2024年7月24日发(作者:焦蕴涵)
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
D
Easily Interfaced to Microprocessors
D
On-Chip Data Latches
D
Monotonic Over the Entire A/D Conversion
D
D
D
D
Range
Interchangeable With Analog Devices
AD7528 and PMI PM-7528
Fast Control Signaling for Digital Signal
Processor (DSP) Applications Including
Interface With TMS320
Voltage-Mode Operation
CMOS Technology
KEY PERFORMANCE SPECIFICATIONS
Resolution
Linearity Error
Power Dissipation at V
DD
= 5V
Settling Time at V
DD
= 5V
Propagation Delay Time at V
DD
= 5V
8 bits
1/2LSB
20mW
100ns
80ns
DW, N OR PW PACKAGE
(TOP VIEW)
AGND
OUTA
RFBA
REFA
DGND
DACA/DACB
(MSB) DB7
DB6
DB5
DB4
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
OUTB
RFBB
REFB
V
DD
WR
CS
DB0 (LSB)
DB1
DB2
DB3
FN PACKAGE
(TOP VIEW)
description
The TLC7528C, TLC7528E, and TLC7528I are
dual, 8-bit, digital-to-analog converters (DACs)
designed with separate on-chip data latches and
feature exceptionally close DAC-to-DAC match-
ing. Data are transferred to either of the two DAC
data latches through a common, 8-bit, input port.
Control input DACA/DACB determines which
DAC is to be loaded. The load cycle of these
devices is similar to the write cycle of a
random-access memory, allowing easy interface
to most popular microprocessor buses and output
ports. Segmenting the high-order bits minimizes
glitches during changes in the most significant
bits, where glitch impulse is typically the
strongest.
R
F
B
A
O
U
T
A
A
G
N
D
O
U
T
B
R
F
B
B
REFA
DGND
DACA/DACB
(MSB) DB7
DB6
4
5
6
7
8
3212019
18
17
16
15
14
910111213
REFB
V
DD
WR
CS
DB0 (LSB)
These devices operate from a 5V to 15V power supply and dissipates less than 15mW (typical). The 2- or
4-quadrant multiplying makes these devices a sound choice for many microprocessor-controlled gain-setting
and signal-control applications. It can be operated in voltage mode, which produces a voltage output rather than
a current output. Refer to the typical application information in this data sheet.
The TLC7528C is characterized for operation from 0°C to +70°C. The TLC7528I is characterized for operation
from −25°C to +85°C. The TLC7528E is characterized for operation from −40°C to +85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Copyright 2000−2008, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
D
B
5
D
B
4
D
B
3
D
B
2
D
B
1
1
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
functional block diagram
DB0
14
13
12
11
Data
Inputs
10
9
8
DB7
7
19
20
REFA
3
4
8
Input
Buffer
2
RFBA
OUTA
Latch A
8
DACA
1
AGND
RFBB
OUTB
DACA/DACB
WR
CS
6
16
15
Logic
Control
8
Latch B
8
DACB
18
REFB
operating sequence
t
su(CS)
CS
t
su(DAC
)
DACA/DACB
t
w(WR)
WR
t
su(D)
DB0−DB7
Data In Stable
t
h(D)
t
h(DAC)
t
h(CS)
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
†
Supply voltage range, V
DD
(to AGND or DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to 16.5V
Voltage between AGND and DGND
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±V
DD
Input voltage range, V
I
(to DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V
DD
+ 0.3
Reference voltage, V
refA
or V
refB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Feedback voltage V
RFBA
or V
RFBB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Input voltage (voltage mode out A, out B to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V
DD
+ 0.3
Output voltage, V
OA
or V
OB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Peak input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°COperating free-air temperature range, T
A
: TLC7528C
TLC7528I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25°C to +85°C
TLC7528E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to +85°C
Storage temperature range, T
stg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C
Case temperature for 10 seconds, T
C
: FN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +260°C
Lead temperature 1,6mm (1/16 inch) from case for 10 seconds: DW or N package . . . . . . . . . . . . . . +260°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
package/ordering information
For the most current package and ordering information, see the Package Option Addendum at the end of this
document, or see the TI website at .
recommended operating conditions
V
DD
= 4.75V to 5.25V
MINNOMMAX
Reference voltage, V
refA
or V
refB
High-level input voltage, V
IH
Low-level input voltage, V
IL
CS setup time, t
su(CS)
CS hold time, t
h(CS)
DAC select setup time, t
su(DAC)
DAC select hold time, t
h(DAC)
Data bus input setup time t
su(D)
Data bus input hold time t
h(D)
Pulse duration, WR low, t
w(WR)
TLC7628C
Operating free-air temperature, T
A
TLC7628I
TLC7628E
±10
2.4
0.8
50
0
50
10
25
10
50
0
−25
−40
+70
+85
+85
50
0
50
10
25
10
50
0
−25
−40
+70
+85
+85
°
C
13.5
1.5
V
DD
= 14.5V to 15.5V
MINNOMMAX
±10
UNIT
V
V
V
ns
ns
ns
ns
ns
ns
ns
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
3
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
electrical characteristics over recommended operating free-air temperature range,
V
refA
= V
refB
= 10V, V
OA
and V
OB
at 0V (unless otherwise noted)
PARAMETER
I
IH
I
IL
High-level input current
Low-level input current
Reference input impedance
REFA or REFB to AGND
OUTA
I
Ikg
Output leakage current
OUTB
Input resistance match
(REFA to REFB)
DC supply sensitivity, ∆gain/∆V
DD
I
DD
I
DD
C
i
Supply current (quiescent)
Supply current (standby)
DB0−DB7
Input capacitance
WR, CS,
DACA/DACB
DAC data latches loaded with
00000000
DAC data latches loaded with
11111111
∆V
DD
= ±10%
All digital inputs at V
IH
min or
V
IL
max
All digital inputs at 0V or V
DD
DAC data latch loaded with
00000000, V
refA
= ±10V
DAC data latch loaded with
00000000, V
refB
= ±10V
TEST CONDITIONS
V
I
= V
DD
V
I
= 0
V
DD
= 5V
MINTYP
†
MAX
10
512−10
20
±400
±400
±1%
0.04
2
0.5
10
15
50
120
512
V
DD
= 15V
MINTYP
†
MAX
10
−10
20
±200
nA
±200
±1%
0.02
2
0.5
10
15
50
pF
120
%/%
mA
mA
pF
pF
UNIT
µA
µA
kΩ
C
o
Output capacitance (OUTA, OUTB)
†
All typical values are at T
A
= +25°C.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
operating characteristics over recommended operating free-air temperature range,
V
refA
= V
refB
= 10V, V
OA
and V
OB
at 0V (unless otherwise noted)
PARAMETER
Linearity error
Settling time (to 1/2LSB)
Gain error
AC feedthrough
REFA to OUTA
REFB to OUTB
See Note 1
See Note 2
See Note 3
See Note 4
See Note 5
See Note 6
See Note 7
Measured for code transition from
00000000 to 11111111,
T
A
= +25°C
Measured for code transition from
00000000 to 11111111,
T
A
= +25°C
77
77
160
TEST CONDITIONS
V
DD
= 5V
MINTYPMAX
±1/2
100
2.5
−65
−65
0.007
80
77
77
440
V
DD
= 15V
MINTYPMAX
±1/2
100
2.5
−65
−65
UNIT
LSB
ns
LSB
dB
Temperature coefficient of gain
Propagation delay (from digital input to
90% of final analog output current)
Channel-to-channel
isolation
REFA to OUTB
REFB to OUTA
0.0035%FSR/°C
80ns
dB
Digital-to-analog glitch impulse areanV−s
Digital crosstalk
Harmonic distortion
NOTES:1.
2.
3.
4.
5.
6.
7.
3060nV−s
V
i
= 6V,f = 1kHz,T
A
= +25°C−85−85dB
OUTA, OUTB load = 100Ω, C
ext
= 13pF; WR and CS at 0V; DB0−DB7 at 0V to V
DD
or V
DD
to 0V.
Gain error is measured using an internal feedback resistor. Nominal full scale range (FSR) = V
ref
− 1LSB.
V
ref
= 20V peak-to-peak, 100kHz sine wave; DAC data latches loaded with 00000000.
Temperature coefficient of gain measured from 0°C to +25°C or from +25°C to +70°C.
V
refA
= V
refB
= 10V; OUTA/OUTB load = 100Ω, C
ext
= 13pF; WR and CS at 0V; DB0−DB7 at 0V to V
DD
or V
DD
to 0V.
Both DAC latches loaded with 11111111; V
refA
= 20V peak-to-peak, 100kHz sine wave; V
refB
= 0; T
A
= +25°C.
Both DAC latches loaded with 11111111; V
refB
= 20V peak-to-peak, 100kHz sine wave; V
refA
= 0; T
A
= +25°C.
PRINCIPLES OF OPERATION
These devices contain two identical, 8-bit-multiplying DACs, DACA and DACB. Each DAC consists of an
inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between
DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state.
Most applications require only the addition of an external operational amplifier and voltage reference. A
simplified DAC circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs
share the analog ground terminal 1 (AGND). With all digital inputs high, the entire reference current flows to
OUTA. A small leakage current (I
Ikg
) flows across internal junctions, and as with most semiconductor devices,
doubles every 10°C. C
o
is due to the parallel combination of the NMOS switches and has a value that depends
on the number of switches connected to the output. The range of C
o
is 50pF to 120pF maximum. The equivalent
output resistance (r
o
) varies with the input code from 0.8R to 3R where R is the nominal value of the ladder
resistor in the R-2R network.
These devices interface to a microprocessor through the data bus, CS, WR, and DACA/DACB control signals.
When CS and WR are both low, the TLC7528 analog output, specified by the DACA/DACB control line,
responds to the activity on the DB0−DB7 data bus inputs. In this mode, the input latches are transparent and
input data directly affects the analog output. When either the CS signal or WR signal goes high, the data on the
DB0−DB7 inputs are latched until the CS and WR signals go low again. When CS is high, the data inputs are
disabled regardless of the state of the WR signal.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
5
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
PRINCIPLES OF OPERATION
The digital inputs of these devices provide TTL compatibility when operated from a supply voltage of 5V. These
devices can operate with any supply voltage in the range from 5V to 15V; however, input logic levels are not
TTL-compatible above 5V.
R
2R
2R
R
2R
R
2R
2R
R
FB
S1S2S3S8
OUTA
AGND
RFBA
REFA
DACA Data Latches and Drivers
Figure 1. Simplified Functional Circuit for DACA
RFBA
R
REFA
I
256
I
Ikg
C
OUT
AGND
R
FB
OUTA
Figure 2. TLC7528 Equivalent Circuit, DACA Latch Loaded With 11111111
MODE SELECTION TABLE
DACA/DACB
L
H
X
X
CS
L
L
H
X
WR
L
L
X
H
DACA
Write
Hold
Hold
Hold
DACB
Hold
Write
Hold
Hold
L = low level, H = high level, X = don’t care
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for
2-quadrant and 4-quadrant multiplication are shown in Figure 3 and Figure 4. Table 1 and Table 2 summarize
input coding for unipolar and bipolar operation, respectively.
V
I(A)
±10 V
R1 (see Note A)
17
REFA
Input
Buffer
8
Latch
OUTA
8
RFBA
R2 (see Note A)
C1
(see Note B)
−
V
OA
R4 (see Note A)
C2
(see Note B)
−
V
OB
AGND
+
+
7
V
DD
14
DB0
DB7
DACA
7
AGND
RFBB
OUTB
DACA/DACB
6
15
Control
Logic
8
CS
16
WR
5
DGND
Latch
8
DACB
REFB
AGND
RECOMMENDED TRIM
RESISTOR VALUES
R1, R3
R2, R4
500 Ω
150 Ω
R3 (see Note A)
V
I(B)
±10 V
NOTES:A.R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with
digital input of 255.
B.C1 and C2 phase compensation capacitors (10pF to 15pF) are required when using high-speed amplifiers to prevent ringing or
oscillation.
Figure 3. Unipolar Operation (2-Quadrant Multiplication)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
V
I(A)
±10 V
R6
20 kΩ
(see Note B)
R1
(see Note A)
V
DD
DB0
DB7
17
14
RFBA
R2 (see Note A)
C1
(see Note C)
R5
20 kΩ
−
A2
+
Latch
DACA
7
RFBB
DGND
AGND
R3
(see Note A)
R10
20 kΩ
(see Note B)
R11
5 kΩ
AGND
V
I(B)
±10 V
NOTES:A.R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for
V
OA
= 0V with code 10000000 in DACA latch. Adjust R3 for V
OB
= 0V with 10000000 in DACB latch.
ng and tracking are essential for resistor pairs R6, R7, R9, and R10.
C.C1 and C2 phase compensation capacitors (10pF to 15pF) may be required if A1 and A3 are high-speed amplifiers.
Figure 4. Bipolar Operation (4-Quadrant Operation)
Table 1. Unipolar Binary Code
DAC LATCH CONTENTS
MSBLSB
†
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
†
1LSB = (2
−8
)V
I
ANALOG OUTPUT
−V
I
(255/256)
−V
I
(129/256)
−V
I
(128/256) = −V
i
/2
−V
I
(127/256)
−V
I
(1/256)
−V
I
(0/256) = 0
Table 2. Bipolar (Offset Binary) Code
DAC LATCH CONTENTS
MSBLSB
‡
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
‡
1LSB = (2
−7
)V
I
ANALOG OUTPUT
V
I
(127/128)
V
I
(1/128)
0V
−V
I
(1/128)
−V
I
(127/128)
−V
I
(128/128)
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
+
REFB
+
AGND
R9
10 kΩ
(see Note B)
−
Latch
DACB
−
6
DACA/
DACB
15
CS
16
WR
5
R4 (see Note A)
C2
(see Note C)
Control
Logic
88
OUTB
+
A3
AGND
−
Input
Buffer
88
OUTA
R7
10 kΩ
(see Note B)
R11
5 kΩ
A1
V
OA
R8
20 kΩ
A4V
OB
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
microprocessor interface information
8
A8−A15
Address Bus
DACA/DACB
Address
Decode
Logic
A
CS
A + 1
WR
DB0
WR
DB7
ALE
Latch
8
AD0−AD7
Data Bus
TLC7528
CPU
8051
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 5. TLC7528: Intel 8051 Interface
8
A8−A15
Address Bus
DACA/DACB
VMA
CPU
6800
φ2
Address
Decode
Logic
A
CS
A + 1
WR
DB0
DB7
TLC7528
8
AD0−AD7
Data Bus
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 6. TLC7528: 6800 Interface
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
9
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
8
A8−A15
Address Bus
DACA/DACB
IORQ
CPU
Z80-A
WR
Address
Decode
Logic
A
CS
A + 1
TLC7528
WR
DB0
DB7
8
D0−D7
Data Bus
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 7. TLC7528 To Z-80A Interface
programmable window detector
The programmable window comparator shown in Figure 8 determines if the voltage applied to the DAC
feedback resistors is within the limits programmed into the data latches of these devices. Input signal range
depends on the reference and polarity; that is, the test input range is 0 to −V
ref
. The DACA and DACB data
latches are programmed with the upper and lower test limits. A signal within the programmed limits drives the
output high.
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
Test Input
0 to −V
ref
RFBA
−
4
REFA
8
Data Inputs
14−7
DB0−DB7
TLC7528
CS
WR
DACA/DACB
OUTB
V
ref
18
REFB
5
DGND
RFBB
19
DACB
20
−
AGND
1
PASS/FAIL Output
OUTA
DACA
2
V
DD
317
1 kΩ
V
CC
15
16
6
Figure 8. Digitally-Programmable Window Comparator (Upper- and Lower-Limit Tester)
digitally-controlled signal attenuator
Figure 9 shows a TLC7528 configured as a two-channel programmable attenuator. Applications include stereo
audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0dB to 15.5dB range.
Attenuation dB = −20 log
10
D/256, D = digital input code
17
4
REFA
DACA
RFBA
OUTA
3
2
A1Output
V
DD
V
I
A
DB0−DB7
TLC7528
CS
WR
20
V
O
B
A2
OUTB
DACB
DACA/DACB
REFB
AGND
RFBB
19
DGND
14−7
15
16
6
18
1
5
Figure 9. Digitally Controlled Dual Telephone Attenuator
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
+
+
8
Data Bus
11
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
Table 3. Attenuation vs DACA, DACB Code
ATTEN (dB)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
DAC INPUT CODE
1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1
1 1 0 0 1 0 1 1
1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 1
1 0 1 0 1 0 1 1
1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0
1 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1
0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 0
CODE IN
DECIMAL
255
242
228
215
203
192
181
171
162
152
144
136
128
121
114
108
ATTN (dB)
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
DAC INPUT CODE
0 1 1 0 0 1 1 0
0 1 1 0 0 0 0 0
0 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 0 0
0 0 1 0 1 1 1 0
0 0 1 0 1 0 1 1
CODE IN
DECIMAL
102
96
91
86
81
76
72
68
64
61
57
54
51
48
46
43
programmable state-variable filter
This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass
outputs, and is suitable for applications requiring microprocessor control of filter parameters.
As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control
the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the
cutoff-frequency equation to be true. With the TLC7528, this validity is easy to achieve.
f
c
+
1
2pR1C1
The programmable range for the cutoff or center frequency is 0kHz to 15kHz with a Q ranging from 0.3 to 4.5.
This parameter defines the limits of the component values.
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
C3
47pF
V
I
8
TLC7528
15
16
5
6
CS
WR
DGND
DACA
/DACB
DACA1ANDDACB1
C1
1000pF
4
17
DataIn
8
TLC7528
15
16
5
6
CS
WR
DGND
DACA/DACB
DACA2andDACB2
CircuitEquations:
C
1
=C
2
,R
1
=R
2
,R
4
=R
5
Q=
R
3
R
4
R
R
F
DACB
(R
2
)
REFA
V
DD
DACA
(R
1
)
OUTA
2
3
1
20
19
+
A4
LowPassOut
+
A3
C2
DACB
(R
F
)
4
17
REFA
V
DD
DACA
(R
S
)
OUTA
2
3
1
20
19
+
A1
R5
30k
Ω
R4
R3
10k
Ω
+
30k
Ω
A2
HighPass
Out
RFBA
AGND
OUTB
RFBB
DataIn
REFB
18
BandpassOut
RFBA
AGND
OUTB
RFBB
1000pF
REFB
18
fb(DACB1)
Where:
RistheinternalresistorconnectedbetweenOUTBandRFBB
fb
R
−
F
G
R
S
NOTES:-amps A1, A2, A3, and A4 are TL287.
compensates for the op-amp gain-bandwidth limitations.
256 (DACladderresistance)
equivalent resistance equals
DACdigitalcode
Figure 10. Digitally-Controlled State-Variable Filter
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
13
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
voltage-mode operation
It is possible to operate the current multiplying D/A converter of these devices in a voltage mode. In the voltage
mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at
the reference voltage terminal. Figure 11 is an example of a current multiplying D/A that operates in the voltage
mode.
REF
(Analog Output Voltage)
RRR
2R2R2R2R
“0”“1”
R
Out (Fixed Input Voltage)
AGND
Figure 11. Voltage-Mode Operation
The following equation shows the relationship between the fixed input voltage and the analog output voltage:
V
O
= V
I
(D/256)
Where:
V
O
= analog output voltage
V
I
= fixed input voltage (must not be forced below 0V.)
D = digital input code converted to decimal
In voltage-mode operation, these devices meet the following specification:
PARAMETER
Linearity error at REFA or REFBV
DD
= 5V,
TEST CONDITIONS
OUTA or OUTB at 2.5V,T
A
= +25°C
MINMAX
1
UNIT
LSB
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
Revision History
DATE
11/08
6/07
REV
E
D
PAGE
13
Front Page
3
SECTION
Application Information
—
—
Corrected Figure 10.
Deleted Available Options table.
Inserted Package/Ordering information.
DESCRIPTION
NOTE
:
Page numbers for previous revisions may differ from page numbers in the current version.
PACKAGEOPTIONADDENDUM
28-May-2009
PACKAGINGINFORMATION
OrderableDevice
TLC7528CDW
TLC7528CDWG4
TLC7528CDWR
TLC7528CDWRG4
TLC7528CFN
TLC7528CFNG3
TLC7528CFNR
TLC7528CFNRG3
TLC7528CN
TLC7528CNE4
TLC7528CNS
TLC7528CNSG4
TLC7528CNSR
TLC7528CNSRG4
TLC7528CPW
TLC7528CPWG4
TLC7528CPWR
TLC7528CPWRG4
TLC7528EDW
TLC7528EDWG4
TLC7528EDWR
TLC7528EDWRG4
TLC7528EN
TLC7528ENE4
TLC7528IDW
Status
(1)
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
Package
Type
SOIC
SOIC
SOIC
SOIC
PLCC
PLCC
PLCC
PLCC
PDIP
PDIP
SO
SO
SO
SO
TSSOP
TSSOP
TSSOP
TSSOP
SOIC
SOIC
SOIC
SOIC
PDIP
PDIP
SOIC
Package
Drawing
DW
DW
DW
DW
FN
FN
FN
FN
N
N
NS
NS
NS
NS
PW
PW
PW
PW
DW
DW
DW
DW
N
N
DW
PinsPackageEcoPlan
(2)
Qty
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
25
25
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
Lead/BallFinish
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUSN
CUSN
CUSN
CUSN
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
MSLPeakTemp
(3)
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
46
46
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
1000Green(RoHS&
noSb/Br)
1000Green(RoHS&
noSb/Br)
20
20
40
40
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
70
70
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
25
25
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
20
20
25
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Addendum-Page1
PACKAGEOPTIONADDENDUM
28-May-2009
OrderableDevice
TLC7528IDWG4
TLC7528IDWR
TLC7528IDWRG4
TLC7528IFN
TLC7528IFNG3
TLC7528IN
TLC7528INE4
TLC7528IPW
TLC7528IPWG4
TLC7528IPWR
TLC7528IPWRG4
(1)
Status
(1)
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
Package
Type
SOIC
SOIC
SOIC
PLCC
PLCC
PDIP
PDIP
TSSOP
TSSOP
TSSOP
TSSOP
Package
Drawing
DW
DW
DW
FN
FN
N
N
PW
PW
PW
PW
PinsPackageEcoPlan
(2)
Qty
20
20
20
20
20
20
20
20
20
20
20
25Green(RoHS&
noSb/Br)
Lead/BallFinish
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUSN
CUSN
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
MSLPeakTemp
(3)
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
46
46
20
20
70
70
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
Themarketingstatusvaluesaredefinedasfollows:
ACTIVE:Productdevicerecommendedfornewdesigns.
LIFEBUY:TIhasannouncedthatthedevicewillbediscontinued,andalifetime-buyperiodisineffect.
NRND:isinproductiontosupportexistingcustomers,butTIdoesnotrecommendusingthispartin
anewdesign.
PREVIEW:smayormaynotbeavailable.
OBSOLETE:TIhasdiscontinuedtheproductionofthedevice.
(2)
EcoPlan-Theplannedeco-friendlyclassification:Pb-Free(RoHS),Pb-Free(RoHSExempt),orGreen(RoHS&noSb/Br)-pleasecheck
/productcontentforthelatestavailabilityinformationandadditionalproductcontentdetails.
TBD:ThePb-Free/Greenconversionplanhasnotbeendefined.
Pb-Free(RoHS):TI'sterms"Lead-Free"or"Pb-Free"meansemiconductorproductsthatarecompatiblewiththecurrentRoHSrequirements
forall6substances,includingtherequirementthatleadnotexceed0.1%esignedtobesoldered
athightemperatures,TIPb-Freeproductsaresuitableforuseinspecifiedlead-freeprocesses.
Pb-Free(RoHSExempt):ThiscomponenthasaRoHSexemptionforeither1)lead-basedflip-chipsolderbumpsusedbetweenthedieand
package,or2)ponentisotherwiseconsideredPb-Free(RoHS
compatible)asdefinedabove.
Green(RoHS&noSb/Br):TIdefines"Green"tomeanPb-Free(RoHScompatible),andfreeofBromine(Br)andAntimony(Sb)basedflame
retardants(BrorSbdonotexceed0.1%byweightinhomogeneousmaterial)
(3)
MSL,PeakTemp.--TheMoistureSensitivityLevelratingaccordingtotheJEDECindustrystandardclassifications,andpeaksolder
temperature.
ImportantInformationandDisclaimer:TheinformationprovidedonthispagerepresentsTI'sknowledgeandbeliefasofthedatethatitis
sitsknowledgeandbeliefoninformationprovidedbythirdparties,andmakesnorepresentationorwarrantyastothe
akenandcontinuestotake
reasonablestepstoproviderepresentativeandaccurateinformationbutmaynothaveconducteddestructivetestingorchemicalanalysison
Isuppliersconsidercertaininformationtobeproprietary,andthusCASnumbersandotherlimited
informationmaynotbeavailableforrelease.
InnoeventshallTI'sliabilityarisingoutofsuchinformationexceedthetotalpurchasepriceoftheTIpart(s)atissueinthisdocumentsoldbyTI
toCustomeronanannualbasis.
Addendum-Page2
PACKAGEMATERIALSINFORMATION
9-Apr-2009
TAPEANDREELINFORMATION
*Alldimensionsarenominal
DevicePackagePackagePins
TypeDrawing
SO
TSSOP
TSSOP
NS
PW
PW
20
20
20
SPQReelReel
DiameterWidth
(mm)W1(mm)
330.0
330.0
330.0
24.4
16.4
16.4
A0(mm)B0(mm)K0(mm)P1
(mm)
12.0
8.0
8.0
WPin1
(mm)Quadrant
24.0
16.0
16.0
Q1
Q1
Q1
TLC7528CNSR
TLC7528CPWR
TLC7528IPWR
2000
2000
2000
8.2
6.95
6.95
13.0
7.1
7.1
2.5
1.6
1.6
PackMaterials-Page1
PACKAGEMATERIALSINFORMATION
9-Apr-2009
*Alldimensionsarenominal
Device
TLC7528CNSR
TLC7528CPWR
TLC7528IPWR
PackageType
SO
TSSOP
TSSOP
PackageDrawing
NS
PW
PW
Pins
20
20
20
SPQ
2000
2000
2000
Length(mm)
346.0
346.0
346.0
Width(mm)
346.0
346.0
346.0
Height(mm)
41.0
33.0
33.0
PackMaterials-Page2
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
MECHANICAL DATA
PW (R-PDSO-G**)
14 PINS SHOWN
PLASTIC SMALL-OUTLINE PACKAGE
0,65
148
0,30
0,19
0,10
M
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
A
7
0°–8°
0,75
0,50
Seating Plane
1,20 MAX
0,15
0,05
0,10
PINS **
DIM
A MAX
8
3,10
14
5,10
16
5,10
20
6,60
24
7,90
28
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
4040064/F 01/97
NOTES:A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
MECHANICAL DATA
MPLC004A – OCTOBER 1994
FN (S-PQCC-J**)
20 PIN SHOWN
PLASTIC J-LEADED CHIP CARRIER
Seating Plane
0.004 (0,10)
D
D1
3119
0.032 (0,81)
0.026 (0,66)
418
D2/E2
0.180 (4,57) MAX
0.120 (3,05)
0.090 (2,29)
0.020 (0,51) MIN
EE1
D2/E2
814
913
0.050 (1,27)
0.008 (0,20) NOM
0.021 (0,53)
0.013 (0,33)
0.007 (0,18)
M
NO. OF
PINS
**
20
28
44
52
68
84
D/E
MIN
0.385 (9,78)
0.485 (12,32)
0.685 (17,40)
0.785 (19,94)
0.985 (25,02)
1.185 (30,10)
MAX
0.395 (10,03)
0.495 (12,57)
0.695 (17,65)
0.795 (20,19)
0.995 (25,27)
1.195 (30,35)
MIN
D1/E1
MAX
0.356 (9,04)
0.456 (11,58)
0.656 (16,66)
0.756 (19,20)
0.958 (24,33)
1.158 (29,41)
MIN
D2/E2
MAX
0.169 (4,29)
0.219 (5,56)
0.319 (8,10)
0.369 (9,37)
0.469 (11,91)
0.569 (14,45)
4040005/B 03/95
0.350 (8,89)
0.450 (11,43)
0.650 (16,51)
0.750 (19,05)
0.950 (24,13)
1.150 (29,21)
0.141 (3,58)
0.191 (4,85)
0.291 (7,39)
0.341 (8,66)
0.441 (11,20)
0.541 (13,74)
NOTES: linear dimensions are in inches (millimeters).
drawing is subject to change without notice.
within JEDEC MS-018
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
1
IMPORTANTNOTICE
TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements,
andotherchangestoitsproductsandseersshould
obtainthelatestrelevantinformationbeforeplacductsare
soldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment.
TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandard
gandotherqualitycontroltewhere
mandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed.
TIassersareresponsiblefortheirproductsand
mizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovide
adequatedesignandoperatingsafeguards.
TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright,
orotherTIintellectualpropertyrightrelatingtoanycombination,machine,ation
publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesora
uchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectual
propertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI.
ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompanied
byallassociatedwarranties,conditions,limitations,uctionofthisinformationwithalterationisanunfairanddeceptive
ationofthirdpartiesmaybesubjecttoadditional
restrictions.
ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsall
expressandanyimpliedwarrantiesfortheassocit
responsibleorliableforanysuchstatements.
TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonably
beexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverning
representthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and
acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproducts
andanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybe
r,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsin
suchsafety-criticalapplications.
TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsare
specificallydesignatedbyTIasmilitary-gradeor"enhancedplastic."OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary
acknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyat
theBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.
TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsare
designatedbyTIascompliantwithISO/acknowledgeandagreethat,iftheyuseanynon-designated
productsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements.
FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions:
Products
Amplifiers
DataConverters
DLP®Products
DSP
ClocksandTimers
Interface
Logic
PowerMgmt
Microcontrollers
RFID
RF/IFandZigBee®Solutions
/clocks
/lprf
Applications
Audio
Automotive
Broadband
DigitalControl
Medical
Military
OpticalNetworking
Security
Telephony
Video&Imaging
Wireless
/audio
/automotive
/broadband
/digitalcontrol
/medical
/military
/opticalnetwork
/security
/telephony
/video
/wireless
MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265
Copyright©2009,TexasInstrumentsIncorporated
2024年7月24日发(作者:焦蕴涵)
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
D
Easily Interfaced to Microprocessors
D
On-Chip Data Latches
D
Monotonic Over the Entire A/D Conversion
D
D
D
D
Range
Interchangeable With Analog Devices
AD7528 and PMI PM-7528
Fast Control Signaling for Digital Signal
Processor (DSP) Applications Including
Interface With TMS320
Voltage-Mode Operation
CMOS Technology
KEY PERFORMANCE SPECIFICATIONS
Resolution
Linearity Error
Power Dissipation at V
DD
= 5V
Settling Time at V
DD
= 5V
Propagation Delay Time at V
DD
= 5V
8 bits
1/2LSB
20mW
100ns
80ns
DW, N OR PW PACKAGE
(TOP VIEW)
AGND
OUTA
RFBA
REFA
DGND
DACA/DACB
(MSB) DB7
DB6
DB5
DB4
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
OUTB
RFBB
REFB
V
DD
WR
CS
DB0 (LSB)
DB1
DB2
DB3
FN PACKAGE
(TOP VIEW)
description
The TLC7528C, TLC7528E, and TLC7528I are
dual, 8-bit, digital-to-analog converters (DACs)
designed with separate on-chip data latches and
feature exceptionally close DAC-to-DAC match-
ing. Data are transferred to either of the two DAC
data latches through a common, 8-bit, input port.
Control input DACA/DACB determines which
DAC is to be loaded. The load cycle of these
devices is similar to the write cycle of a
random-access memory, allowing easy interface
to most popular microprocessor buses and output
ports. Segmenting the high-order bits minimizes
glitches during changes in the most significant
bits, where glitch impulse is typically the
strongest.
R
F
B
A
O
U
T
A
A
G
N
D
O
U
T
B
R
F
B
B
REFA
DGND
DACA/DACB
(MSB) DB7
DB6
4
5
6
7
8
3212019
18
17
16
15
14
910111213
REFB
V
DD
WR
CS
DB0 (LSB)
These devices operate from a 5V to 15V power supply and dissipates less than 15mW (typical). The 2- or
4-quadrant multiplying makes these devices a sound choice for many microprocessor-controlled gain-setting
and signal-control applications. It can be operated in voltage mode, which produces a voltage output rather than
a current output. Refer to the typical application information in this data sheet.
The TLC7528C is characterized for operation from 0°C to +70°C. The TLC7528I is characterized for operation
from −25°C to +85°C. The TLC7528E is characterized for operation from −40°C to +85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Copyright 2000−2008, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
D
B
5
D
B
4
D
B
3
D
B
2
D
B
1
1
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
functional block diagram
DB0
14
13
12
11
Data
Inputs
10
9
8
DB7
7
19
20
REFA
3
4
8
Input
Buffer
2
RFBA
OUTA
Latch A
8
DACA
1
AGND
RFBB
OUTB
DACA/DACB
WR
CS
6
16
15
Logic
Control
8
Latch B
8
DACB
18
REFB
operating sequence
t
su(CS)
CS
t
su(DAC
)
DACA/DACB
t
w(WR)
WR
t
su(D)
DB0−DB7
Data In Stable
t
h(D)
t
h(DAC)
t
h(CS)
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
†
Supply voltage range, V
DD
(to AGND or DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to 16.5V
Voltage between AGND and DGND
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±V
DD
Input voltage range, V
I
(to DGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V
DD
+ 0.3
Reference voltage, V
refA
or V
refB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Feedback voltage V
RFBA
or V
RFBB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Input voltage (voltage mode out A, out B to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to V
DD
+ 0.3
Output voltage, V
OA
or V
OB
(to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V
Peak input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°COperating free-air temperature range, T
A
: TLC7528C
TLC7528I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25°C to +85°C
TLC7528E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to +85°C
Storage temperature range, T
stg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C
Case temperature for 10 seconds, T
C
: FN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +260°C
Lead temperature 1,6mm (1/16 inch) from case for 10 seconds: DW or N package . . . . . . . . . . . . . . +260°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
package/ordering information
For the most current package and ordering information, see the Package Option Addendum at the end of this
document, or see the TI website at .
recommended operating conditions
V
DD
= 4.75V to 5.25V
MINNOMMAX
Reference voltage, V
refA
or V
refB
High-level input voltage, V
IH
Low-level input voltage, V
IL
CS setup time, t
su(CS)
CS hold time, t
h(CS)
DAC select setup time, t
su(DAC)
DAC select hold time, t
h(DAC)
Data bus input setup time t
su(D)
Data bus input hold time t
h(D)
Pulse duration, WR low, t
w(WR)
TLC7628C
Operating free-air temperature, T
A
TLC7628I
TLC7628E
±10
2.4
0.8
50
0
50
10
25
10
50
0
−25
−40
+70
+85
+85
50
0
50
10
25
10
50
0
−25
−40
+70
+85
+85
°
C
13.5
1.5
V
DD
= 14.5V to 15.5V
MINNOMMAX
±10
UNIT
V
V
V
ns
ns
ns
ns
ns
ns
ns
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
3
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
electrical characteristics over recommended operating free-air temperature range,
V
refA
= V
refB
= 10V, V
OA
and V
OB
at 0V (unless otherwise noted)
PARAMETER
I
IH
I
IL
High-level input current
Low-level input current
Reference input impedance
REFA or REFB to AGND
OUTA
I
Ikg
Output leakage current
OUTB
Input resistance match
(REFA to REFB)
DC supply sensitivity, ∆gain/∆V
DD
I
DD
I
DD
C
i
Supply current (quiescent)
Supply current (standby)
DB0−DB7
Input capacitance
WR, CS,
DACA/DACB
DAC data latches loaded with
00000000
DAC data latches loaded with
11111111
∆V
DD
= ±10%
All digital inputs at V
IH
min or
V
IL
max
All digital inputs at 0V or V
DD
DAC data latch loaded with
00000000, V
refA
= ±10V
DAC data latch loaded with
00000000, V
refB
= ±10V
TEST CONDITIONS
V
I
= V
DD
V
I
= 0
V
DD
= 5V
MINTYP
†
MAX
10
512−10
20
±400
±400
±1%
0.04
2
0.5
10
15
50
120
512
V
DD
= 15V
MINTYP
†
MAX
10
−10
20
±200
nA
±200
±1%
0.02
2
0.5
10
15
50
pF
120
%/%
mA
mA
pF
pF
UNIT
µA
µA
kΩ
C
o
Output capacitance (OUTA, OUTB)
†
All typical values are at T
A
= +25°C.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
operating characteristics over recommended operating free-air temperature range,
V
refA
= V
refB
= 10V, V
OA
and V
OB
at 0V (unless otherwise noted)
PARAMETER
Linearity error
Settling time (to 1/2LSB)
Gain error
AC feedthrough
REFA to OUTA
REFB to OUTB
See Note 1
See Note 2
See Note 3
See Note 4
See Note 5
See Note 6
See Note 7
Measured for code transition from
00000000 to 11111111,
T
A
= +25°C
Measured for code transition from
00000000 to 11111111,
T
A
= +25°C
77
77
160
TEST CONDITIONS
V
DD
= 5V
MINTYPMAX
±1/2
100
2.5
−65
−65
0.007
80
77
77
440
V
DD
= 15V
MINTYPMAX
±1/2
100
2.5
−65
−65
UNIT
LSB
ns
LSB
dB
Temperature coefficient of gain
Propagation delay (from digital input to
90% of final analog output current)
Channel-to-channel
isolation
REFA to OUTB
REFB to OUTA
0.0035%FSR/°C
80ns
dB
Digital-to-analog glitch impulse areanV−s
Digital crosstalk
Harmonic distortion
NOTES:1.
2.
3.
4.
5.
6.
7.
3060nV−s
V
i
= 6V,f = 1kHz,T
A
= +25°C−85−85dB
OUTA, OUTB load = 100Ω, C
ext
= 13pF; WR and CS at 0V; DB0−DB7 at 0V to V
DD
or V
DD
to 0V.
Gain error is measured using an internal feedback resistor. Nominal full scale range (FSR) = V
ref
− 1LSB.
V
ref
= 20V peak-to-peak, 100kHz sine wave; DAC data latches loaded with 00000000.
Temperature coefficient of gain measured from 0°C to +25°C or from +25°C to +70°C.
V
refA
= V
refB
= 10V; OUTA/OUTB load = 100Ω, C
ext
= 13pF; WR and CS at 0V; DB0−DB7 at 0V to V
DD
or V
DD
to 0V.
Both DAC latches loaded with 11111111; V
refA
= 20V peak-to-peak, 100kHz sine wave; V
refB
= 0; T
A
= +25°C.
Both DAC latches loaded with 11111111; V
refB
= 20V peak-to-peak, 100kHz sine wave; V
refA
= 0; T
A
= +25°C.
PRINCIPLES OF OPERATION
These devices contain two identical, 8-bit-multiplying DACs, DACA and DACB. Each DAC consists of an
inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between
DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state.
Most applications require only the addition of an external operational amplifier and voltage reference. A
simplified DAC circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs
share the analog ground terminal 1 (AGND). With all digital inputs high, the entire reference current flows to
OUTA. A small leakage current (I
Ikg
) flows across internal junctions, and as with most semiconductor devices,
doubles every 10°C. C
o
is due to the parallel combination of the NMOS switches and has a value that depends
on the number of switches connected to the output. The range of C
o
is 50pF to 120pF maximum. The equivalent
output resistance (r
o
) varies with the input code from 0.8R to 3R where R is the nominal value of the ladder
resistor in the R-2R network.
These devices interface to a microprocessor through the data bus, CS, WR, and DACA/DACB control signals.
When CS and WR are both low, the TLC7528 analog output, specified by the DACA/DACB control line,
responds to the activity on the DB0−DB7 data bus inputs. In this mode, the input latches are transparent and
input data directly affects the analog output. When either the CS signal or WR signal goes high, the data on the
DB0−DB7 inputs are latched until the CS and WR signals go low again. When CS is high, the data inputs are
disabled regardless of the state of the WR signal.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
5
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
PRINCIPLES OF OPERATION
The digital inputs of these devices provide TTL compatibility when operated from a supply voltage of 5V. These
devices can operate with any supply voltage in the range from 5V to 15V; however, input logic levels are not
TTL-compatible above 5V.
R
2R
2R
R
2R
R
2R
2R
R
FB
S1S2S3S8
OUTA
AGND
RFBA
REFA
DACA Data Latches and Drivers
Figure 1. Simplified Functional Circuit for DACA
RFBA
R
REFA
I
256
I
Ikg
C
OUT
AGND
R
FB
OUTA
Figure 2. TLC7528 Equivalent Circuit, DACA Latch Loaded With 11111111
MODE SELECTION TABLE
DACA/DACB
L
H
X
X
CS
L
L
H
X
WR
L
L
X
H
DACA
Write
Hold
Hold
Hold
DACB
Hold
Write
Hold
Hold
L = low level, H = high level, X = don’t care
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for
2-quadrant and 4-quadrant multiplication are shown in Figure 3 and Figure 4. Table 1 and Table 2 summarize
input coding for unipolar and bipolar operation, respectively.
V
I(A)
±10 V
R1 (see Note A)
17
REFA
Input
Buffer
8
Latch
OUTA
8
RFBA
R2 (see Note A)
C1
(see Note B)
−
V
OA
R4 (see Note A)
C2
(see Note B)
−
V
OB
AGND
+
+
7
V
DD
14
DB0
DB7
DACA
7
AGND
RFBB
OUTB
DACA/DACB
6
15
Control
Logic
8
CS
16
WR
5
DGND
Latch
8
DACB
REFB
AGND
RECOMMENDED TRIM
RESISTOR VALUES
R1, R3
R2, R4
500 Ω
150 Ω
R3 (see Note A)
V
I(B)
±10 V
NOTES:A.R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with
digital input of 255.
B.C1 and C2 phase compensation capacitors (10pF to 15pF) are required when using high-speed amplifiers to prevent ringing or
oscillation.
Figure 3. Unipolar Operation (2-Quadrant Multiplication)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
V
I(A)
±10 V
R6
20 kΩ
(see Note B)
R1
(see Note A)
V
DD
DB0
DB7
17
14
RFBA
R2 (see Note A)
C1
(see Note C)
R5
20 kΩ
−
A2
+
Latch
DACA
7
RFBB
DGND
AGND
R3
(see Note A)
R10
20 kΩ
(see Note B)
R11
5 kΩ
AGND
V
I(B)
±10 V
NOTES:A.R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for
V
OA
= 0V with code 10000000 in DACA latch. Adjust R3 for V
OB
= 0V with 10000000 in DACB latch.
ng and tracking are essential for resistor pairs R6, R7, R9, and R10.
C.C1 and C2 phase compensation capacitors (10pF to 15pF) may be required if A1 and A3 are high-speed amplifiers.
Figure 4. Bipolar Operation (4-Quadrant Operation)
Table 1. Unipolar Binary Code
DAC LATCH CONTENTS
MSBLSB
†
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
†
1LSB = (2
−8
)V
I
ANALOG OUTPUT
−V
I
(255/256)
−V
I
(129/256)
−V
I
(128/256) = −V
i
/2
−V
I
(127/256)
−V
I
(1/256)
−V
I
(0/256) = 0
Table 2. Bipolar (Offset Binary) Code
DAC LATCH CONTENTS
MSBLSB
‡
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
‡
1LSB = (2
−7
)V
I
ANALOG OUTPUT
V
I
(127/128)
V
I
(1/128)
0V
−V
I
(1/128)
−V
I
(127/128)
−V
I
(128/128)
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
+
REFB
+
AGND
R9
10 kΩ
(see Note B)
−
Latch
DACB
−
6
DACA/
DACB
15
CS
16
WR
5
R4 (see Note A)
C2
(see Note C)
Control
Logic
88
OUTB
+
A3
AGND
−
Input
Buffer
88
OUTA
R7
10 kΩ
(see Note B)
R11
5 kΩ
A1
V
OA
R8
20 kΩ
A4V
OB
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
microprocessor interface information
8
A8−A15
Address Bus
DACA/DACB
Address
Decode
Logic
A
CS
A + 1
WR
DB0
WR
DB7
ALE
Latch
8
AD0−AD7
Data Bus
TLC7528
CPU
8051
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 5. TLC7528: Intel 8051 Interface
8
A8−A15
Address Bus
DACA/DACB
VMA
CPU
6800
φ2
Address
Decode
Logic
A
CS
A + 1
WR
DB0
DB7
TLC7528
8
AD0−AD7
Data Bus
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 6. TLC7528: 6800 Interface
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
9
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
8
A8−A15
Address Bus
DACA/DACB
IORQ
CPU
Z80-A
WR
Address
Decode
Logic
A
CS
A + 1
TLC7528
WR
DB0
DB7
8
D0−D7
Data Bus
NOTE A:A = decoded address for TLC7528 DACA
A + 1 = decoded address for TLC7528 DACB
Figure 7. TLC7528 To Z-80A Interface
programmable window detector
The programmable window comparator shown in Figure 8 determines if the voltage applied to the DAC
feedback resistors is within the limits programmed into the data latches of these devices. Input signal range
depends on the reference and polarity; that is, the test input range is 0 to −V
ref
. The DACA and DACB data
latches are programmed with the upper and lower test limits. A signal within the programmed limits drives the
output high.
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
Test Input
0 to −V
ref
RFBA
−
4
REFA
8
Data Inputs
14−7
DB0−DB7
TLC7528
CS
WR
DACA/DACB
OUTB
V
ref
18
REFB
5
DGND
RFBB
19
DACB
20
−
AGND
1
PASS/FAIL Output
OUTA
DACA
2
V
DD
317
1 kΩ
V
CC
15
16
6
Figure 8. Digitally-Programmable Window Comparator (Upper- and Lower-Limit Tester)
digitally-controlled signal attenuator
Figure 9 shows a TLC7528 configured as a two-channel programmable attenuator. Applications include stereo
audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0dB to 15.5dB range.
Attenuation dB = −20 log
10
D/256, D = digital input code
17
4
REFA
DACA
RFBA
OUTA
3
2
A1Output
V
DD
V
I
A
DB0−DB7
TLC7528
CS
WR
20
V
O
B
A2
OUTB
DACB
DACA/DACB
REFB
AGND
RFBB
19
DGND
14−7
15
16
6
18
1
5
Figure 9. Digitally Controlled Dual Telephone Attenuator
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
+
+
8
Data Bus
11
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
Table 3. Attenuation vs DACA, DACB Code
ATTEN (dB)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
DAC INPUT CODE
1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1
1 1 0 0 1 0 1 1
1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 1
1 0 1 0 1 0 1 1
1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0
1 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1
0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 0
CODE IN
DECIMAL
255
242
228
215
203
192
181
171
162
152
144
136
128
121
114
108
ATTN (dB)
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
DAC INPUT CODE
0 1 1 0 0 1 1 0
0 1 1 0 0 0 0 0
0 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 0 0
0 0 1 0 1 1 1 0
0 0 1 0 1 0 1 1
CODE IN
DECIMAL
102
96
91
86
81
76
72
68
64
61
57
54
51
48
46
43
programmable state-variable filter
This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass
outputs, and is suitable for applications requiring microprocessor control of filter parameters.
As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control
the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the
cutoff-frequency equation to be true. With the TLC7528, this validity is easy to achieve.
f
c
+
1
2pR1C1
The programmable range for the cutoff or center frequency is 0kHz to 15kHz with a Q ranging from 0.3 to 4.5.
This parameter defines the limits of the component values.
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
APPLICATION INFORMATION
C3
47pF
V
I
8
TLC7528
15
16
5
6
CS
WR
DGND
DACA
/DACB
DACA1ANDDACB1
C1
1000pF
4
17
DataIn
8
TLC7528
15
16
5
6
CS
WR
DGND
DACA/DACB
DACA2andDACB2
CircuitEquations:
C
1
=C
2
,R
1
=R
2
,R
4
=R
5
Q=
R
3
R
4
R
R
F
DACB
(R
2
)
REFA
V
DD
DACA
(R
1
)
OUTA
2
3
1
20
19
+
A4
LowPassOut
+
A3
C2
DACB
(R
F
)
4
17
REFA
V
DD
DACA
(R
S
)
OUTA
2
3
1
20
19
+
A1
R5
30k
Ω
R4
R3
10k
Ω
+
30k
Ω
A2
HighPass
Out
RFBA
AGND
OUTB
RFBB
DataIn
REFB
18
BandpassOut
RFBA
AGND
OUTB
RFBB
1000pF
REFB
18
fb(DACB1)
Where:
RistheinternalresistorconnectedbetweenOUTBandRFBB
fb
R
−
F
G
R
S
NOTES:-amps A1, A2, A3, and A4 are TL287.
compensates for the op-amp gain-bandwidth limitations.
256 (DACladderresistance)
equivalent resistance equals
DACdigitalcode
Figure 10. Digitally-Controlled State-Variable Filter
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
13
SLAS062E − JANUARY 1987 − REVISED NOVEMBER 2008
TLC7528C, TLC7528E, TLC7528I
DUAL 8ĆBIT MULTIPLYING
DIGITALĆTOĆANALOG CONVERTERS
APPLICATION INFORMATION
voltage-mode operation
It is possible to operate the current multiplying D/A converter of these devices in a voltage mode. In the voltage
mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at
the reference voltage terminal. Figure 11 is an example of a current multiplying D/A that operates in the voltage
mode.
REF
(Analog Output Voltage)
RRR
2R2R2R2R
“0”“1”
R
Out (Fixed Input Voltage)
AGND
Figure 11. Voltage-Mode Operation
The following equation shows the relationship between the fixed input voltage and the analog output voltage:
V
O
= V
I
(D/256)
Where:
V
O
= analog output voltage
V
I
= fixed input voltage (must not be forced below 0V.)
D = digital input code converted to decimal
In voltage-mode operation, these devices meet the following specification:
PARAMETER
Linearity error at REFA or REFBV
DD
= 5V,
TEST CONDITIONS
OUTA or OUTB at 2.5V,T
A
= +25°C
MINMAX
1
UNIT
LSB
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
Revision History
DATE
11/08
6/07
REV
E
D
PAGE
13
Front Page
3
SECTION
Application Information
—
—
Corrected Figure 10.
Deleted Available Options table.
Inserted Package/Ordering information.
DESCRIPTION
NOTE
:
Page numbers for previous revisions may differ from page numbers in the current version.
PACKAGEOPTIONADDENDUM
28-May-2009
PACKAGINGINFORMATION
OrderableDevice
TLC7528CDW
TLC7528CDWG4
TLC7528CDWR
TLC7528CDWRG4
TLC7528CFN
TLC7528CFNG3
TLC7528CFNR
TLC7528CFNRG3
TLC7528CN
TLC7528CNE4
TLC7528CNS
TLC7528CNSG4
TLC7528CNSR
TLC7528CNSRG4
TLC7528CPW
TLC7528CPWG4
TLC7528CPWR
TLC7528CPWRG4
TLC7528EDW
TLC7528EDWG4
TLC7528EDWR
TLC7528EDWRG4
TLC7528EN
TLC7528ENE4
TLC7528IDW
Status
(1)
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
Package
Type
SOIC
SOIC
SOIC
SOIC
PLCC
PLCC
PLCC
PLCC
PDIP
PDIP
SO
SO
SO
SO
TSSOP
TSSOP
TSSOP
TSSOP
SOIC
SOIC
SOIC
SOIC
PDIP
PDIP
SOIC
Package
Drawing
DW
DW
DW
DW
FN
FN
FN
FN
N
N
NS
NS
NS
NS
PW
PW
PW
PW
DW
DW
DW
DW
N
N
DW
PinsPackageEcoPlan
(2)
Qty
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
25
25
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
Lead/BallFinish
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUSN
CUSN
CUSN
CUSN
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
MSLPeakTemp
(3)
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
46
46
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
1000Green(RoHS&
noSb/Br)
1000Green(RoHS&
noSb/Br)
20
20
40
40
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
70
70
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
25
25
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
20
20
25
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Addendum-Page1
PACKAGEOPTIONADDENDUM
28-May-2009
OrderableDevice
TLC7528IDWG4
TLC7528IDWR
TLC7528IDWRG4
TLC7528IFN
TLC7528IFNG3
TLC7528IN
TLC7528INE4
TLC7528IPW
TLC7528IPWG4
TLC7528IPWR
TLC7528IPWRG4
(1)
Status
(1)
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
Package
Type
SOIC
SOIC
SOIC
PLCC
PLCC
PDIP
PDIP
TSSOP
TSSOP
TSSOP
TSSOP
Package
Drawing
DW
DW
DW
FN
FN
N
N
PW
PW
PW
PW
PinsPackageEcoPlan
(2)
Qty
20
20
20
20
20
20
20
20
20
20
20
25Green(RoHS&
noSb/Br)
Lead/BallFinish
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUSN
CUSN
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
CUNIPDAU
MSLPeakTemp
(3)
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
N/AforPkgType
N/AforPkgType
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
Level-1-260C-UNLIM
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
46
46
20
20
70
70
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Green(RoHS&
noSb/Br)
Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
2000Green(RoHS&
noSb/Br)
Themarketingstatusvaluesaredefinedasfollows:
ACTIVE:Productdevicerecommendedfornewdesigns.
LIFEBUY:TIhasannouncedthatthedevicewillbediscontinued,andalifetime-buyperiodisineffect.
NRND:isinproductiontosupportexistingcustomers,butTIdoesnotrecommendusingthispartin
anewdesign.
PREVIEW:smayormaynotbeavailable.
OBSOLETE:TIhasdiscontinuedtheproductionofthedevice.
(2)
EcoPlan-Theplannedeco-friendlyclassification:Pb-Free(RoHS),Pb-Free(RoHSExempt),orGreen(RoHS&noSb/Br)-pleasecheck
/productcontentforthelatestavailabilityinformationandadditionalproductcontentdetails.
TBD:ThePb-Free/Greenconversionplanhasnotbeendefined.
Pb-Free(RoHS):TI'sterms"Lead-Free"or"Pb-Free"meansemiconductorproductsthatarecompatiblewiththecurrentRoHSrequirements
forall6substances,includingtherequirementthatleadnotexceed0.1%esignedtobesoldered
athightemperatures,TIPb-Freeproductsaresuitableforuseinspecifiedlead-freeprocesses.
Pb-Free(RoHSExempt):ThiscomponenthasaRoHSexemptionforeither1)lead-basedflip-chipsolderbumpsusedbetweenthedieand
package,or2)ponentisotherwiseconsideredPb-Free(RoHS
compatible)asdefinedabove.
Green(RoHS&noSb/Br):TIdefines"Green"tomeanPb-Free(RoHScompatible),andfreeofBromine(Br)andAntimony(Sb)basedflame
retardants(BrorSbdonotexceed0.1%byweightinhomogeneousmaterial)
(3)
MSL,PeakTemp.--TheMoistureSensitivityLevelratingaccordingtotheJEDECindustrystandardclassifications,andpeaksolder
temperature.
ImportantInformationandDisclaimer:TheinformationprovidedonthispagerepresentsTI'sknowledgeandbeliefasofthedatethatitis
sitsknowledgeandbeliefoninformationprovidedbythirdparties,andmakesnorepresentationorwarrantyastothe
akenandcontinuestotake
reasonablestepstoproviderepresentativeandaccurateinformationbutmaynothaveconducteddestructivetestingorchemicalanalysison
Isuppliersconsidercertaininformationtobeproprietary,andthusCASnumbersandotherlimited
informationmaynotbeavailableforrelease.
InnoeventshallTI'sliabilityarisingoutofsuchinformationexceedthetotalpurchasepriceoftheTIpart(s)atissueinthisdocumentsoldbyTI
toCustomeronanannualbasis.
Addendum-Page2
PACKAGEMATERIALSINFORMATION
9-Apr-2009
TAPEANDREELINFORMATION
*Alldimensionsarenominal
DevicePackagePackagePins
TypeDrawing
SO
TSSOP
TSSOP
NS
PW
PW
20
20
20
SPQReelReel
DiameterWidth
(mm)W1(mm)
330.0
330.0
330.0
24.4
16.4
16.4
A0(mm)B0(mm)K0(mm)P1
(mm)
12.0
8.0
8.0
WPin1
(mm)Quadrant
24.0
16.0
16.0
Q1
Q1
Q1
TLC7528CNSR
TLC7528CPWR
TLC7528IPWR
2000
2000
2000
8.2
6.95
6.95
13.0
7.1
7.1
2.5
1.6
1.6
PackMaterials-Page1
PACKAGEMATERIALSINFORMATION
9-Apr-2009
*Alldimensionsarenominal
Device
TLC7528CNSR
TLC7528CPWR
TLC7528IPWR
PackageType
SO
TSSOP
TSSOP
PackageDrawing
NS
PW
PW
Pins
20
20
20
SPQ
2000
2000
2000
Length(mm)
346.0
346.0
346.0
Width(mm)
346.0
346.0
346.0
Height(mm)
41.0
33.0
33.0
PackMaterials-Page2
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
MECHANICAL DATA
PW (R-PDSO-G**)
14 PINS SHOWN
PLASTIC SMALL-OUTLINE PACKAGE
0,65
148
0,30
0,19
0,10
M
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
A
7
0°–8°
0,75
0,50
Seating Plane
1,20 MAX
0,15
0,05
0,10
PINS **
DIM
A MAX
8
3,10
14
5,10
16
5,10
20
6,60
24
7,90
28
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
4040064/F 01/97
NOTES:A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
MECHANICAL DATA
MPLC004A – OCTOBER 1994
FN (S-PQCC-J**)
20 PIN SHOWN
PLASTIC J-LEADED CHIP CARRIER
Seating Plane
0.004 (0,10)
D
D1
3119
0.032 (0,81)
0.026 (0,66)
418
D2/E2
0.180 (4,57) MAX
0.120 (3,05)
0.090 (2,29)
0.020 (0,51) MIN
EE1
D2/E2
814
913
0.050 (1,27)
0.008 (0,20) NOM
0.021 (0,53)
0.013 (0,33)
0.007 (0,18)
M
NO. OF
PINS
**
20
28
44
52
68
84
D/E
MIN
0.385 (9,78)
0.485 (12,32)
0.685 (17,40)
0.785 (19,94)
0.985 (25,02)
1.185 (30,10)
MAX
0.395 (10,03)
0.495 (12,57)
0.695 (17,65)
0.795 (20,19)
0.995 (25,27)
1.195 (30,35)
MIN
D1/E1
MAX
0.356 (9,04)
0.456 (11,58)
0.656 (16,66)
0.756 (19,20)
0.958 (24,33)
1.158 (29,41)
MIN
D2/E2
MAX
0.169 (4,29)
0.219 (5,56)
0.319 (8,10)
0.369 (9,37)
0.469 (11,91)
0.569 (14,45)
4040005/B 03/95
0.350 (8,89)
0.450 (11,43)
0.650 (16,51)
0.750 (19,05)
0.950 (24,13)
1.150 (29,21)
0.141 (3,58)
0.191 (4,85)
0.291 (7,39)
0.341 (8,66)
0.441 (11,20)
0.541 (13,74)
NOTES: linear dimensions are in inches (millimeters).
drawing is subject to change without notice.
within JEDEC MS-018
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
1
IMPORTANTNOTICE
TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements,
andotherchangestoitsproductsandseersshould
obtainthelatestrelevantinformationbeforeplacductsare
soldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment.
TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandard
gandotherqualitycontroltewhere
mandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed.
TIassersareresponsiblefortheirproductsand
mizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovide
adequatedesignandoperatingsafeguards.
TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright,
orotherTIintellectualpropertyrightrelatingtoanycombination,machine,ation
publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesora
uchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectual
propertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI.
ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompanied
byallassociatedwarranties,conditions,limitations,uctionofthisinformationwithalterationisanunfairanddeceptive
ationofthirdpartiesmaybesubjecttoadditional
restrictions.
ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsall
expressandanyimpliedwarrantiesfortheassocit
responsibleorliableforanysuchstatements.
TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonably
beexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverning
representthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and
acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproducts
andanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybe
r,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsin
suchsafety-criticalapplications.
TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsare
specificallydesignatedbyTIasmilitary-gradeor"enhancedplastic."OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary
acknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyat
theBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.
TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsare
designatedbyTIascompliantwithISO/acknowledgeandagreethat,iftheyuseanynon-designated
productsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements.
FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions:
Products
Amplifiers
DataConverters
DLP®Products
DSP
ClocksandTimers
Interface
Logic
PowerMgmt
Microcontrollers
RFID
RF/IFandZigBee®Solutions
/clocks
/lprf
Applications
Audio
Automotive
Broadband
DigitalControl
Medical
Military
OpticalNetworking
Security
Telephony
Video&Imaging
Wireless
/audio
/automotive
/broadband
/digitalcontrol
/medical
/military
/opticalnetwork
/security
/telephony
/video
/wireless
MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265
Copyright©2009,TexasInstrumentsIncorporated