2024年3月31日发(作者:颛孙修雅)
工业级交换机和企业级交换机
西门子工业以太网交换机与商用交换机在数据交换功能上基本一致,但
在设计上以及在元器件的选用上,产品的强度和适用性方面更能满足工
业现场的需要。
此外在模块扩展方面也表现的比商用交换机更为灵活: 有多种光口和
电口可供选配。在材质的选用、产品的强度、适用性以及实时性、可互
操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。
工业级设计一般在设计上满足:工业宽温设计,4级电磁兼容设计,冗
余交直流电源输入。另外PCB板一般做“三防”处理。
为什么工业现场要选用合适的工业以太网交换机,而不能用便宜的商用
交换机来代替?我们可以从以下几个方面确定在工业现场选用工业以太
网交换机的必要性。
1、 确定性
由于以太网的MAC层协议是CSMA/CD,该协议使得在网络上存在冲
突,特别是在网络负荷过大时,更加明显。对于一个工业网络,如果存
在着大量的冲突,就必须得多次重发数据,使得网间通信的不确定性大
大增加。在工业控制网络中这种从一处到另一处的不确定性,必然会带
来系统控制性能的降低。
2 、实时性
在工业控制系统中,实时可定义为系统对某事件的反应时间的可测性。
也就是说,在一个事件发生后,系统必须在一个可以准确预见的时间范
围内做出反映。然而,工业上对数据的传递的实时性要求十分严格,往
往数据的更新是在数十ms内完成的。而同样由于以太网存在的
CSMA/CD机制,当发生冲突的时候,就得重发数据,最多可以尝试16
次之多。很明显这种解决冲突的机制是以付出时间为代价的。而且一但
出现掉线,那怕是仅仅几秒种的时间,就有可能造成整个生产的停止甚
至是设备,人身安全事故。
3、可靠性
由于以太网在设计之初,并不是从工业网应用出发的。当它应用到工
业现场,面对恶劣的工况,严重的线间干扰等,这些都必然会引起其可
靠性降低。在生产环境中工业网络必须具备较好的可靠性,可恢复性,
以及可维护性。即保证一个网络系统中任何组件发生故障时,不会导致
应用程序,操作系统,甚至网络系统的崩溃和瘫痪。
工业以太网交换机在设计的时候就考虑到了工业现场的复杂情况,从而
能更加适应工业环境而发挥交换机的作用。
工业以太网交换机和普通交换机的区别主要体现在功能和性能上。
工业现场的环境比普通环境都要恶劣,至少在震动,湿气,温度上都
要比普通环境恶劣,普通交换机在设计上没有抵御在工业环境中出现的
各种情况的能力,普通交换机不能长时间工作在这种恶劣环境下,经常
容易出现故障,更使维护成本上升,一般不建议在工业环境中使用商业
交换机,为了能使交换机在这种恶劣环境中使用,故生产出能适应这种
环境的交换机,工业级别的交换机的可靠性有电源故障,端口中断,可
由继电器输出报警,冗余双直流电源输入,主动式电路保护,过压、欠
压自动断路保护,(可靠性根据型号的不同略有不同)
功能上的区别主要是指:工业以太网交换机在功能上与工业网络通讯
更接近,比如与各种现场总线的互通互联、设备的冗余以及设备的实时
等;而性能上的区别则主要体现在适应外界环境参数的不同。工业环境
除了有很多如:煤矿、舰船等特别恶劣的环境外,还有在EMI(电磁兼
容性)、温度、湿度以及防尘等方面有特殊要求的环境。其中温度对工
业网络设备的影响面是最广泛的。
本文主要论述温度这一重要参数对工业网络交换机的影响。而对于功能
方面以及性能其他方面的参数这里不再赘述。
一、衡量设备可靠性的指标
可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能
力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠
性,产品的可靠性与实验、设计和产品的维护有着极大的关系。
衡量可靠性的指标很多,常见的有以下几种:
1.可靠度R(t),即产品在规定条件下、规定时间内完成规定功能的
概率,亦称平均无故障时间MTBF(mean time between failure);
2.平均维修时间MTTR是指产品从发现故障到恢复规定功能所需要的
时间;
3.失效率λ(t),是指产品在规定的使用条件下使用到时刻t后,产品
失效的概率。产品的可靠性变化一般都有一定的规律,其特征曲线形状
像浴盆,通常称之为“浴盆曲线”。在实验和设计初期,由于产品设计制
造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率
高;通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品
进入稳定的偶然失效期;使用一般时间后,由于器件耗损、整机老化以
及维护等原因,产品进入了耗损失效期。这就是可靠性特征曲线呈“浴
盆曲线”型的原因。衡量一个电子产品、尤其是工业类产品最常用的是
MTBF,也就是平均无故障时间。
二、温度和MTBF的关系
由于现代电子设备所用的电子元器件的密度越来越高,这将使元器件之
间通过传导、辐射和对流产生热耦合。因此,热应力已经成为影响电子
元器件失效率的一个最重要的因素。对于某些电路来说,可靠性几乎完
全取决于热环境。所以,为了达到预期的可靠性目的,必须将元器件的
温度降低到实际可以达到的最低水平。有资料表明:环境温度每提高
10℃,元器件寿命约降低1/2。这就是有名的“10℃法则”。
MTBF测试:目前国外广泛采用Bellcore的RPP(Reliability Prediction
Procedure)来测量设备的MTBF,这其中包括晶体管数量、功率衰减
以及环境参数。我们分析其中用风扇散热的24口网络交换机的检测报
告,在环境温度为30℃,40℃,50℃时,无风扇交换机和有风扇交换
机的测试结果为:
30℃ 40℃ 50℃
无风扇散热 10年 9.5年 8年
有风扇散热 8年 7.5年 7年
另外,我们通过TSC实验室的温度测试中还发现了两个结果:
1.如果不采用任何散热措施,一台24口的交换机(不含光口)正常工
作4小时后,它的机内温度要比周围的环境温度高约40℃;而采用风扇
降温的同样的交换机的机内温度只比周围的环境温度高约15℃。
2.机内温度达到85℃时,实际上温度已经开始影响到了机内主板很多
芯片器件的寿命,也就是说,如果不采用很好的散热措施,在外部环境
温度为45~50℃时,交换机的MTBF会大大下降。
由此可见,温度对于工业网络产品的影响是非常大的,如果像商用交换
机一样采用风扇降温,能够有效降低机内温度而延长设备的MTBF,但
风扇本身的寿命又非常有限(2.28年)(由SANYO FAN DATA
SHEET 给出的数据)。
工业类设备不同于商用设备,往往是一开机就常年运行,而且运行的环
境也往往较恶劣,沙尘、昆虫、潮湿都会直接影响风扇的运行。一个质
量好的交换机,风扇使用寿命一般在20000小时,风扇到了年限以后,
检测并更换就变得非常重要。因为主动散热性交换机在设计时散热主要
就是靠风扇散热,一旦风扇失效而不及时更换,“10℃法则”将会起作
用:机内环境温度每提高10℃,元器件寿命就降低1/2。交换机的机内
积热将会快速导致交换机性能的下降,直至交换机崩溃。因此,工业交
换机的散热系统设计,也就是热设计就显得尤为重要了。
三、热设计
正是由于过高温度对工业网络设备的影响是致命的,所以在设计这类产
品时,除了设备的元器件要选择宽温度范围的工业级元器件外,更要充
分重视设备的热设计。
电子产品的热设计主要包括散热、加装散热器和制冷三类技术,这里笔
者主要讨论工业网络设备中的散热技术和加装散热器技术。
(一)散热应用中常采用的方法
第一种是传导散热方法,可选用导热系数大的材料来制造传热元件,或
减小接触热阻并尽量缩短热路径。
第二种是对流散热方式,对流散热方式有自然对流散热和强迫对流散热
两种方法。自然对流散热应注意以下几点:
l 设计印制板和元器件时必须留出多余空间;
l 安排元器件时,应注意温度场的合理分布;
l 充分重视应用烟囱拨风原理;
l 加大与对流介质的接触面积。
强迫对流散热方式可采用风机(如计算机上的风扇)或双输入口推拉方
式(如带换热器的推拉方式)。
第三种是利用热辐射特性方式,可以采用加大发热体表面的粗糙度、加
大辐射体周围的环境温差,或加大辐射体表面的面积等方法。
(二)加装散热器
工业电子类设备在热设计中,最常采用的方法是加装散热器,其目的是
控制半导体的温度,尤其是结温Tj,使其低于半导体器件的最大结温
Tjmax,从而提高半导体器件的可靠性。半导体器件和散热器安装在一
起工作时包含:半导体器件内热阻RTj、结温Tj、壳温Tc、散热器温度
Tf、环境温度Ta及半导体器件的使用功率Pc。
散热器的热阻RTf应为:RTf=(RTj-Ta)/Pc-RTj-RTc
散热器热阻RTf是选择散热器的主要依据。Tj、RTj是半导体器件提供的
参数,Pc是设计要求的参数,RTc可以从热设计专业书籍中查到。下面
介绍一下散热器的选择。
1.自然冷却散热器的选择
首先计算总热阻RT和散热器的热阻RTf,即:
RT=(Tjmax-Ta)/Pc
RTf=RT-RTj-RT。
算出RT和RTf之后,可根据RTf和Pc来选择散热器。选择时,根据所选
散热RTf和Pc曲线,在横坐标上查出已知Pc,再查出与Pc对应的散热器
的热阻R'Tf。
按照R'Tf≤RTf的原则,选择合理的散热器即可。
2.强迫风冷散热器的选择
强迫风冷散热器在选择时应根据散热器的热阻RTf和风速来选择合适的
散热器。
3.散热风扇的设计
普通商用交换机的风扇,工作一直处于全速(Full SPD)状态,除其造
成电能浪费、增大整机噪音外,还会增加不必要的电源发热,机箱内灰
尘过多堆积等。更重要的是风扇在全速状态时其寿命约为2万小时,也
就是2.28年(由SANYO FAN DATA SHEET 给出的数据),2万小时后
风扇转速会逐渐下降,给整机带来不稳定因素。但由于没有监控单元,
这种隐患很难发现:例如当交换机丢包率逐渐上升时,并不容易查到是
由于风扇老化转速降低及灰尘堆积太厚导致机箱内关键部件温度升高所
致。
工业交换机应使用高速(High SPD)风扇并带有智能监控电路,实时
监测和控制网络交换机的运行状况,例如监控机箱风扇、主交换芯片温
度、机箱温度,光收发器件温度等,这也就是我们所说的“智能风扇”。
交换机工作过程中智能监控电路会根据被测元件的温度或风扇转速信号
自动调节风扇转速,给网络交换机散热。风扇的转速主要与交换机负载
和环境温度有关。在环境温度一定时,当交换机数据负载减轻时,功耗
减小,风扇转速自动降低,当交换机数据负载加重时,功耗加大,风扇
速转速自动上升。在数据负载一定的情况下,当交换机处在低温环境
时,风扇转速自动降低,处在高温环境时风扇转速自动升高。在高温高
负载情况下,风扇可处在应急高速(High SPD)状态,比全速(Full
SPD)状态更能保证网络安全运行。
4.智能风扇控制器运行特性
采用智能风扇控制技术后可延长风扇寿命,减少机内灰尘堆积、降低风
扇噪声,节约电量使用,保证系统有效工作。另外控制器不仅能对风扇
失效停转、温度超过警戒线提供报警,而且对于由于老化或风道阻力异
常增大、转速低于正常值或监测点温度异常升高等前期隐患均能给出相
应的中英文语音提示,方便网络管理人员将事故消灭在萌芽阶段。
综上所述,由于工业以太网交换机所处的环境的特殊性以及使用时的特
殊性(不能停机),在对付高低温,主要是高温环境时采用的对策与普
通交换机有很多不同的。
(1)对于较低功率情况,一般P≤10W时,尽量不采用风扇散热,而采
用自然散热,如果通过自然对流,或者增大外壳面积、外壳褶皱,或者
采用导热较好的型材,如铝等。
(2)对于功率较大情况,P≥15W时,尤其是有多个光口,甚至是多个单
模光口的情况下,不能靠自然散热解决问题时,应该采用主动散热方式
解决热问题。而主动散热方式目前主要是指加装风扇,但由于工业网络
设备不能停机且要长期运行的特殊性,风扇的使用应有如下考虑。
①风扇不同于普通电子设备的风扇,它应是智能的,智能风扇在使用寿
命以及功能上与普通风扇有质的区别。
②智能风扇应设计为可以热插拨的,也就是在系统不停机情况下,如果
智能风扇系统报警(工作寿命到期等)情况下,可以在线更换风扇。采
取了以上热设计和散热措施,就可以大大提高网络设备的MTBF,延长
其寿命,从而避开法则,使工业网络设备的元器件长期工作在一个“稳
定,舒适”的温度环境中,这样“10℃法则”就不起作用,这样也就保证了自
动化过程中通讯系统的稳定和可靠性。
北京节点通网络技术有限公司
2024年3月31日发(作者:颛孙修雅)
工业级交换机和企业级交换机
西门子工业以太网交换机与商用交换机在数据交换功能上基本一致,但
在设计上以及在元器件的选用上,产品的强度和适用性方面更能满足工
业现场的需要。
此外在模块扩展方面也表现的比商用交换机更为灵活: 有多种光口和
电口可供选配。在材质的选用、产品的强度、适用性以及实时性、可互
操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。
工业级设计一般在设计上满足:工业宽温设计,4级电磁兼容设计,冗
余交直流电源输入。另外PCB板一般做“三防”处理。
为什么工业现场要选用合适的工业以太网交换机,而不能用便宜的商用
交换机来代替?我们可以从以下几个方面确定在工业现场选用工业以太
网交换机的必要性。
1、 确定性
由于以太网的MAC层协议是CSMA/CD,该协议使得在网络上存在冲
突,特别是在网络负荷过大时,更加明显。对于一个工业网络,如果存
在着大量的冲突,就必须得多次重发数据,使得网间通信的不确定性大
大增加。在工业控制网络中这种从一处到另一处的不确定性,必然会带
来系统控制性能的降低。
2 、实时性
在工业控制系统中,实时可定义为系统对某事件的反应时间的可测性。
也就是说,在一个事件发生后,系统必须在一个可以准确预见的时间范
围内做出反映。然而,工业上对数据的传递的实时性要求十分严格,往
往数据的更新是在数十ms内完成的。而同样由于以太网存在的
CSMA/CD机制,当发生冲突的时候,就得重发数据,最多可以尝试16
次之多。很明显这种解决冲突的机制是以付出时间为代价的。而且一但
出现掉线,那怕是仅仅几秒种的时间,就有可能造成整个生产的停止甚
至是设备,人身安全事故。
3、可靠性
由于以太网在设计之初,并不是从工业网应用出发的。当它应用到工
业现场,面对恶劣的工况,严重的线间干扰等,这些都必然会引起其可
靠性降低。在生产环境中工业网络必须具备较好的可靠性,可恢复性,
以及可维护性。即保证一个网络系统中任何组件发生故障时,不会导致
应用程序,操作系统,甚至网络系统的崩溃和瘫痪。
工业以太网交换机在设计的时候就考虑到了工业现场的复杂情况,从而
能更加适应工业环境而发挥交换机的作用。
工业以太网交换机和普通交换机的区别主要体现在功能和性能上。
工业现场的环境比普通环境都要恶劣,至少在震动,湿气,温度上都
要比普通环境恶劣,普通交换机在设计上没有抵御在工业环境中出现的
各种情况的能力,普通交换机不能长时间工作在这种恶劣环境下,经常
容易出现故障,更使维护成本上升,一般不建议在工业环境中使用商业
交换机,为了能使交换机在这种恶劣环境中使用,故生产出能适应这种
环境的交换机,工业级别的交换机的可靠性有电源故障,端口中断,可
由继电器输出报警,冗余双直流电源输入,主动式电路保护,过压、欠
压自动断路保护,(可靠性根据型号的不同略有不同)
功能上的区别主要是指:工业以太网交换机在功能上与工业网络通讯
更接近,比如与各种现场总线的互通互联、设备的冗余以及设备的实时
等;而性能上的区别则主要体现在适应外界环境参数的不同。工业环境
除了有很多如:煤矿、舰船等特别恶劣的环境外,还有在EMI(电磁兼
容性)、温度、湿度以及防尘等方面有特殊要求的环境。其中温度对工
业网络设备的影响面是最广泛的。
本文主要论述温度这一重要参数对工业网络交换机的影响。而对于功能
方面以及性能其他方面的参数这里不再赘述。
一、衡量设备可靠性的指标
可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能
力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠
性,产品的可靠性与实验、设计和产品的维护有着极大的关系。
衡量可靠性的指标很多,常见的有以下几种:
1.可靠度R(t),即产品在规定条件下、规定时间内完成规定功能的
概率,亦称平均无故障时间MTBF(mean time between failure);
2.平均维修时间MTTR是指产品从发现故障到恢复规定功能所需要的
时间;
3.失效率λ(t),是指产品在规定的使用条件下使用到时刻t后,产品
失效的概率。产品的可靠性变化一般都有一定的规律,其特征曲线形状
像浴盆,通常称之为“浴盆曲线”。在实验和设计初期,由于产品设计制
造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率
高;通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品
进入稳定的偶然失效期;使用一般时间后,由于器件耗损、整机老化以
及维护等原因,产品进入了耗损失效期。这就是可靠性特征曲线呈“浴
盆曲线”型的原因。衡量一个电子产品、尤其是工业类产品最常用的是
MTBF,也就是平均无故障时间。
二、温度和MTBF的关系
由于现代电子设备所用的电子元器件的密度越来越高,这将使元器件之
间通过传导、辐射和对流产生热耦合。因此,热应力已经成为影响电子
元器件失效率的一个最重要的因素。对于某些电路来说,可靠性几乎完
全取决于热环境。所以,为了达到预期的可靠性目的,必须将元器件的
温度降低到实际可以达到的最低水平。有资料表明:环境温度每提高
10℃,元器件寿命约降低1/2。这就是有名的“10℃法则”。
MTBF测试:目前国外广泛采用Bellcore的RPP(Reliability Prediction
Procedure)来测量设备的MTBF,这其中包括晶体管数量、功率衰减
以及环境参数。我们分析其中用风扇散热的24口网络交换机的检测报
告,在环境温度为30℃,40℃,50℃时,无风扇交换机和有风扇交换
机的测试结果为:
30℃ 40℃ 50℃
无风扇散热 10年 9.5年 8年
有风扇散热 8年 7.5年 7年
另外,我们通过TSC实验室的温度测试中还发现了两个结果:
1.如果不采用任何散热措施,一台24口的交换机(不含光口)正常工
作4小时后,它的机内温度要比周围的环境温度高约40℃;而采用风扇
降温的同样的交换机的机内温度只比周围的环境温度高约15℃。
2.机内温度达到85℃时,实际上温度已经开始影响到了机内主板很多
芯片器件的寿命,也就是说,如果不采用很好的散热措施,在外部环境
温度为45~50℃时,交换机的MTBF会大大下降。
由此可见,温度对于工业网络产品的影响是非常大的,如果像商用交换
机一样采用风扇降温,能够有效降低机内温度而延长设备的MTBF,但
风扇本身的寿命又非常有限(2.28年)(由SANYO FAN DATA
SHEET 给出的数据)。
工业类设备不同于商用设备,往往是一开机就常年运行,而且运行的环
境也往往较恶劣,沙尘、昆虫、潮湿都会直接影响风扇的运行。一个质
量好的交换机,风扇使用寿命一般在20000小时,风扇到了年限以后,
检测并更换就变得非常重要。因为主动散热性交换机在设计时散热主要
就是靠风扇散热,一旦风扇失效而不及时更换,“10℃法则”将会起作
用:机内环境温度每提高10℃,元器件寿命就降低1/2。交换机的机内
积热将会快速导致交换机性能的下降,直至交换机崩溃。因此,工业交
换机的散热系统设计,也就是热设计就显得尤为重要了。
三、热设计
正是由于过高温度对工业网络设备的影响是致命的,所以在设计这类产
品时,除了设备的元器件要选择宽温度范围的工业级元器件外,更要充
分重视设备的热设计。
电子产品的热设计主要包括散热、加装散热器和制冷三类技术,这里笔
者主要讨论工业网络设备中的散热技术和加装散热器技术。
(一)散热应用中常采用的方法
第一种是传导散热方法,可选用导热系数大的材料来制造传热元件,或
减小接触热阻并尽量缩短热路径。
第二种是对流散热方式,对流散热方式有自然对流散热和强迫对流散热
两种方法。自然对流散热应注意以下几点:
l 设计印制板和元器件时必须留出多余空间;
l 安排元器件时,应注意温度场的合理分布;
l 充分重视应用烟囱拨风原理;
l 加大与对流介质的接触面积。
强迫对流散热方式可采用风机(如计算机上的风扇)或双输入口推拉方
式(如带换热器的推拉方式)。
第三种是利用热辐射特性方式,可以采用加大发热体表面的粗糙度、加
大辐射体周围的环境温差,或加大辐射体表面的面积等方法。
(二)加装散热器
工业电子类设备在热设计中,最常采用的方法是加装散热器,其目的是
控制半导体的温度,尤其是结温Tj,使其低于半导体器件的最大结温
Tjmax,从而提高半导体器件的可靠性。半导体器件和散热器安装在一
起工作时包含:半导体器件内热阻RTj、结温Tj、壳温Tc、散热器温度
Tf、环境温度Ta及半导体器件的使用功率Pc。
散热器的热阻RTf应为:RTf=(RTj-Ta)/Pc-RTj-RTc
散热器热阻RTf是选择散热器的主要依据。Tj、RTj是半导体器件提供的
参数,Pc是设计要求的参数,RTc可以从热设计专业书籍中查到。下面
介绍一下散热器的选择。
1.自然冷却散热器的选择
首先计算总热阻RT和散热器的热阻RTf,即:
RT=(Tjmax-Ta)/Pc
RTf=RT-RTj-RT。
算出RT和RTf之后,可根据RTf和Pc来选择散热器。选择时,根据所选
散热RTf和Pc曲线,在横坐标上查出已知Pc,再查出与Pc对应的散热器
的热阻R'Tf。
按照R'Tf≤RTf的原则,选择合理的散热器即可。
2.强迫风冷散热器的选择
强迫风冷散热器在选择时应根据散热器的热阻RTf和风速来选择合适的
散热器。
3.散热风扇的设计
普通商用交换机的风扇,工作一直处于全速(Full SPD)状态,除其造
成电能浪费、增大整机噪音外,还会增加不必要的电源发热,机箱内灰
尘过多堆积等。更重要的是风扇在全速状态时其寿命约为2万小时,也
就是2.28年(由SANYO FAN DATA SHEET 给出的数据),2万小时后
风扇转速会逐渐下降,给整机带来不稳定因素。但由于没有监控单元,
这种隐患很难发现:例如当交换机丢包率逐渐上升时,并不容易查到是
由于风扇老化转速降低及灰尘堆积太厚导致机箱内关键部件温度升高所
致。
工业交换机应使用高速(High SPD)风扇并带有智能监控电路,实时
监测和控制网络交换机的运行状况,例如监控机箱风扇、主交换芯片温
度、机箱温度,光收发器件温度等,这也就是我们所说的“智能风扇”。
交换机工作过程中智能监控电路会根据被测元件的温度或风扇转速信号
自动调节风扇转速,给网络交换机散热。风扇的转速主要与交换机负载
和环境温度有关。在环境温度一定时,当交换机数据负载减轻时,功耗
减小,风扇转速自动降低,当交换机数据负载加重时,功耗加大,风扇
速转速自动上升。在数据负载一定的情况下,当交换机处在低温环境
时,风扇转速自动降低,处在高温环境时风扇转速自动升高。在高温高
负载情况下,风扇可处在应急高速(High SPD)状态,比全速(Full
SPD)状态更能保证网络安全运行。
4.智能风扇控制器运行特性
采用智能风扇控制技术后可延长风扇寿命,减少机内灰尘堆积、降低风
扇噪声,节约电量使用,保证系统有效工作。另外控制器不仅能对风扇
失效停转、温度超过警戒线提供报警,而且对于由于老化或风道阻力异
常增大、转速低于正常值或监测点温度异常升高等前期隐患均能给出相
应的中英文语音提示,方便网络管理人员将事故消灭在萌芽阶段。
综上所述,由于工业以太网交换机所处的环境的特殊性以及使用时的特
殊性(不能停机),在对付高低温,主要是高温环境时采用的对策与普
通交换机有很多不同的。
(1)对于较低功率情况,一般P≤10W时,尽量不采用风扇散热,而采
用自然散热,如果通过自然对流,或者增大外壳面积、外壳褶皱,或者
采用导热较好的型材,如铝等。
(2)对于功率较大情况,P≥15W时,尤其是有多个光口,甚至是多个单
模光口的情况下,不能靠自然散热解决问题时,应该采用主动散热方式
解决热问题。而主动散热方式目前主要是指加装风扇,但由于工业网络
设备不能停机且要长期运行的特殊性,风扇的使用应有如下考虑。
①风扇不同于普通电子设备的风扇,它应是智能的,智能风扇在使用寿
命以及功能上与普通风扇有质的区别。
②智能风扇应设计为可以热插拨的,也就是在系统不停机情况下,如果
智能风扇系统报警(工作寿命到期等)情况下,可以在线更换风扇。采
取了以上热设计和散热措施,就可以大大提高网络设备的MTBF,延长
其寿命,从而避开法则,使工业网络设备的元器件长期工作在一个“稳
定,舒适”的温度环境中,这样“10℃法则”就不起作用,这样也就保证了自
动化过程中通讯系统的稳定和可靠性。
北京节点通网络技术有限公司