2024年3月16日发(作者:斛璇玑)
投影机的成像原理
基础概要:投影机目前已广泛应用于演示和家庭影院中。在投影机内部生成投影图像的元件有三类,根据元件的使用种类和数目,产品
的特点也各不同。此外,投影机特有的问题包括:画面会因投影角度的不同而出现失真以及在屏幕前面要留出一定的空间等。解决办法是采
取失真补偿和实现短焦等措施。
投影机是一种用来放大显示图像的投影装置。目前已经应用于会议室演示以及在家庭中通过连接
DVD
影碟机等设备
在大屏幕上观看电影。在电影院,也同样已开始取代老电影胶片的数码影院放映机,被用作面向硬盘数字数据的银幕。
说到投影机显示图像的原理,基本上所有类型的投影机都一样。投影机先将光线照射到图像显示元件上来产生影像,然后通过镜头进行
投影。投影机的图像显示元件包括利用透光产生图像的透过型和利用反射光产生图像的反射型。无论哪一种类型,都是将投影灯的光线分成
红、绿、蓝三色,再产生各种颜色的图像。因为元件本身只能进行单色显示,因此就要利用
3
枚元件分别生成
3
色成分。然后再通过棱镜将
这
3
色图像合成为一个图像,最后通过镜头投影到屏幕上。
使用图像显示元件,分别产生红、绿、蓝三色图像,然后通过合成进行投影。
图像显示元件包括
3
类。其中采用液晶的有
2
类,分别是采用光透过型液晶的透过型液晶元件和采用可反射光的反射型液晶的元件。后
一种元件是
DMD
(数字微镜元件),每个像素使用一个微镜,通过改变反射光的方向来生成图像。
3
种元件各有利弊。
投影机使用的反射型液晶元件大体上采取如下
3
种措施:(
1)
采用无机材料的定向膜,易于控制液晶;(
2)
通过减
小液晶层厚度,提高响应速度;(
3)
通过取消液晶中的障碍物即隔离片(
Spacer,
提高光的利用效率。
透过型元件与反射型液晶元件
结构与液晶面板相同的透过型元件
透过型液晶元件生成图像的原理与已经广泛用作普通电脑显示屏的液晶显示器相同。在日本国内,精工爱普生和索尼
两公司已经开始提供这种元件。投影机用的液晶元件是用高温多晶硅液晶制造的。因为它不同于普通液晶显示器,通过将小像素生成的图像
放大至数百倍后进行投影,因此极其微小的缺陷放大后都会非常明显,在制造的时候需要相当高的
精度。
透过型液晶元件的工作原理与液晶显示器完全相同。液晶分子在加电后方向就会改变,由液晶分子的方向来调节是否让光线通过,以此
显示白色和黑色。
其缺点是光的利用效率较差。这是因为透过型液晶面板由多层构成,因此只能保证
3
成左右的入射光通过。
透过型液晶元件的尺寸越来越小。透过型液晶元件一般在
0.7
〜
0.8
英寸之间,不过为了控制成本,主流投影机使用的
元件都在
0.7
英寸左右。然而,元件越小,透过光的面积就越小,因而图像就越暗。因此,使用小元件时为了确保亮度,投影灯就要大一些,
而且为了提高透过光的效率,光学系统也会变大。由于在使用小液晶面板时,为了确保亮度,必
须照射更多的光线,因此机身反而会更大。而尺寸为
0.9
英寸左右的话,不仅可确保足够的亮度,同时还能设计到更小。”(投影机专业制
造商
NEC
显示技术公司投影系统业务部商品规划部经理高木清英)
透过型液晶元件会因长时间使用而老化。这是因为用来调节液晶分子方向的定向膜和控制光线方向的偏光板等采用的是有机材料。由于
投影灯功率高,因此不仅发热,而且光线很强,所以会使有机材料产生化学变化。材料老化的程度因投影灯的使用模式和用户使用方法的不
同有很大差异。
适合视频播放的反射型液晶元件
在可实现高画质的液晶元件中有一种反射型液晶。最大的特点是显示视频时至关重要的响应速度非常快,而且由于对
比度高,因此黑色显示得非常清晰。这种液晶适合于显示电影等视频播放。
目前已有三家日本公司开发成功了这种元件。
JVC
、日立制作所和索尼已经分别于
1997
年、
2001
年和
2003
年发布了这种元件。
JVC
的元件名为
“aILA”
,
索尼的元件名为
“SXRD
。
反射型液晶元件由于光的利用效率比透过型高,因此能够制造出高亮度的投影机。在液晶部分的下面有一层反射光线的薄膜,能够反射
6
〜
7
成的光线。对比度高是因为关闭电压时液晶采用的是垂直排列方式。这种方式称为垂直定向。
由于不加压时,为黑色显示,因此能够更清晰地表现黑色。反射型液晶元件的优点在显示暗画面时更容易理解。在漆黑的画面上显示黑衣服
和头发时,能够不受背景的影响进行显示(
JVCILA
中心规划部经理柴田恭志)。
投影机用的反射型液晶元件的响应速度高是因为在液晶部分采取了一定的措施。通过将液晶层减小到
2um
以下,提
高了响应速度。一般来说,液晶面板为了确保均匀的薄度,要在液晶中加入名为隔离片的辅助材料。这种隔离片的厚度就是液晶层的厚度。
但
JVC
的
D-ILA
和索尼的
SXRD,
通过在制造方法和封装材料上下功夫,在不使用隔离片的情况下实现了
2um
的厚度。通过取消隔离片,
解决了在像素显示部分会显出隔离片的问题。利用封装材料确保了液晶单元的厚度。”(索尼投影显示器公司投影机引擎部综合部长桥本俊
一)
如何使用透镜来进行反射
投影机有的还使用微镜元件。这就是美国德州仪器开发的
DMDo
由于
DMD
专利归该公司所有,因此只有该公司进
行生产和供货。采用
DMD
的投影机称为
DLP
(数字光处理)投影机。
DMD
的每一个像素都是一面镜子,在半导体底板上排列着和像素一样多的微镜。微镜边长仅
14um
。使用微镜最多的
DMD
是大约
80
万像素的型号。通过在
0.7
英寸(对角线长度)底板上的大约
80
万枚微镜逐枚动作来显示图像。
每一枚微镜以对角线方向为轴左右倾斜。采用静电引力移动微镜。微镜本身施加
20V
电压,在对角线一端下方施加
5
V,
另一个施加
0V
电压后,由于
0V
一端的电位差较大,因此微镜就将向这一侧偏移。
利用微镜角度改变反光方向。显示白色时设置成反射光朝向镜头的角度。显示黑色时光线则光被吸收板所吸收。结构示意图由日本德州
仪器提供。
通过倾斜
DMD
的方向来改变光线反射角度,来实现白色和黑色。当微镜向某个方向倾斜
10
度时,通过调整光线将
反射到镜头方向,反方向倾斜
10
度时光线将反射到光吸收板上。这样一来,光线朝镜头反射时显示白色,朝光吸收板反射时显示黑色。中
间色调则通过在极短时间内反复切换白色和黑色来实现。
与液晶元件相比,
DMD
的像素具有更高的图像显示性能。首先是对比度高。对比度最高可达
3000:1
。另外对信号
的响应速度快。响应速度约为
15
微秒,差不多是液晶的
1000
倍。响应速度越快,越能平滑地显示视频图像。而且
DM
D
的光利用效率更好。由于像素由微镜组成,因此照射来的光线有
9
成会反射出去。不过,虽然性能高,但每个像素的
均价也高。
LCD投影机的工作原理
2024年3月16日发(作者:斛璇玑)
投影机的成像原理
基础概要:投影机目前已广泛应用于演示和家庭影院中。在投影机内部生成投影图像的元件有三类,根据元件的使用种类和数目,产品
的特点也各不同。此外,投影机特有的问题包括:画面会因投影角度的不同而出现失真以及在屏幕前面要留出一定的空间等。解决办法是采
取失真补偿和实现短焦等措施。
投影机是一种用来放大显示图像的投影装置。目前已经应用于会议室演示以及在家庭中通过连接
DVD
影碟机等设备
在大屏幕上观看电影。在电影院,也同样已开始取代老电影胶片的数码影院放映机,被用作面向硬盘数字数据的银幕。
说到投影机显示图像的原理,基本上所有类型的投影机都一样。投影机先将光线照射到图像显示元件上来产生影像,然后通过镜头进行
投影。投影机的图像显示元件包括利用透光产生图像的透过型和利用反射光产生图像的反射型。无论哪一种类型,都是将投影灯的光线分成
红、绿、蓝三色,再产生各种颜色的图像。因为元件本身只能进行单色显示,因此就要利用
3
枚元件分别生成
3
色成分。然后再通过棱镜将
这
3
色图像合成为一个图像,最后通过镜头投影到屏幕上。
使用图像显示元件,分别产生红、绿、蓝三色图像,然后通过合成进行投影。
图像显示元件包括
3
类。其中采用液晶的有
2
类,分别是采用光透过型液晶的透过型液晶元件和采用可反射光的反射型液晶的元件。后
一种元件是
DMD
(数字微镜元件),每个像素使用一个微镜,通过改变反射光的方向来生成图像。
3
种元件各有利弊。
投影机使用的反射型液晶元件大体上采取如下
3
种措施:(
1)
采用无机材料的定向膜,易于控制液晶;(
2)
通过减
小液晶层厚度,提高响应速度;(
3)
通过取消液晶中的障碍物即隔离片(
Spacer,
提高光的利用效率。
透过型元件与反射型液晶元件
结构与液晶面板相同的透过型元件
透过型液晶元件生成图像的原理与已经广泛用作普通电脑显示屏的液晶显示器相同。在日本国内,精工爱普生和索尼
两公司已经开始提供这种元件。投影机用的液晶元件是用高温多晶硅液晶制造的。因为它不同于普通液晶显示器,通过将小像素生成的图像
放大至数百倍后进行投影,因此极其微小的缺陷放大后都会非常明显,在制造的时候需要相当高的
精度。
透过型液晶元件的工作原理与液晶显示器完全相同。液晶分子在加电后方向就会改变,由液晶分子的方向来调节是否让光线通过,以此
显示白色和黑色。
其缺点是光的利用效率较差。这是因为透过型液晶面板由多层构成,因此只能保证
3
成左右的入射光通过。
透过型液晶元件的尺寸越来越小。透过型液晶元件一般在
0.7
〜
0.8
英寸之间,不过为了控制成本,主流投影机使用的
元件都在
0.7
英寸左右。然而,元件越小,透过光的面积就越小,因而图像就越暗。因此,使用小元件时为了确保亮度,投影灯就要大一些,
而且为了提高透过光的效率,光学系统也会变大。由于在使用小液晶面板时,为了确保亮度,必
须照射更多的光线,因此机身反而会更大。而尺寸为
0.9
英寸左右的话,不仅可确保足够的亮度,同时还能设计到更小。”(投影机专业制
造商
NEC
显示技术公司投影系统业务部商品规划部经理高木清英)
透过型液晶元件会因长时间使用而老化。这是因为用来调节液晶分子方向的定向膜和控制光线方向的偏光板等采用的是有机材料。由于
投影灯功率高,因此不仅发热,而且光线很强,所以会使有机材料产生化学变化。材料老化的程度因投影灯的使用模式和用户使用方法的不
同有很大差异。
适合视频播放的反射型液晶元件
在可实现高画质的液晶元件中有一种反射型液晶。最大的特点是显示视频时至关重要的响应速度非常快,而且由于对
比度高,因此黑色显示得非常清晰。这种液晶适合于显示电影等视频播放。
目前已有三家日本公司开发成功了这种元件。
JVC
、日立制作所和索尼已经分别于
1997
年、
2001
年和
2003
年发布了这种元件。
JVC
的元件名为
“aILA”
,
索尼的元件名为
“SXRD
。
反射型液晶元件由于光的利用效率比透过型高,因此能够制造出高亮度的投影机。在液晶部分的下面有一层反射光线的薄膜,能够反射
6
〜
7
成的光线。对比度高是因为关闭电压时液晶采用的是垂直排列方式。这种方式称为垂直定向。
由于不加压时,为黑色显示,因此能够更清晰地表现黑色。反射型液晶元件的优点在显示暗画面时更容易理解。在漆黑的画面上显示黑衣服
和头发时,能够不受背景的影响进行显示(
JVCILA
中心规划部经理柴田恭志)。
投影机用的反射型液晶元件的响应速度高是因为在液晶部分采取了一定的措施。通过将液晶层减小到
2um
以下,提
高了响应速度。一般来说,液晶面板为了确保均匀的薄度,要在液晶中加入名为隔离片的辅助材料。这种隔离片的厚度就是液晶层的厚度。
但
JVC
的
D-ILA
和索尼的
SXRD,
通过在制造方法和封装材料上下功夫,在不使用隔离片的情况下实现了
2um
的厚度。通过取消隔离片,
解决了在像素显示部分会显出隔离片的问题。利用封装材料确保了液晶单元的厚度。”(索尼投影显示器公司投影机引擎部综合部长桥本俊
一)
如何使用透镜来进行反射
投影机有的还使用微镜元件。这就是美国德州仪器开发的
DMDo
由于
DMD
专利归该公司所有,因此只有该公司进
行生产和供货。采用
DMD
的投影机称为
DLP
(数字光处理)投影机。
DMD
的每一个像素都是一面镜子,在半导体底板上排列着和像素一样多的微镜。微镜边长仅
14um
。使用微镜最多的
DMD
是大约
80
万像素的型号。通过在
0.7
英寸(对角线长度)底板上的大约
80
万枚微镜逐枚动作来显示图像。
每一枚微镜以对角线方向为轴左右倾斜。采用静电引力移动微镜。微镜本身施加
20V
电压,在对角线一端下方施加
5
V,
另一个施加
0V
电压后,由于
0V
一端的电位差较大,因此微镜就将向这一侧偏移。
利用微镜角度改变反光方向。显示白色时设置成反射光朝向镜头的角度。显示黑色时光线则光被吸收板所吸收。结构示意图由日本德州
仪器提供。
通过倾斜
DMD
的方向来改变光线反射角度,来实现白色和黑色。当微镜向某个方向倾斜
10
度时,通过调整光线将
反射到镜头方向,反方向倾斜
10
度时光线将反射到光吸收板上。这样一来,光线朝镜头反射时显示白色,朝光吸收板反射时显示黑色。中
间色调则通过在极短时间内反复切换白色和黑色来实现。
与液晶元件相比,
DMD
的像素具有更高的图像显示性能。首先是对比度高。对比度最高可达
3000:1
。另外对信号
的响应速度快。响应速度约为
15
微秒,差不多是液晶的
1000
倍。响应速度越快,越能平滑地显示视频图像。而且
DM
D
的光利用效率更好。由于像素由微镜组成,因此照射来的光线有
9
成会反射出去。不过,虽然性能高,但每个像素的
均价也高。
LCD投影机的工作原理