

tAA

tRCD

tRP

tRC

tRAS

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)

tCK(AVG)1.25

6,7,8,9,10,11

5,6,7,8

1.5

Reserved

Reserved

1.5

TBD

Reserved

1.875

Reserved

Reserved

Reserved

1.875

min

13.75

(13.125)

5,9

13.75

(13.125)

5,9

13.75

(13.125)

5,9

48.75

(48.125)

5,9

35

2.5

Reserved

Reserved

Reserved

DDR3-1600

11-11-11

DDP 4Gb DDR3 SDRAM

Units

max

20

-

-

-

9*tREFI

3.3

ns

ns

ns

ns

ns

ns

ns

ns

ns

<2.5

ns

ns

ns

ns

<2.5ns

ns

ns

ns

<1.875

ns

ns

ns

<1.875

ns

ns

ns

<1.5ns

nCK

nCK

Note

1,2,3,8

1,2,3,4,8

4

4

1,2,3,4,8

1,2,3,4,8

4

4

1,2,3,8

1,2,3,4,8

1,2,3,4

4

1,2,3,4,8

1,2,3,4

4

1,2,3,8

1,2,3,4

4

1,2,3,5

(Optional) Note 5,9

Reserved

Reserved

Reserved

(Optional) Note 9,10

(Optional) Note 9,10

Page 42 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

13.3.1 Speed Bin Table Notes

Absolute Specification (T

OPER

; V

DDQ

= V

DD

= 1.5V +/- 0.075 V);

DDP 4Gb DDR3 SDRAM

Note :

1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-

filled: Requirements from CL setting as well as requirements from CWL setting.

2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-

cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-

ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".

3. tCK(AVG).MAX limits: Calculate tCK(AVG) = / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns

or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.

4. "Reserved" settings are not allowed. User must program a different value.

5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/

or the DIMM SPD information if and how this setting is supported.

6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but

verified by Design/Characterization.

9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to

match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte

16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-

gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin

(Byte 21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns

(tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).

Page 43 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.0 Timing Parameters by Speed Grade

[ Table 47 ] Timing Parameters by Speed Bin

Speed

Parameter

Clock Timing

Minimum Clock Cycle Time (DLL off mode)

Average Clock Period

Clock Period

Average high pulse width

Average low pulse width

Clock Period Jitter

Clock Period Jitter during DLL locking period

Cycle to Cycle Period Jitter

Cycle to Cycle Period Jitter during DLL locking period

Cumulative error across 2 cycles

Cumulative error across 3 cycles

Cumulative error across 4 cycles

Cumulative error across 5 cycles

Cumulative error across 6 cycles

Cumulative error across 7 cycles

Cumulative error across 8 cycles

Cumulative error across 9 cycles

Cumulative error across 10 cycles

Cumulative error across 11 cycles

Cumulative error across 12 cycles

Cumulative error across n = 13, 14 ... 49, 50 cycles

Absolute clock HIGH pulse width

Absolute clock Low pulse width

Data Timing

DQS,DQS to DQ skew, per group, per access

DQ output hold time from DQS, DQS

DQ low-impedance time from CK, CK

DQ high-impedance time from CK, CK

Data setup time to DQS, DQS referenced to

V

IH

(AC)V

IL

(AC) levels

Data hold time to DQS, DQS referenced to

V

IH

(AC)V

IL

(AC) levels

DQ and DM Input pulse width for each input

Data Strobe Timing

DQS, DQS READ Preamble

DQS, DQS differential READ Postamble

DQS, DQS output high time

DQS, DQS output low time

DQS, DQS WRITE Preamble

DQS, DQS WRITE Postamble

DQS, DQS rising edge output access time from rising

CK, CK

DQS, DQS low-impedance time (Referenced from RL-1)

DQS, DQS high-impedance time (Referenced from

RL+BL/2)

DQS, DQS differential input low pulse width

DQS, DQS differential input high pulse width

DQS, DQS rising edge to CK, CK rising edge

DQS,DQS faling edge setup time to CK, CK rising edge

DQS,DQS faling edge hold time to CK, CK rising edge

tRPRE

tRPST

tQSH

tQSL

tWPRE

tWPST

tDQSCK

tLZ(DQS)

tHZ(DQS)

tDQSL

tDQSH

tDQSS

tDSS

tDSH

0.9

0.3

0.38

0.38

0.9

0.3

-400

-800

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

400

400

400

0.55

0.55

0.25

-

-

0.9

0.3

0.38

0.38

0.9

0.3

-300

-600

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

300

300

300

0.55

0.55

0.25

-

-

tDQSQ

tQH

tLZ(DQ)

tHZ(DQ)

tDS(base)

tDH(base)

tDIPW

-

0.38

-800

-

75

150

600

200

-

400

400

-

0.38

-600

-

25

100

490

150

-

300

300

-

tCK(DLL_OF

F)

tCK(avg)

tCK(abs)

tCH(avg)

tCL(avg)

tJIT(per)

tJIT(per, lck)

tJIT(cc)

tJIT(cc, lck)

tERR(2per)

tERR(3per)

tERR(4per)

tERR(5per)

tERR(6per)

tERR(7per)

tERR(8per)

tERR(9per)

tERR(10per)

tERR(11per)

tERR(12per)

tERR(nper)

tCH(abs)

tCL(abs)

0.43

0.43

-

-

- 147

- 175

- 194

- 209

- 222

- 232

- 241

- 249

- 257

- 263

- 269

8-8-8

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

-8-ns

ps

ps

tCK(avg)

tCK(avg)

ps

ps

ps

ps

6

See Speed Bins Table

tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +

tJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)maxtJIT(per)mintJIT(per)max

0.47

0.47

-100

-90

200

180

0.53

0.53

100

90

0.47

0.47

-90

-80

180

160

0.53

0.53

90

80

0.47

0.47

-80

-70

160

140

0.53

0.53

80

70

0.47

0.47

-70

-60

140

120

0.53

0.53

70

60

147

175

194

209

222

232

241

249

257

263

269

- 132

- 157

- 175

- 188

- 200

- 209

- 217

- 224

- 231

- 237

- 242

132

157

175

188

200

209

217

224

231

237

242

- 118

- 140

- 155

- 168

- 177

- 186

- 193

- 200

- 205

- 210

- 215

118

140

155

168

177

186

193

200

205

210

215

-103

-122

-136

-147

-155

-163

-169

-175

-180

-184

-188

103

122

136

147

155

163

169

175

180

184

188

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps

ps24

25

26

tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min

tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max

0.43

0.43

-

-

0.43

0.43

-

-

0.43

0.43

-

-

tCK(avg)

tCK(avg)

125

-

250

250

-

-

-

0.38

-450

-

10

45

360

100

-

225

225

ps

tCK(avg)

ps

ps

ps

ps

ps

13

13, g

13,14, f

13,14, f

d, 17

d, 17

28

0.38

-500

-

30

65

400

-

-

-

-

-

--

0.9

0.3

0.4

0.4

0.9

0.3

-255

-500

-

0.45

0.45

-0.25

0.2

0.2

Note 19

Note 11

-

-

-

-

255

250

250

0.55

0.55

0.25

-

-

0.9

0.3

0.4

0.4

0.9

0.3

-225

-450

-

0.45

0.45

-0.27

0.18

0.18

Note 19

Note 11

-

-

-

-

225

225

225

0.55

0.55

0.27

-

-

tCK

tCK

tCK(avg)

tCK(avg)

tCK

tCK

ps

ps

ps

tCK

tCK

tCK(avg)

tCK(avg)

tCK(avg)

13, 19, g

11, 13, b

13, g

13, g

13,f

13,14,f

12,13,14

29, 31

30, 31

c

c, 32

c, 32

Page 44 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Tabel 47 ] Timing Parameters by Speed Bin (Cont.)

Speed

Parameter

Command and Address Timing

DLL locking time

internal READ Command to PRECHARGE Command

delay

Delay from start of internal write transaction to internal

read command

WRITE recovery time

Mode Register Set command cycle time

Mode Register Set command update delay

CAS# to CAS# command delay

Auto precharge write recovery + precharge time

Multi-Purpose Register Recovery Time

ACTIVE to PRECHARGE command period

ACTIVE to ACTIVE command period for 1KB page size

ACTIVE to ACTIVE command period for 2KB page size

Four activate window for 1KB page size

Four activate window for 2KB page size

Command and Address setup time to CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Command and Address hold time from CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Command and Address setup time to CK, CK refer-

enced to V

IH

(AC) / V

IL

(AC) levels

Control & Address Input pulse width for each input

Calibration Timing

Power-up and RESET calibration time

Normal operation Full calibration time

Normal operation short calibration time

Reset Timing

Exit Reset from CKE HIGH to a valid command

Self Refresh Timing

Exit Self Refresh to commands not requiring a locked

DLL

Exit Self Refresh to commands requiring a locked DLL

Minimum CKE low width for Self refresh entry to exit

timing

Valid Clock Requirement after Self Refresh Entry

(SRE) or Power-Down Entry (PDE)

Valid Clock Requirement before Self Refresh Exit

(SRX) or Power-Down Exit (PDX) or Reset Exit

tXS

tXSDLL

tCKESR

tCKSRE

tCKSRX

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

tXPR

max(5nCK,

tRFC + 10ns)

-

max(5nCK,

tRFC + 10ns)

-

tZQinitI

tZQoper

tZQCS

512

256

64

-

-

-

512

256

64

-

-

-

tDLLK

tRTP

tWTR

tWR

tMRD

tMOD

tCCD

tDAL(min)

tMPRR

tRAS

tRRD

tRRD

tFAW

tFAW

tIS(base)

tIH(base)

tIS(base)

AC150

tIPW

1-1

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

512

max

(4nCK,7.5ns)

max

(4nCK,7.5ns)

15

4

max

(12nCK,15ns

)

4

-

-

-

-

-

-

-

nCK

e

e,18

ns

nCK

e

nCK

nCKWR + roundup (tRP / tCK(AVG))

-1-1-nCK

ns

22

e

e

e

See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37

max

(4nCK,10ns)

max

(4nCK,10ns)

40

50

200

275

200 + 150

900

-

-

-

-

max

(4nCK,7.5ns)

max

(4nCK,10ns)

37.5

50

125

200

125 + 150

780

-

-

-

-

max

(4nCK,6ns)

max

(4nCK,7.5ns)

30

45

65

140

65+125

620

-

-

-

-

-

-

-

-

max

(4nCK,6ns)

max

(4nCK,7.5ns)

30

40

TBD

TBD

TBD+125

560

-

-

-

-

-

-

-

-

ns

ns

ps

ps

ps

ps

e

e

b,16

b,16

b,16,27

28

-

-

-

-

-

-

-

-

512

256

64

-

-

-

512

256

64

-

-

-

nCK

nCK

nCK23

max(5nCK,

tRFC + 10ns)

-

max(5nCK,

tRFC + 10ns)

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

max(5nCK,tR

FC + 10ns)

tDLLK(min)

tCKE(min) +

1tCK

max(5nCK,

10ns)

max(5nCK,

10ns)

-

-

-

-

-

nCK

Page 45 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

[ Table 47 ] Timing Parameters by Speed Bin (Cont.)

Speed

Parameter

Power Down Timing

Exit Power Down with DLL on to any valid com-

mand;Exit Percharge Power Down with DLL

frozen to commands not requiring a locked DLL

Exit Precharge Power Down with DLL frozen to com-

mands requiring a locked DLL

tXP

max

(3nCK,

7.5ns)

max

(10nCK,

24ns)

max

(3nCK,

7.5ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

max

(3nCK,

7.5ns)

max

(10nCK,

24ns)

max

(3nCK,

5.625ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

Symbol

DDR3-800

MINMAX

DDR3-1066

MINMAX

DDP 4Gb DDR3 SDRAM

DDR3-1333

MINMAX

DDR3-1600

MINMAX

UnitsNote

max

(3nCK,6ns)

max

(10nCK,

24ns)

max

(3nCK,

5.625ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

max

(3nCK,6ns)

max

(10nCK,

24ns)

max

(3nCK,5ns)

1

tCKE(min)

1

1

RL + 4 +1

WL + 4

+(tWR/

tCK(avg))

WL + 4

+WR +1

WL + 2

+(tWR/

tCK(avg))

WL +2 +WR

+1

1

tMOD(min)

-

tXPDLL----2

CKE minimum pulse width

Command pass disable delay

Power Down Entry to Exit Timing

Timing of ACT command to Power Down entry

Timing of PRE command to Power Down entry

Timing of RD/RDA command to Power Down entry

Timing of WR command to Power Down entry

(BL8OTF, BL8MRS, BL4OTF)

Timing of WRA command to Power Down entry

(BL8OTF, BL8MRS, BL4OTF)

Timing of WR command to Power Down entry

(BL4MRS)

Timing of WRA command to Power Down entry

(BL4MRS)

Timing of REF command to Power Down entry

Timing of MRS command to Power Down entry

ODT Timing

ODT high time without write command or with wirte

command and BC4

ODT high time with Write command and BL8

Asynchronous RTT tum-on delay (Power-Down with

DLL frozen)

Asynchronous RTT tum-off delay (Power-Down with

DLL frozen)

ODT turn-on

RTT_NOM and RTT_WR turn-off time from ODTLoff

reference

RTT dynamic change skew

Write Leveling Timing

First DQS pulse rising edge after tDQSS margining

mode is programmed

DQS/DQS delay after tDQS margining mode is pro-

grammed

Setup time for tDQSS latch

Write leveling hold time from rising DQS, DQS cross-

ing to rising CK, CK crossing

Write leveling output delay

Write leveling output error

tCKE

tCPDED

tPD

tACTPDEN

tPRPDEN

tRDPDEN

tWRPDEN

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-

-

-

9*tREFI

-

-

-

-nCK9

nCK

tCK

nCK

nCK

15

20

20

tWRAPDEN----nCK10

tWRPDEN----nCK9

tWRAPDEN

tREFPDEN

tMRSPDEN

-

-

-

-

-

-

-

-

-

-

-

-

nCK10

20,21

ODTH4

ODTH8

tAONPD

tAOFPD

tAON

tAOF

tADC

4

6

2

2

-400

0.3

0.3

-

-

8.5

8.5

400

0.7

0.7

4

6

2

2

-300

0.3

0.3

-

-

8.5

8.5

300

0.7

0.7

4

6

2

2

-250

0.3

0.3

-

-

8.5

8.5

250

0.7

0.7

4

6

2

2

-225

0.3

0.3

-

-

8.5

8.5

225

0.7

0.7

nCK

nCK

ns

ns

ps

tCK(avg)

tCK(avg)

7,f

8,f

f

tWLMRD

tWLDQSEN

tWLS

tWLH

tWLO

tWLOE

40

25

325

325

0

0

-

-

-

-

9

2

40

25

245

245

0

0

-

-

-

-

9

2

40

25

195

195

0

0

-

-

-

-

9

2

40

25

165

165

0

0

-

-

-

-

7.5

2

tCK

tCK

ps

ps

ns

ns

3

3

Page 46 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.1 Jitter Notes

DDP 4Gb DDR3 SDRAM

Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input

clock, counting the actual clock ) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another

Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.

Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge

to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),

tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-

eters should be met whether clock jitter is present or not.

Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-

ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the

clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.

Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe

signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =

RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the

device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For

DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-

cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to

input clock jitter.

Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,

where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)

For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,

then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =

tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =

- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)

Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=

12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.

Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-

put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =

2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9

x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =

0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)

Page 47 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.2 Timing Parameter Notes

1. Actual value dependant upon measurement level definitions which are TBD.

2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.

3. The max values are system dependent.

4. WR as programmed in mode register

5. Value must be rounded-up to next higher integer value

6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.

7. For definition of RTT turn-on time tAON see "Device Operation"

8. For definition of RTT turn-off time tAOF see "Device Operation".

DDP 4Gb DDR3 SDRAM

9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.

10. WR in clock cycles as programmed in MR0

11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.

12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated

by TBD

13. Value is valid for RON34

14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.

15. tREFI depends on T

OPER

16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,

V

REF

(DC) = V

REF

DQ(DC). FOr input only pins except RESET, V

REF

(DC)=V

REF

CA(DC).

See "Address/ Command Setup, Hold and Derating"

17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,

V

REF

(DC)= V

REF

DQ(DC). For input only pins except RESET, V

REF

(DC)=V

REF

CA(DC).

See "Data Setup, Hold and Slew Rate Derating"

18. Start of internal write transaction is definited as follows ;

For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.

For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL

For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL

19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"

20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down

IDD spec will not be applied until finishing those operations.

21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time

such as tXPDLL(min) is also required. See "Device Operation".

22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.

23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming

the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The

appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.

One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-

ject to in the application, is illustrated. The interval could be defined by the following formula:

ZQCorrection

(TSens x Tdriftrate) + (VSens x Vdriftrate)

where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-

lated as:

0.5

(1.5 x 1) + (0.15 x 15)

24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.

= 0.133

~

~

128ms

25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.

26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.

27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-

nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].

28. Pulse width of a input signal is defined as the width between the first crossing of V

REF

(DC) and the consecutive crossing of V

REF

(DC)

29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.

30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.

31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.

Page 48 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.3 Address / Command Setup, Hold and Derating:

DDP 4Gb DDR3 SDRAM

For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table

48) to the ∆tIS and ∆tIH derating value (see Table 49) respectively.

Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of

V

REF

(DC) and the first crossing of V

IH

(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as

the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IL

(AC)max. If the actual signal is always earlier than the nominal slew rate

line between shaded ’V

REF

(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew

rate line anywhere between shaded ’V

REF

(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for der-

ating value (see Figure 25).

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

IL

(DC)max and the first crossing of V

REF

(DC).

Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

(DC). If

the actual signal is always later than the nominal slew rate line between shaded ’dc to V

REF

(DC) region’, use nominal slew rate for derating value (see

Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V

REF

(DC) region’, the slew rate of a tangent line

to the actual signal from the dc level to V

REF

(DC) level is used for derating value (see Figure 26).

For a valid transition the input signal has to remain above/below V

IH/IL

(AC) for some time tVAC (see Table 50).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V

IH/IL

(AC) at the time of the rising clock

transition) a valid input signal is still required to complete the transition and reach V

IH/IL

(AC).

For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

[ Table 48 ] ADD/CMD Setup and Hold Base-Values for 1V/ns

[ps]

tIS(base)

tIH(base)

tIS(base)-AC150

DDR3-800

200

275

200 + 150

DDR3-1066

125

200

125 + 150

DDR3-1333

65

140

65+125

DDR3-1600

45

120

45+125

reference

V

IH/L(AC)

V

IH/L(DC)

V

IH/L(AC)

Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate

Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old

of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].

[ Table 49 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based

∆tIS, ∆tIH Derating [ps] AC/DC based

AC175 Threshold -> V

IH

(AC) = V

REF

(DC) + 175mV, V

IL

(AC) = V

REF

(DC) - 175mV

CLK,CLK Differential Slew Rate

4.0 V/ns

∆tIS

2.0

1.5

CMD/

ADD

Slew

rate

V/ns

1.0

0.9

0.8

0.7

0.6

0.5

0.4

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

3.0 V/ns

∆tIS

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

2.0 V/ns

∆tIS

88

59

0

-2

-6

-11

-17

-35

-62

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

1.8 V/ns

∆tIS

96

67

8

6

2

-3

-9

-27

-54

∆tIH

58

42

8

4

-2

-8

-18

-32

-52

1.6 V/ns

∆tIS

104

75

16

14

10

5

-1

-19

-46

∆tIH

66

50

16

12

6

0

-10

-24

-44

1.4V/ns

∆tIS

112

83

24

20

13

13

7

-11

-38

∆tIH

74

58

24

20

14

8

-2

-16

-36

1.2V/ns

∆tIS

120

91

32

30

26

21

15

-2

-30

∆tIH

84

68

34

30

24

18

8

-6

-26

1.0V/ns

∆tIS

128

99

40

38

34

29

23

5

-22

∆tIH

100

84

50

46

40

34

24

10

-10

Page 49 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

∆tIS, ∆tIH Derating [ps] AC/DC based

Alternate AC150 Threshold -> V

IH

(AC) = V

REF

(DC) + 150mV, V

IL

(AC) = V

REF

(DC) - 150mV

CLK,CLK Differential Slew Rate

4.0 V/ns3.0 V/ns

∆tIS

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

2.0 V/ns

∆tIS

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

1.8 V/ns

∆tIS

83

58

8

8

8

8

7

-2

-17

∆tIH

58

42

8

4

-2

-8

-18

-32

-52

1.6 V/ns

∆tIS

91

66

16

16

16

16

15

6

-9

∆tIH

66

50

16

12

6

0

-10

-24

-44

1.4V/ns

∆tIS

99

74

24

24

24

24

23

14

-1

∆tIH

74

58

24

20

14

8

-2

-16

-36

1.2V/ns

∆tIS

107

82

32

32

32

32

31

22

7

∆tIH

84

68

34

30

24

18

8

-6

-26

1.0V/ns

∆tIS

115

90

40

40

40

40

39

30

15

∆tIH

100

84

50

46

40

34

24

10

-10

[ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold

∆tIS

2.0

1.5

CMD/

ADD

Slew

rate

V/ns

1.0

0.9

0.8

0.7

0.6

0.5

0.4

75

50

0

0

0

0

-1

-10

-25

∆tIH

50

34

0

-4

-10

-16

-26

-40

-60

[ Table 51 ] Required time t

VAC

above V

IH

(AC) {blow V

IL

(AC)} for valid transition

Slew Rate[V/ns]

min

>2.0

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

< 0.5

75

57

50

38

34

29

22

13

0

0

t

VAC

@175mV [ps]

max

-

-

-

-

-

-

-

-

-

-

t

VAC

@150mV [ps]

min

175

170

167

163

162

161

159

155

150

150

max

-

-

-

-

-

-

-

-

-

-

Page 50 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

nominal

slew rate

V

REF

(DC)

nominal slew

rate

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

tVAC

V

SS

Delta TF

Setup Slew Rate

=

V

REF

(DC) - V

IL

(AC)max

Falling Signal

Delta TF

Delta TR

Setup Slew Rate

V

IH

(AC)min - V

REF

(DC)

=

Rising Signal

Delta TR

Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS

(for ADD/CMD with respect to clock).

Page 51 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

V

DDQ

tDS

tDH

tDS

tDH

V

IH

(AC) min

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

nominal

slew rate

dc to V

REF

region

nominal

slew rate

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

V

REF

(DC) - V

IL

(DC)max

Rising Signal

=

Delta TR

Delta TF

Hold Slew Rate

V

IH

(DC)min - V

REF

(DC)

=

Falling Signal

Delta TF

Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock).

Page 52 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

nominal

line

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

tangent

line

V

REF

(DC)

tangent

line

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

nominal

line

V

SS

Delta TR

Setup Slew Rate

tangent line[V

IH

(AC)min - V

REF

(DC)]

=

Rising Signal

Delta TR

Delta TF

Setup Slew Rate

tangent line[V

REF

(DC) - V

IL

(AC)max]

Falling Signal

=

Delta TF

Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS

(forADD/CMD with respect to clock)

Page 53 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tDH

V

IH

(AC) min

nominal

line

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

tangent

line

nominal

line

tangent

line

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

tangent line [ V

REF

(DC) - V

IL

(DC)max ]

Rising Signal

=

Delta TR

Hold Slew Rate

tangent line [ V

IH

(DC)min - V

REF

(DC) ]

Falling Signal

=

Delta TF

Delta TF

Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock)

Page 54 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

14.4 Data Setup, Hold and Slew Rate Derating:

DDP 4Gb DDR3 SDRAM

or all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see

Table 52) to the ∆ tDS and ∆tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.

Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IH

(AC)min.

Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

REF

(DC) and the first crossing of V

IL

(AC)max

(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’V

REF

(DC) to ac region’, use nominal slew rate for

derating value. If the actual signal is later than the nominal slew rate line anywhere

between shaded ’V

REF

(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see

Figure 27).

Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V

IL

(DC)max and the first crossing of V

REF

(DC).

Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V

IH

(DC)min and the first crossing of V

REF

(DC)

(see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to V

REF

(DC) region’, use nominal slew rate for

derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V

REF

(DC) region’, the slew rate of a tangent

line to the actual signal from the dc level to V

REF

(DC) level is used for derating value (see Figure 28).

For a valid transition the input signal has to remain above/below V

IH/IL

(AC) for some time tVAC (see Table 54).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V

IH/IL

(AC) at the time of the rising clock

transition) a valid input signal is still required to complete the transition and reach V

IH/IL

(AC).

For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization

[ Table 52 ] Data Setup and Hold Base-Value

[ps]

tDS(base)

tDH(base)

tDS(AC150)

DDR3-800

75

150

75+50

DDR3-1066

25

100

25+50

DDR3-1333

30

65

-

DDR3-1600

10

45

-

reference

V

IH/L

(AC)

V

IH/L

(DC)

V

IH/L

(AC)

Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)

[ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based

∆tDS, ∆tDH Derating [ps] AC/DC based

a

DQS,DQS Differential Slew Rate

2.0 V/ns1.8 V/ns1.6 V/ns

∆tDS∆tDH∆tDS∆tDH∆tDS∆tDH

8850----

59346742--

00881616

-2-4641412

-6-102-2106

---3-850

-----1-10

------

------

7550----

50345842--

00881616

0-4841612

0-108-2166

--8-8160

----15-10

------

------

DDR3

DQ

Slew

-

800/

rate

1066

V/ns

DDR3

DQ

Slew

-

1333/

rate

1600

V/ns

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

4.0 V/ns

∆tDS∆tDH

8850

5934

00

--

--

--

--

--

--

7550

5034

00

--

--

--

--

--

--

3.0 V/ns

∆tDS∆tDH

8850

5934

00

-2-4

--

--

--

--

--

7550

5034

00

0-4

--

--

--

--

--

1.4V/ns

∆tDS∆tDH

--

--

--

2220

1814

138

7-2

-11-16

--

--

--

--

2420

2414

248

23-2

14-16

--

1.2V/ns

∆tDS∆tDH

--

--

--

--

2624

2118

158

-2-6

-30-26

--

--

--

--

3224

3218

318

22-6

7-26

1.0V/ns

∆tDS∆tDH

--

--

--

--

--

2934

2324

610

-22-10

--

--

--

--

--

4034

3924

3010

15-10

Note : a. Cell contents shaded in red are defined as ’not supported’.

[ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition

Slew Rate[V/ns]

>2.0

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

<0.5

t

VAC

[ps] DDR3-800/1066

min

75

57

50

38

34

29

22

13

0

0

t

VAC

[ps] DDR3-1333/1600

min

175

170

167

163

162

161

159

155

155

150

max

-

-

-

-

-

-

-

-

-

-

max

-

-

-

-

-

-

-

-

-

-

Page 55 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

nominal

slew rate

V

REF

(DC)

nominal slew

rate

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

tVAC

V

SS

Delta TF

Setup Slew Rate

=

V

REF

(DC) - V

IL

(AC)max

Falling Signal

Delta TF

Delta TR

Setup Slew Rate

V

IH

(AC)min - V

REF

(DC)

=

Rising Signal

Delta TR

Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS

(for ADD/CMD with respect to clock).

Page 56 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

V

DDQ

tDS

tDH

tDS

tDH

V

IH

(AC) min

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

nominal

slew rate

dc to V

REF

region

nominal

slew rate

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

=

Rising Signal

V

REF

(DC) - V

IL

(DC)max

Delta TR

Delta TF

V

IH

(DC)min - V

REF

(DC)

Hold Slew Rate

=

Falling Signal

Delta TF

Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock).

Page 57 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

nominal

line

tDS

tVAC

tDH

V

IH

(AC) min

V

REF

to ac

region

V

IH

(DC) min

tangent

line

V

REF

(DC)

tangent

line

V

IL

(DC) max

V

REF

to ac

region

V

IL

(AC) max

nominal

line

V

SS

Delta TR

Setup Slew Rate

tangent line[V

IH

(AC)min - V

REF

(DC)]

=

Rising Signal

Delta TR

Delta TF

Setup Slew Rate

tangent line[V

REF

(DC) - V

IL

(AC)max]

Falling Signal

=

Delta TF

Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS

(forADD/CMD with respect to clock)

Page 58 of 59

Rev. 1.0 March 2009

K4B4G0446B

K4B4G0846B

DDP 4Gb DDR3 SDRAM

Note :Clock and Strobe are drawn on a different time scale.

tIS

CK

tIH

tIS

tIH

CK

DQS

DQS

tDS

V

DDQ

tDH

tDS

tDH

V

IH

(AC) min

nominal

line

V

IH

(DC) min

dc to V

REF

region

V

REF

(DC)

dc to V

REF

region

V

IL

(DC) max

tangent

line

nominal

line

tangent

line

V

IL

(AC) max

V

SS

Delta TR

Hold Slew Rate

tangent line [ V

REF

(DC) - V

IL

(DC)max ]

Rising Signal

=

Delta TR

Hold Slew Rate

tangent line [ V

IH

(DC)min - V

REF

(DC) ]

Falling Signal

=

Delta TF

Delta TF

Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH

(for ADD/CMD with respect to clock)

Page 59 of 59

Rev. 1.0 March 2009

发布评论

评论列表 (0)

  1. 暂无评论