2024年4月1日发(作者:止博)
2010AIME试题及参考答案
2010/03/16 1:30~4:30
lists all the positive divisors of
2010
.She then randomly selects two distinct divisors
from this list. Let p be the probability that exactly one of the selected divisors is a perfect square.
The probability p can be expressed in the form
integers. Find m+n.
22222
解:因为
201023567
,所以它的所有的因数有
(12)81
个,其中是完全
4
2
m
,when m and n are relatively prime positive
n
11
C
16
C
81
26
16
平方数的有
CCCCC216
,所以
p
,所以m+n=107.
2
81
C
81
0
4
1
4
2
4
3
4
4
4
4
the remainder when
999999
99
9
9999‘s
is divided by 1000.
解:
999999
99
9999(10001)
(10
9999
1)
9999‘s
999(1000M1)1000N891
所以余数是109.
e the
y
3
x
and
x
y
y
x
.The quantity x+y can be expressed as a rational number
4
r
,where r and s are relatively prime positive integers. Find r+s.
s
3
yx
解:由
xy
知x>0,y>0,且
ylgxxlgy
,以
yx
带入得:
4
333344
xlgxxlgx,
于是
lgxlglgx
,所以
x()
4
,所以
y()
3
,所以
444433
448
x+y=,所以r+s=529.
81
and Phil have two fair coins and a third coin that comes up heads with probability
4m
.Jackie flips the three coins,and then Phill flips the three be the probablity that
7n
Jackie gets the same number of heads as Phill,where m and n are relatively prime positive integers.
Find m+n.
解:投掷三枚硬币的概率分布列如下:
头像朝上的次数
0
P
1 2 3
3
28
5
14
11
28
1
7
所以两人投掷硬币出现头像朝上的次数相同的概率为:
(
3
2
5111123
)()
2
()
2
()
2
,所以m+n=515.
2814287392
ve integers a,b,c, and d satisfy a>b>c>d,a+b+c+d=2010,and
a
2
b
2
c
2
d
2
2010
. Find the number of possible values of a.
解:易知
abcdabcd
,于是
2222
(ab)(ab1)(cd)(cd1)0
,又因为a>b>c>d,且a,b,c,d均是正整数,所以
a-b=1,c-d=1,即b=a-1,d=c-1,带入a+b+c+d=2010中得,a+c=1006,但a>c,所以a可以取值
504,505,…1004,所以a可能的取值为501个.
P(x) be a quadratic polynomial with real coefficients satisfying
x
2
2x2P(x)2x
2
4x3
for all real numbers x, and suppose P(11)= P(16).
解:
x2x2P(x)2x4x3
可化为
(x1)1P(x)2(x1)1
,所以可
令
P(x)a(x1)b
,由此
P(x)(x1)1(a1)(x1)b10
,所以
222
2222
a1,b1
,而
P(x)2(x1)
2
1(a2)(x1)
2
b10
,所以
a2,b1
,所以
b=1,但P(11)=181,所以100a+1=181,所以a=1.8,所以P(16)=406.
解法二:直接令
P(x)a(x1)1
,易得a=1.8.
an ordered triple (A,B,C) of sets to be minimally intersecting if
2
|AB||BC||CA|1
,
ABC
. For example, ({1,2},{2,3},{1,3,4}) is a
minimally intersecting N be the number of minimally intersecting ordered triples of sets
for which each set is a subset of {1,2,3,4,5,6,7}.Find the remainder when N is dividedi by 1000.
3
解:易知若
AB{a},BC{b},CA{c}
,共有
P
7
种办法,且
a,cA,a,bB,b,cC
,不妨设a=1,b=2,c=3,把剩下的4个数分成4份(有一份是不安插
进来的),安插到A,B,C中,共有
4
种办法,故N=53760.
a real number a,let [a] denote the greatest integer less than or equal to R denote the
region in the coordinate plane consisting of points (x,y) such that
4
[x]
2
[y]
2
25
.
The region R is completely contained in a disk of radius r (a disk is the union of a circle and its
interior). The minimum value of r can be written as
divisible by the square of any prime. Find m+n.
解:易知
[x]0,[y]5
或
[x]5,[y]0
,或
[x]3,[y]4
,或
[x]4,[y]3
,
m
,where m and n are integers and m is not
n
于是
0x1
0x1
或
5y6
5y4
,或
5x6
5x4
或
0y1
0y1
,或
3x4
3x4
3x2
3x2
,或
或或
4y5
4y3
4y5
4y3
4x5
4x5
4x3
4x3
或
,或
或
或
3y43y23y43y2
在平面直角坐标系中画出区域来如下
图:容易得到此图的中心是
(,)
,
4
11
22
6
边界点到其距离的最大值为
130
,所
2
2
以m+n=132.
(a,b,c) be a real solution of the
system of equations
-5510
x
3
xyz2
y
3
xyz6
z
3
xyz20
The
3
-2
-4
greatest
33
possible value of
-6
m
abc
can be written in the form ,where m and n are relatively prime positive
n
m+n.
-8
x
3
2xyz
3
解:易知
y6xyz
,所以
(xyz)(2xyz)(6xyz)(20xyz)
,于是
xyz4
,或
3
z
3
20xyz
xyz
1515
333
,取
xyz
,得
xyz
的最大值为158.
77
N be the number of ways to write 2010 in the form
2010a
3
10
3
a
2
10
2
a
1
10a
0
,where the
a
i
's
are integers, and
0a
i
99
.An
example of such a represention is
110310671040
.Find N.
解:易知
a
3
只能取0,1,2三个值,因此根据
a
3
讨论如下:
(1)当
a
3
=0时,
a
2
10,11,12,13,14,15,16,17,18,19,20
,当
a
2
10
时,
a
1
有8种取法,
当
a
2
20
时,
a
1
有2种取法,其余各有10种取法,共100种取法
32
,2,3,4,5,6,7,8,9,10
,当
a
2
0
时,
a
1
有8种取法,(2)当
a
3
=1时,
a
2
0,1
当
a
2
10
时,
a
1
有2种取法,其余各有10种取法,共100种取法
(3)当
a
3
=2时,
a
2
0
,当
a
2
10
时,
a
1
有2种取法.
故N=202.
R be the region consisting of the set of points in the coordinate plane that satify both
|8x|y10
and
3yx15
,when R is revolved around the line whose equation is
3yx15
,the volume of the resulting solid is
m
np
,where m,n,and p are positive integers,m
and n are relatively prime,and p is not divisible by the square of any m+n+p.
解:画出区域如右图:
9133933
易得
A(,),B(,),C(8,10)
2244
且C到AB的距离为
C
B
d
|310815|
31
2
7
10
A
所以旋转体的体积为
1343
V
d
2
|AB|
3
1210
m+n+p=365.
,所以
m3
be an integer an let
S{3,4,5,,m}
.Find the smallest value of m such that for
every partition of S into two subsets,at least one of the subsets contains integers a,b,and c(not
necessarily distinct) such that ab=c.
Note:a partition of S is a pair of sets A,B such that
AB,ABS
.
解:m=120.
},B{6,8,9,10}
,所以
m12
.下证m=12符合条件. 设
A{3,4,5,7,11
证明:设
A
1
{3,6},A
2
{3,12},A
3
{4,8},A
4
{4,12},A
5
{5,10},A
6
{6,12},
B
1
{7},B
2
{11}
设S集合的一个划分为A,B,若不存在
A
i
A,A
i
B
,则各
A
i
必有一个元素属于A,也必
有一个元素属于B.考察
A
1
,不妨设
3A
,则对于
A
6
,
6A,12A
,于是
A
6
B
矛盾.
故m=12符合条件.
2024年4月1日发(作者:止博)
2010AIME试题及参考答案
2010/03/16 1:30~4:30
lists all the positive divisors of
2010
.She then randomly selects two distinct divisors
from this list. Let p be the probability that exactly one of the selected divisors is a perfect square.
The probability p can be expressed in the form
integers. Find m+n.
22222
解:因为
201023567
,所以它的所有的因数有
(12)81
个,其中是完全
4
2
m
,when m and n are relatively prime positive
n
11
C
16
C
81
26
16
平方数的有
CCCCC216
,所以
p
,所以m+n=107.
2
81
C
81
0
4
1
4
2
4
3
4
4
4
4
the remainder when
999999
99
9
9999‘s
is divided by 1000.
解:
999999
99
9999(10001)
(10
9999
1)
9999‘s
999(1000M1)1000N891
所以余数是109.
e the
y
3
x
and
x
y
y
x
.The quantity x+y can be expressed as a rational number
4
r
,where r and s are relatively prime positive integers. Find r+s.
s
3
yx
解:由
xy
知x>0,y>0,且
ylgxxlgy
,以
yx
带入得:
4
333344
xlgxxlgx,
于是
lgxlglgx
,所以
x()
4
,所以
y()
3
,所以
444433
448
x+y=,所以r+s=529.
81
and Phil have two fair coins and a third coin that comes up heads with probability
4m
.Jackie flips the three coins,and then Phill flips the three be the probablity that
7n
Jackie gets the same number of heads as Phill,where m and n are relatively prime positive integers.
Find m+n.
解:投掷三枚硬币的概率分布列如下:
头像朝上的次数
0
P
1 2 3
3
28
5
14
11
28
1
7
所以两人投掷硬币出现头像朝上的次数相同的概率为:
(
3
2
5111123
)()
2
()
2
()
2
,所以m+n=515.
2814287392
ve integers a,b,c, and d satisfy a>b>c>d,a+b+c+d=2010,and
a
2
b
2
c
2
d
2
2010
. Find the number of possible values of a.
解:易知
abcdabcd
,于是
2222
(ab)(ab1)(cd)(cd1)0
,又因为a>b>c>d,且a,b,c,d均是正整数,所以
a-b=1,c-d=1,即b=a-1,d=c-1,带入a+b+c+d=2010中得,a+c=1006,但a>c,所以a可以取值
504,505,…1004,所以a可能的取值为501个.
P(x) be a quadratic polynomial with real coefficients satisfying
x
2
2x2P(x)2x
2
4x3
for all real numbers x, and suppose P(11)= P(16).
解:
x2x2P(x)2x4x3
可化为
(x1)1P(x)2(x1)1
,所以可
令
P(x)a(x1)b
,由此
P(x)(x1)1(a1)(x1)b10
,所以
222
2222
a1,b1
,而
P(x)2(x1)
2
1(a2)(x1)
2
b10
,所以
a2,b1
,所以
b=1,但P(11)=181,所以100a+1=181,所以a=1.8,所以P(16)=406.
解法二:直接令
P(x)a(x1)1
,易得a=1.8.
an ordered triple (A,B,C) of sets to be minimally intersecting if
2
|AB||BC||CA|1
,
ABC
. For example, ({1,2},{2,3},{1,3,4}) is a
minimally intersecting N be the number of minimally intersecting ordered triples of sets
for which each set is a subset of {1,2,3,4,5,6,7}.Find the remainder when N is dividedi by 1000.
3
解:易知若
AB{a},BC{b},CA{c}
,共有
P
7
种办法,且
a,cA,a,bB,b,cC
,不妨设a=1,b=2,c=3,把剩下的4个数分成4份(有一份是不安插
进来的),安插到A,B,C中,共有
4
种办法,故N=53760.
a real number a,let [a] denote the greatest integer less than or equal to R denote the
region in the coordinate plane consisting of points (x,y) such that
4
[x]
2
[y]
2
25
.
The region R is completely contained in a disk of radius r (a disk is the union of a circle and its
interior). The minimum value of r can be written as
divisible by the square of any prime. Find m+n.
解:易知
[x]0,[y]5
或
[x]5,[y]0
,或
[x]3,[y]4
,或
[x]4,[y]3
,
m
,where m and n are integers and m is not
n
于是
0x1
0x1
或
5y6
5y4
,或
5x6
5x4
或
0y1
0y1
,或
3x4
3x4
3x2
3x2
,或
或或
4y5
4y3
4y5
4y3
4x5
4x5
4x3
4x3
或
,或
或
或
3y43y23y43y2
在平面直角坐标系中画出区域来如下
图:容易得到此图的中心是
(,)
,
4
11
22
6
边界点到其距离的最大值为
130
,所
2
2
以m+n=132.
(a,b,c) be a real solution of the
system of equations
-5510
x
3
xyz2
y
3
xyz6
z
3
xyz20
The
3
-2
-4
greatest
33
possible value of
-6
m
abc
can be written in the form ,where m and n are relatively prime positive
n
m+n.
-8
x
3
2xyz
3
解:易知
y6xyz
,所以
(xyz)(2xyz)(6xyz)(20xyz)
,于是
xyz4
,或
3
z
3
20xyz
xyz
1515
333
,取
xyz
,得
xyz
的最大值为158.
77
N be the number of ways to write 2010 in the form
2010a
3
10
3
a
2
10
2
a
1
10a
0
,where the
a
i
's
are integers, and
0a
i
99
.An
example of such a represention is
110310671040
.Find N.
解:易知
a
3
只能取0,1,2三个值,因此根据
a
3
讨论如下:
(1)当
a
3
=0时,
a
2
10,11,12,13,14,15,16,17,18,19,20
,当
a
2
10
时,
a
1
有8种取法,
当
a
2
20
时,
a
1
有2种取法,其余各有10种取法,共100种取法
32
,2,3,4,5,6,7,8,9,10
,当
a
2
0
时,
a
1
有8种取法,(2)当
a
3
=1时,
a
2
0,1
当
a
2
10
时,
a
1
有2种取法,其余各有10种取法,共100种取法
(3)当
a
3
=2时,
a
2
0
,当
a
2
10
时,
a
1
有2种取法.
故N=202.
R be the region consisting of the set of points in the coordinate plane that satify both
|8x|y10
and
3yx15
,when R is revolved around the line whose equation is
3yx15
,the volume of the resulting solid is
m
np
,where m,n,and p are positive integers,m
and n are relatively prime,and p is not divisible by the square of any m+n+p.
解:画出区域如右图:
9133933
易得
A(,),B(,),C(8,10)
2244
且C到AB的距离为
C
B
d
|310815|
31
2
7
10
A
所以旋转体的体积为
1343
V
d
2
|AB|
3
1210
m+n+p=365.
,所以
m3
be an integer an let
S{3,4,5,,m}
.Find the smallest value of m such that for
every partition of S into two subsets,at least one of the subsets contains integers a,b,and c(not
necessarily distinct) such that ab=c.
Note:a partition of S is a pair of sets A,B such that
AB,ABS
.
解:m=120.
},B{6,8,9,10}
,所以
m12
.下证m=12符合条件. 设
A{3,4,5,7,11
证明:设
A
1
{3,6},A
2
{3,12},A
3
{4,8},A
4
{4,12},A
5
{5,10},A
6
{6,12},
B
1
{7},B
2
{11}
设S集合的一个划分为A,B,若不存在
A
i
A,A
i
B
,则各
A
i
必有一个元素属于A,也必
有一个元素属于B.考察
A
1
,不妨设
3A
,则对于
A
6
,
6A,12A
,于是
A
6
B
矛盾.
故m=12符合条件.