最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

数理统计期末考试试题答案

IT圈 admin 48浏览 0评论

2024年4月1日发(作者:溥令枫)

1. Let

X

1

,X

2

,



,X

n

be a random sample from the

Gamma(

,

)

distribution

f(x|

,

)

1

(

)

x

1

e

,

x0

,

0

,

0

.

x

(a) ( 8 %) Find the method of moment estimates of

and

.

(b) ( 7 %) Find the MLE of

, assuming

is known.

(c) ( 7 %) Giving

0

, find the Cramer-Rao lower bound of estimates of

.

(d) ( 8 %) Giving

0

, find the UMVUE of

.

2. Suppose that

X

1

,X

2

,



,X

n

are iid ~

B(2,p)

,

p(0,1)

. Let

(p)2p(1p)

.

(a) ( 5 %) Show that

T

X

i

is a sufficient statistic for

p

.

i

1

n

1, if X

1

1

(b) ( 5 %) Let

Y

. Show that

Y

is an unbiased estimate of

(p)

.

0, if X

1

1

(c) (10%) Find the UMVUE

W

of

(p)

.

3. Let

X

1

, X

2

,



,X

n

be a random sample from a

Poisson(

)

,

0

, distribution.

Consider testing

H

0

:

1

vs

H

1

:

3

.

(a) (10%) Find a UMP level

test,

0

1

.

(b) ( 7 %) For

n3

, the test rejects

H

0

, if

X

1

X

2

X

3

5

.

Find the power function

(

)

of the test.

(c) ( 8 %) For

n3

, the test rejects

H

0

, if

X

1

X

2

X

3

5

.

Evaluate the size and the power of the test.

4. (10%) Let

X

1

, X

2

,



,X

n

be iid

Poisson()

distribution, and let the prior

distribution of

be a

Gamma(

,

)

distribution,

0

,

0

. Find the

posterior distribution of

.

5. Let

X

1

, X

2

,



,X

n

be a random sample from an exponential distribution with mean

,

0

.

(a) ( 5 %) Show that

T

X

i

is a sufficient statistic n for

.

i

1

n

(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR.

(c) ( 5 %) Find a UMP level

test of

H

0

:0

1

vs

H

1

:

1

by the

Karlin-Rubin Theorem shown below.

[Definition] A family of pdfs or pmfs

{g(t|

)|

}

has a monotone likelihood ratio,

g(t|

2

)

MLR, if for every

2

1

,

is a monotone function of

t

.

g(t|

1

)

[Karlin-Rubin Theorem] Suppose that

T

is a sufficient statistic for

and the pdfs or

pmfs

{g(t|

)|

}

has a non-decreasing monotone likelihood ratio.

Consider testing

H

0

:

0

vs

H

1

:

0

. A UMP level

test rejects

H

0

if and only if

Tt

0

, where

P

(Tt

0

)

.

0

1

數理統計期末考試試題答案

1. (a) Since

E(X)

0

0

(

)

1

x

1

(

1)

1

xedx





and



x

(

)

E(X)

2

(

)

2

m

1

1

(

2)

2

edx



(

1)

2

,

x

(

)

Let

m

1



and

m

2

(

1)

2

2

mmm

1

21

~

,

~

.

2

m

1

m

2

m

1

m

2

2

m

1

1

~

Furthermore,

m

1

X

,

1

2

m

2

m

1

n

i

1

n

1

X

i

2

X

2

n

i

1

(X

i

2

X)

2

n

(n

1)

2

S

,

n

2

(n1)S

~

The MME of

.and

are

,

2

nX

(n

1)S

nX

2

~

(b)

L(

|

,

~

x)



[

i

1

n

1

(

)

1

x

i

e]

x

i

1

[

(

)

]

n

i

1

n

1

(

x

i

)e

n

i

1

x

i

n

x)



nln

(

)

n

ln

(

1)

lnx

i

i

1

lnL(

|

,

~

i

1

x

1

n

n

n

1

n

1x

~

ˆ

Let

lnL(

|

,x)



x

0

x

i

i

.



2

i

1

n

i

1

n

2

n

n

2nx

~

Furthermore,

lnL(

|

,x)



lnx



i

223

23



i

1



n

2nxnx

2nx

n

ˆ

|

,

~

lnL(

x)

0

,

22332

ˆˆ



xx

ˆ

X

is the MLE of

. So,

2

2

n

2

n

n

2n



n

~

lnL(

|

,x)]

E

(



X)



(c)

E

[

223

i

232



i

1



2

CRLB =

E

[

(d) Since

E

(

2

2

2

n

lnL(

|

,

~

x)]

1

X

)



ˆ

X

is an unbiased estimate of

, and

,

2

1



2

2

ˆ

X

is the UMVUE of

.

Var()



CRLB,

n

2

n

X

[Or]

f(x|

,

)

1

(

)

(

)

Given

,

{f(x|

)}

is an exponential family in

.

I

(0,

)

(x)x

1

e

x

11

I

(0,

)

(x)x

1

exp[x(

)]

T

X

i

is a sufficient statistic for

.

i

1

n

ˆ

X

T

is an unbiased estimate of

and a function of sufficient Since

n

ˆ

X

is the UMVUE of

. statistics

T

, by Rao-Blackwell Theorem,

nn

2

x

i

2

x

i

2. (a)

f(x

1

,x

2

,,x

n

|p)

f(x

i

|p)

[

I(x)p(1

p)]

x

{0,1,2}i

i

1i

1

i

x

i

p

x

i

p

i

2

1

(1

p)

2n



[

I(x)()(1

p)]

[I(x)]()

{0,1,2}i{0,1,2}i

x



x

1

p1

p

i



i

1i

1

i

n

2

p

T(

~

x)2n

~

Let

g(T(x),p)

(

I

{0,1,2}

(

x

i

)

. By

)(1p)

and

h(x)



x

1

p

i

1

i

n

2

n

2

n

factorization theorem,

T

X

i

is a sufficient statistic for

p

.

i

1

n

2

p

x2

x

2

2



[Or]

f(x|p)

I(x)p(1

p)

I(x)(1

p)exp[xln()]

x

{0,1,2}

x

{0,1,2}

1

p



{f(x|p)}

is an exponential family

T

X

i

is a sufficient statistic.

i

1

n

2

12

1

(b)

E(Y)

1

P(X

1

1)

0

P(X

1

1)

2p(1p)

, so

Y

is an

1

p(1p)



unbiased estimate of

(p)

.

(c) If

X

1

,X

2

,



,X

n

,

nN

, are iid ~

B(2,p)

, then

T

X

i

~

B

(2

n

,

p

)

.

i

1

n

E(Y|T

t)

P(Y

1 &T

t)

P(X

1

1 &T

t)



P(T

t)P(T

t)

n

P(X

1

1 &

X

i

t

1)

i

2

n

P(T

t)

P(X

1

1)P(

X

i

t

1)

i

2

P(T

t)

2n

2

t

12n

t

1

2p(1

p)

p(1

p)

t

1



2n

t2n

t



p(1

p)

t



2(2n

2)!t!(2n

t)!t(2n

t)

,

t0,1,2,,2n

.

(t

1)!(2n

t

1)!(2n)!n(2n

1)

T(n

T)

By Rao-Blackwell Theorem,

W

E(Y|T)

is the UMVUE of

(

)e

.

2(2n

1)

3

2024年4月1日发(作者:溥令枫)

1. Let

X

1

,X

2

,



,X

n

be a random sample from the

Gamma(

,

)

distribution

f(x|

,

)

1

(

)

x

1

e

,

x0

,

0

,

0

.

x

(a) ( 8 %) Find the method of moment estimates of

and

.

(b) ( 7 %) Find the MLE of

, assuming

is known.

(c) ( 7 %) Giving

0

, find the Cramer-Rao lower bound of estimates of

.

(d) ( 8 %) Giving

0

, find the UMVUE of

.

2. Suppose that

X

1

,X

2

,



,X

n

are iid ~

B(2,p)

,

p(0,1)

. Let

(p)2p(1p)

.

(a) ( 5 %) Show that

T

X

i

is a sufficient statistic for

p

.

i

1

n

1, if X

1

1

(b) ( 5 %) Let

Y

. Show that

Y

is an unbiased estimate of

(p)

.

0, if X

1

1

(c) (10%) Find the UMVUE

W

of

(p)

.

3. Let

X

1

, X

2

,



,X

n

be a random sample from a

Poisson(

)

,

0

, distribution.

Consider testing

H

0

:

1

vs

H

1

:

3

.

(a) (10%) Find a UMP level

test,

0

1

.

(b) ( 7 %) For

n3

, the test rejects

H

0

, if

X

1

X

2

X

3

5

.

Find the power function

(

)

of the test.

(c) ( 8 %) For

n3

, the test rejects

H

0

, if

X

1

X

2

X

3

5

.

Evaluate the size and the power of the test.

4. (10%) Let

X

1

, X

2

,



,X

n

be iid

Poisson()

distribution, and let the prior

distribution of

be a

Gamma(

,

)

distribution,

0

,

0

. Find the

posterior distribution of

.

5. Let

X

1

, X

2

,



,X

n

be a random sample from an exponential distribution with mean

,

0

.

(a) ( 5 %) Show that

T

X

i

is a sufficient statistic n for

.

i

1

n

(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR.

(c) ( 5 %) Find a UMP level

test of

H

0

:0

1

vs

H

1

:

1

by the

Karlin-Rubin Theorem shown below.

[Definition] A family of pdfs or pmfs

{g(t|

)|

}

has a monotone likelihood ratio,

g(t|

2

)

MLR, if for every

2

1

,

is a monotone function of

t

.

g(t|

1

)

[Karlin-Rubin Theorem] Suppose that

T

is a sufficient statistic for

and the pdfs or

pmfs

{g(t|

)|

}

has a non-decreasing monotone likelihood ratio.

Consider testing

H

0

:

0

vs

H

1

:

0

. A UMP level

test rejects

H

0

if and only if

Tt

0

, where

P

(Tt

0

)

.

0

1

數理統計期末考試試題答案

1. (a) Since

E(X)

0

0

(

)

1

x

1

(

1)

1

xedx





and



x

(

)

E(X)

2

(

)

2

m

1

1

(

2)

2

edx



(

1)

2

,

x

(

)

Let

m

1



and

m

2

(

1)

2

2

mmm

1

21

~

,

~

.

2

m

1

m

2

m

1

m

2

2

m

1

1

~

Furthermore,

m

1

X

,

1

2

m

2

m

1

n

i

1

n

1

X

i

2

X

2

n

i

1

(X

i

2

X)

2

n

(n

1)

2

S

,

n

2

(n1)S

~

The MME of

.and

are

,

2

nX

(n

1)S

nX

2

~

(b)

L(

|

,

~

x)



[

i

1

n

1

(

)

1

x

i

e]

x

i

1

[

(

)

]

n

i

1

n

1

(

x

i

)e

n

i

1

x

i

n

x)



nln

(

)

n

ln

(

1)

lnx

i

i

1

lnL(

|

,

~

i

1

x

1

n

n

n

1

n

1x

~

ˆ

Let

lnL(

|

,x)



x

0

x

i

i

.



2

i

1

n

i

1

n

2

n

n

2nx

~

Furthermore,

lnL(

|

,x)



lnx



i

223

23



i

1



n

2nxnx

2nx

n

ˆ

|

,

~

lnL(

x)

0

,

22332

ˆˆ



xx

ˆ

X

is the MLE of

. So,

2

2

n

2

n

n

2n



n

~

lnL(

|

,x)]

E

(



X)



(c)

E

[

223

i

232



i

1



2

CRLB =

E

[

(d) Since

E

(

2

2

2

n

lnL(

|

,

~

x)]

1

X

)



ˆ

X

is an unbiased estimate of

, and

,

2

1



2

2

ˆ

X

is the UMVUE of

.

Var()



CRLB,

n

2

n

X

[Or]

f(x|

,

)

1

(

)

(

)

Given

,

{f(x|

)}

is an exponential family in

.

I

(0,

)

(x)x

1

e

x

11

I

(0,

)

(x)x

1

exp[x(

)]

T

X

i

is a sufficient statistic for

.

i

1

n

ˆ

X

T

is an unbiased estimate of

and a function of sufficient Since

n

ˆ

X

is the UMVUE of

. statistics

T

, by Rao-Blackwell Theorem,

nn

2

x

i

2

x

i

2. (a)

f(x

1

,x

2

,,x

n

|p)

f(x

i

|p)

[

I(x)p(1

p)]

x

{0,1,2}i

i

1i

1

i

x

i

p

x

i

p

i

2

1

(1

p)

2n



[

I(x)()(1

p)]

[I(x)]()

{0,1,2}i{0,1,2}i

x



x

1

p1

p

i



i

1i

1

i

n

2

p

T(

~

x)2n

~

Let

g(T(x),p)

(

I

{0,1,2}

(

x

i

)

. By

)(1p)

and

h(x)



x

1

p

i

1

i

n

2

n

2

n

factorization theorem,

T

X

i

is a sufficient statistic for

p

.

i

1

n

2

p

x2

x

2

2



[Or]

f(x|p)

I(x)p(1

p)

I(x)(1

p)exp[xln()]

x

{0,1,2}

x

{0,1,2}

1

p



{f(x|p)}

is an exponential family

T

X

i

is a sufficient statistic.

i

1

n

2

12

1

(b)

E(Y)

1

P(X

1

1)

0

P(X

1

1)

2p(1p)

, so

Y

is an

1

p(1p)



unbiased estimate of

(p)

.

(c) If

X

1

,X

2

,



,X

n

,

nN

, are iid ~

B(2,p)

, then

T

X

i

~

B

(2

n

,

p

)

.

i

1

n

E(Y|T

t)

P(Y

1 &T

t)

P(X

1

1 &T

t)



P(T

t)P(T

t)

n

P(X

1

1 &

X

i

t

1)

i

2

n

P(T

t)

P(X

1

1)P(

X

i

t

1)

i

2

P(T

t)

2n

2

t

12n

t

1

2p(1

p)

p(1

p)

t

1



2n

t2n

t



p(1

p)

t



2(2n

2)!t!(2n

t)!t(2n

t)

,

t0,1,2,,2n

.

(t

1)!(2n

t

1)!(2n)!n(2n

1)

T(n

T)

By Rao-Blackwell Theorem,

W

E(Y|T)

is the UMVUE of

(

)e

.

2(2n

1)

3

发布评论

评论列表 (0)

  1. 暂无评论