2024年4月12日发(作者:果郎)
JOURNALOFGEOPHYSICALRESEARCH,VOL.116,G04021,doi:10.1029/2011JG001708,2011
Mappingforestcanopyheightgloballywithspacebornelidar
MarcSimard,
1
NaiaraPinto,
2
,
1
andAlessandroBaccini
3
Received17March2011;revised19August2011;accepted27August2011;published19November2011.
[
1
]
Datafromspacebornelightdetectionandranging(lidar)opensthepossibilitytomap
entawall‐to‐wall,globalmapofcanopy
heightat1‐kmspatialresolution,using2005datafromtheGeoscienceLaserAltimeter
System(GLAS)aboardICESat(Ice,Cloud,andlandElevationSatellite).Achallengein
theuseofGLASdataforglobalvegetationstudiesisthesparsecoverageoflidarshots
(mean=121datapoints/degree
2
fortheL3Ccampaign).However,GLAS‐derived
canopyheight(RH100)valueswerehighlycorrelatedwithother,morespatiallydense,
ancillaryvariablesavailableglobally,whichallowedustomodelglobalRH100from
foresttype,treecover,elevation,ferencebetweenthemodel
predictedRH100andfootprintlevellidar‐derivedRH100valuesshowedthaterror
increasedinclosedbroadleavedforestssuchastheAmazon,underscoringthechallenges
inmappingtall(>40m)ultingmapwasvalidatedwithfield
eledRH100versusinsitucanopyheight
error(RMSE=6.1m,R
2
=0.5;or,RMSE=4.4m,R
2
=0.7without7outliers)is
conservativeasitalsoincludesmeasurementuncertaintyandsubpixelvariabilitywithin
the1‐ultswerecomparedagainstarecentlypublishedcanopyheight
dourvaluestobeingeneraltallerandmorestronglycorrelatedwith
revealsagloballatitudinalgradientincanopyheight,increasing
towardstheequator,aswellascoarseforestdisturbancepatterns.
Citation:Simard,M.,,,i(2011),Mappingforestcanopyheightgloballywithspaceborne
lidar,.,116,G04021,doi:10.1029/2011JG001708.
uction
[
2
]Forestverticalstructureremainspoorlycharacterized
despitebeingapredictorofabovegroundlivebiomass
[Lefskyetal.,2002;Drakeetal.,2002;Andersonetal.,
2006],primaryproductivity[Thomasetal.,2008],and
biodiversity[Goetzetal.,2007].Here,wemodelforest
verticalstructureusingdatafromtheGeoscienceLaser
AltimeterSystem(GLAS)aboardICESat(Ice,Cloud,and
landElevationSatellite).Thealtimetertransmitteda1024nm
lightpulseandrecordedthereflectedsignal(waveform)
[Zwallyetal.,2002].Weusethesedatatoconstructaglobal
wall‐to‐wallmapofforestcanopyheight.
[
3
]ICESat/GLASacquireddatagloballybetween2003
r,lidarshotsprovideanincompletecov-
otprintswereapproximately65m
indiameter,spacedby170malongtrackandseveraltensof
kilometersacrosstracks,adistancethatincreasedinthetro-
oundthisdatadearth,obstructionbyclouds
,producingawall‐to‐wallmap
JetPropulsionLaboratory,CaliforniaInstituteofTechnology,
Pasadena,California,USA.
2
DepartmentofGeography,UniversityofMaryland,CollegePark,
Maryland,USA.
3
WoodsHoleResearchCenter,Falmouth,Massachusetts,USA.
Copyright2011bytheAmericanGeophysicalUnion.
0148‐0227/11/2011JG001708
1
requiresexploitingtherelationshipbetweenfootprintlevel
lidar‐derivedcanopyheightestimatesandspatiallycontinu-
ousancillaryvariables,suchasdatafromtheModerate
ResolutionImagingSpectroradiometer(MODIS).
[
4
]Therearenumerousapproachestoassociatethesparse
lidarfootprintswiththespatiallycontinuousancillaryvari-
ionistosegmentorclassifythestudysiteto
obtainpatchesthatshareameaningfulecologicalparameter
(,speciescomposition),suchthatlidarmeasurements
,Lefskyetal.,2005a;
Boudreauetal.,2008].Arecentglobalcanopyheightmap
[Lefsky,2010]wasproducedbysegmentingMODISreflec-
ethatthose
resultscanbedifficulttointerpretatcoarseresolutiongiven
that(i)MODISimagesweresegmentedbasedonspectral/
texturalheterogeneitythresholdsthatdonotreadilytranslate
intoforeststandproperties;(ii)modelerrorcanbeattributed
tobothsub‐pixel(500‐mMODIS)andsub‐patch(1–900
MODISpixels)ternative,weproposeto
associateselectedGLASshotswith1‐kmpixelsaswe
believethatintheabsenceofhigh‐resolutionforestdistur-
bance/agemapstoserveassegments,thepixelapproach
deservesevaluation.
[
5
]Weproducedaglobalwall‐to‐wallcanopyheightmap
bycombiningGLASRH100estimatesandglobalancillary
peralsoextendspreviouswork[Lefsky,
2010]byvalidatingresultsagainstfieldmeasurementsand
1of12
G04021
G04021SIMARDETAL.:FORESTHEIGHTWITHSPACEBORNELIDARG04021
consideringtheimpactofsub‐pixelvariabilityonmodel
ingcanopyheightglobally,weareinter-
estedincharacterizingfine‐scalevariability(attributableto
disturbance)againstabackdropofgenerallymorecoarsely
atgoalin
mind,weselectedgloballyavailableclimate,elevation,and
cludestheMOD44Bpercent
treecoverproduct[Hansenetal.,2003]fromMODIS,ele-
vationfromtheShuttleRadarTopographyMission,SRTM
[Farretal.,2007],aswellasclimatologymapsfromthe
TropicalRainfallMeasuringMission,TRMM[Kummerow
etal.,1998]andWorldclimdatabase[Hijmansetal.,2005].
Allancillaryvariableswereresampledtobringtheresolution
oftheoutputwall‐to‐wallmapto1‐km.
[
6
]Inthecontextofbuildingasystematicalgorithm,the
firststepwastodevelopanobjectiveproceduretoselect
waveformsandcorrectslope‐induceddistortionsinRH100
[Lefskyetal.,2005b]andcalibratecanopyheightestimates;
RH100estimateswerecalibratedwithfieldmeasurements.
Second,weusedaregressiontreeapproachtomodellidar
y,model
predictionswereindependentlyvalidatedagainstfieldesti-
matesfrom66FLUXNETsitesdistributedgloballyand
coveringabroadrangeofforesttypes.
[
7
]Ourerroranalysisaccountedforthedisparityinscales
betweenlidarfootprintsandtheresolutionoftheancillary
odel,lidarshotseffectivelyrepresented
samplesoftheunderlyingforeststructure,anddidnotalways
intersectthetallesttreewithina1‐sely,
ancillaryvariablesmightnotalwaysreflecttheenvironmental
conditionsatthelidarfootprint,butrathercomprisean
averageover1‐km
2
.Duetothescarcityoffine‐resolution
globalvegetationmaps,wehaveexaminedtheimpactofsub
pixelvariabilityonmodelerrorindirectlybylookingattwo
surrogatesofforestheterogeneity:degreeofdisturbanceand
,wehypothesizethatourestimatesatpro-
tectedsites(asdefinedbytheUNWorldDatabaseonPro-
tectedAreas,)havelesserrorduetoless
structuralvariabilityassociatedwithanthropogenicdistur-
,wehypothesizethatacrossforesttypes,
modelerrorincreaseswithvarianceincanopyheight.
[
8
]Theresultingwall‐to‐wallmapcanbedownloaded
fromtheweb()andreveals
regionalcanopyheightgradientsaswellascoarsedistur-
ultswerecomparedagainstanother
canopyheightproduct[Lefsky,2010],anddifferenceswere
examinedinlightofthechoiceofcalibrationalgorithm,
ancillaryvariables,andmodelingprocedures.
ationoftheGaussiandis-
tributionsisconstrainedtobebetweenthesignalbeginning
lly,thegroundcanbedeterminedasthelast
Gaussianpeak,whichworksbestinflatareasandopen
closedcanopies,locatingthegroundis
sometimesdifficult(elastpeakhaslowampli-
tuderelativetoanotherneighboringpeak)[Boudreauetal.,
2008].Ithasbeenshownthatusingaregressionthrough
waveformextentandaterrainindexderivedfromanancil-
laryDEMcanalleviategrounddetectionissuesandimprove
canopyheightestimates[Lefskyetal.,2005b;Rosetteetal.,
2008].However,theregressionsmaybesitespecificand
therhand,Rosette
etal.[2008]obtainedreasonableresultsusingthelocationof
thelastGaussianpeakasthegroundleveland,importantly,
foundithadthelowestmeanerror(0.39m).Sincethe
regressiontreemethodologyessentiallyrepresentsoverall
trends,itisimportantthatpotentialbiasintheGLASesti-
mateofcanopyheightbeminimized.
[
10
]Afterthesystematicselectionprocessdescribedin
section2.2,theRH100valueswereroundedtothenearest
meterandusedasinputintheregressiontreetoproducea
wall‐to‐wallcanopyheightmap(seesection2.3).Ifmore
thanoneGLASshotintersecteda1‐kmpixel,allpoints
doflocallycombiningmultipleGLAS
shots,modelaveragingisperformedasthelaststepofthe
regressiontreeapproach(seesection2.3).
rmSelection
[
11
]WeselectedthedataacquiredwithlaserL3C
between2005‐05‐20and2005‐06‐mpaignwas
chosenduetoitstemporaloverlapwiththe2005MODIS
PercentTreeCoverproduct(MOD44B).
[
12
]Theoverallgoalofthewaveformselectionprocedure
wastoisolatedatapointsfromforestedsiteswhilereducing
theimpactofslopesandcloudcontaminationoncanopy
ctedGLASshotsthatfellwithina
forestclassasdefinedbytheGlobcovermap[Hagolleetal.,
2005].Becausethe65mGLASfootprintsamplesonlya
fractionofthe1‐km
2
landcoverpixel,notallwaveformsare
aseswereproblematicgiven
ourobjectivetomodelthetallestcanopiesasopposedto
rethatshotswerereflected
fromaforestcanopy,weselectedwaveformscharacterized
bymorethanoneGaussianpeak,assumingthatwaveforms
withasinglepeakareduetogroundreflectiononly.
[
13
]GLA14waveformswerealsofilteredusingengi-
neeringandsignalparameterstoaccountforcloudcover
14productcontainsacloud
d,we
computedtheSignal‐to‐NoiseRatio(SNR)todetect
waveformhinderedbycloudsaswellaswaveformswith
-
therremovewaveformswithsignaldominatedbyclouds,
weselectedwaveformsthatwereco‐locatedclosetothe
groundasdefinedbySRTM(80mtoaccountfor
forestheightandSRTMelevationerrors).
[
14
]Terrainslopeisthemainfactorcontributingtocanopy
heightestimationerror[Lefskyetal.,2005b;Duncanson
etal.,2010].Theimpactofslopeistobroadenthelidar
waveform,therebyintroducingabiasincanopyheight
rgefootprintlidarsuchasGLAS,pulse
s
HeightEstimation
[
9
]OuranalyseswerebasedontheGLA14landproduct
A14waveformisafitoftheoriginal
GLASwaveform,modeledbyamaximumof6Gaussian
distributions[Brenneretal.,2003].TheGLAS‐derived
estimateofcanopyheightisthewaveformmetricRH100,
definedasthedistancebetweensignalbeginningandthe
locationofthelidargroundpeak[HardingandCarabajal,
2005;Sunetal.,2008;Boudreauetal.,2008].Inthe
GLA14productversion31,thesignalbeginningisdefined
asthelocationatwhichthesignalis3.5timesabovethe
2of12
2024年4月12日发(作者:果郎)
JOURNALOFGEOPHYSICALRESEARCH,VOL.116,G04021,doi:10.1029/2011JG001708,2011
Mappingforestcanopyheightgloballywithspacebornelidar
MarcSimard,
1
NaiaraPinto,
2
,
1
andAlessandroBaccini
3
Received17March2011;revised19August2011;accepted27August2011;published19November2011.
[
1
]
Datafromspacebornelightdetectionandranging(lidar)opensthepossibilitytomap
entawall‐to‐wall,globalmapofcanopy
heightat1‐kmspatialresolution,using2005datafromtheGeoscienceLaserAltimeter
System(GLAS)aboardICESat(Ice,Cloud,andlandElevationSatellite).Achallengein
theuseofGLASdataforglobalvegetationstudiesisthesparsecoverageoflidarshots
(mean=121datapoints/degree
2
fortheL3Ccampaign).However,GLAS‐derived
canopyheight(RH100)valueswerehighlycorrelatedwithother,morespatiallydense,
ancillaryvariablesavailableglobally,whichallowedustomodelglobalRH100from
foresttype,treecover,elevation,ferencebetweenthemodel
predictedRH100andfootprintlevellidar‐derivedRH100valuesshowedthaterror
increasedinclosedbroadleavedforestssuchastheAmazon,underscoringthechallenges
inmappingtall(>40m)ultingmapwasvalidatedwithfield
eledRH100versusinsitucanopyheight
error(RMSE=6.1m,R
2
=0.5;or,RMSE=4.4m,R
2
=0.7without7outliers)is
conservativeasitalsoincludesmeasurementuncertaintyandsubpixelvariabilitywithin
the1‐ultswerecomparedagainstarecentlypublishedcanopyheight
dourvaluestobeingeneraltallerandmorestronglycorrelatedwith
revealsagloballatitudinalgradientincanopyheight,increasing
towardstheequator,aswellascoarseforestdisturbancepatterns.
Citation:Simard,M.,,,i(2011),Mappingforestcanopyheightgloballywithspaceborne
lidar,.,116,G04021,doi:10.1029/2011JG001708.
uction
[
2
]Forestverticalstructureremainspoorlycharacterized
despitebeingapredictorofabovegroundlivebiomass
[Lefskyetal.,2002;Drakeetal.,2002;Andersonetal.,
2006],primaryproductivity[Thomasetal.,2008],and
biodiversity[Goetzetal.,2007].Here,wemodelforest
verticalstructureusingdatafromtheGeoscienceLaser
AltimeterSystem(GLAS)aboardICESat(Ice,Cloud,and
landElevationSatellite).Thealtimetertransmitteda1024nm
lightpulseandrecordedthereflectedsignal(waveform)
[Zwallyetal.,2002].Weusethesedatatoconstructaglobal
wall‐to‐wallmapofforestcanopyheight.
[
3
]ICESat/GLASacquireddatagloballybetween2003
r,lidarshotsprovideanincompletecov-
otprintswereapproximately65m
indiameter,spacedby170malongtrackandseveraltensof
kilometersacrosstracks,adistancethatincreasedinthetro-
oundthisdatadearth,obstructionbyclouds
,producingawall‐to‐wallmap
JetPropulsionLaboratory,CaliforniaInstituteofTechnology,
Pasadena,California,USA.
2
DepartmentofGeography,UniversityofMaryland,CollegePark,
Maryland,USA.
3
WoodsHoleResearchCenter,Falmouth,Massachusetts,USA.
Copyright2011bytheAmericanGeophysicalUnion.
0148‐0227/11/2011JG001708
1
requiresexploitingtherelationshipbetweenfootprintlevel
lidar‐derivedcanopyheightestimatesandspatiallycontinu-
ousancillaryvariables,suchasdatafromtheModerate
ResolutionImagingSpectroradiometer(MODIS).
[
4
]Therearenumerousapproachestoassociatethesparse
lidarfootprintswiththespatiallycontinuousancillaryvari-
ionistosegmentorclassifythestudysiteto
obtainpatchesthatshareameaningfulecologicalparameter
(,speciescomposition),suchthatlidarmeasurements
,Lefskyetal.,2005a;
Boudreauetal.,2008].Arecentglobalcanopyheightmap
[Lefsky,2010]wasproducedbysegmentingMODISreflec-
ethatthose
resultscanbedifficulttointerpretatcoarseresolutiongiven
that(i)MODISimagesweresegmentedbasedonspectral/
texturalheterogeneitythresholdsthatdonotreadilytranslate
intoforeststandproperties;(ii)modelerrorcanbeattributed
tobothsub‐pixel(500‐mMODIS)andsub‐patch(1–900
MODISpixels)ternative,weproposeto
associateselectedGLASshotswith1‐kmpixelsaswe
believethatintheabsenceofhigh‐resolutionforestdistur-
bance/agemapstoserveassegments,thepixelapproach
deservesevaluation.
[
5
]Weproducedaglobalwall‐to‐wallcanopyheightmap
bycombiningGLASRH100estimatesandglobalancillary
peralsoextendspreviouswork[Lefsky,
2010]byvalidatingresultsagainstfieldmeasurementsand
1of12
G04021
G04021SIMARDETAL.:FORESTHEIGHTWITHSPACEBORNELIDARG04021
consideringtheimpactofsub‐pixelvariabilityonmodel
ingcanopyheightglobally,weareinter-
estedincharacterizingfine‐scalevariability(attributableto
disturbance)againstabackdropofgenerallymorecoarsely
atgoalin
mind,weselectedgloballyavailableclimate,elevation,and
cludestheMOD44Bpercent
treecoverproduct[Hansenetal.,2003]fromMODIS,ele-
vationfromtheShuttleRadarTopographyMission,SRTM
[Farretal.,2007],aswellasclimatologymapsfromthe
TropicalRainfallMeasuringMission,TRMM[Kummerow
etal.,1998]andWorldclimdatabase[Hijmansetal.,2005].
Allancillaryvariableswereresampledtobringtheresolution
oftheoutputwall‐to‐wallmapto1‐km.
[
6
]Inthecontextofbuildingasystematicalgorithm,the
firststepwastodevelopanobjectiveproceduretoselect
waveformsandcorrectslope‐induceddistortionsinRH100
[Lefskyetal.,2005b]andcalibratecanopyheightestimates;
RH100estimateswerecalibratedwithfieldmeasurements.
Second,weusedaregressiontreeapproachtomodellidar
y,model
predictionswereindependentlyvalidatedagainstfieldesti-
matesfrom66FLUXNETsitesdistributedgloballyand
coveringabroadrangeofforesttypes.
[
7
]Ourerroranalysisaccountedforthedisparityinscales
betweenlidarfootprintsandtheresolutionoftheancillary
odel,lidarshotseffectivelyrepresented
samplesoftheunderlyingforeststructure,anddidnotalways
intersectthetallesttreewithina1‐sely,
ancillaryvariablesmightnotalwaysreflecttheenvironmental
conditionsatthelidarfootprint,butrathercomprisean
averageover1‐km
2
.Duetothescarcityoffine‐resolution
globalvegetationmaps,wehaveexaminedtheimpactofsub
pixelvariabilityonmodelerrorindirectlybylookingattwo
surrogatesofforestheterogeneity:degreeofdisturbanceand
,wehypothesizethatourestimatesatpro-
tectedsites(asdefinedbytheUNWorldDatabaseonPro-
tectedAreas,)havelesserrorduetoless
structuralvariabilityassociatedwithanthropogenicdistur-
,wehypothesizethatacrossforesttypes,
modelerrorincreaseswithvarianceincanopyheight.
[
8
]Theresultingwall‐to‐wallmapcanbedownloaded
fromtheweb()andreveals
regionalcanopyheightgradientsaswellascoarsedistur-
ultswerecomparedagainstanother
canopyheightproduct[Lefsky,2010],anddifferenceswere
examinedinlightofthechoiceofcalibrationalgorithm,
ancillaryvariables,andmodelingprocedures.
ationoftheGaussiandis-
tributionsisconstrainedtobebetweenthesignalbeginning
lly,thegroundcanbedeterminedasthelast
Gaussianpeak,whichworksbestinflatareasandopen
closedcanopies,locatingthegroundis
sometimesdifficult(elastpeakhaslowampli-
tuderelativetoanotherneighboringpeak)[Boudreauetal.,
2008].Ithasbeenshownthatusingaregressionthrough
waveformextentandaterrainindexderivedfromanancil-
laryDEMcanalleviategrounddetectionissuesandimprove
canopyheightestimates[Lefskyetal.,2005b;Rosetteetal.,
2008].However,theregressionsmaybesitespecificand
therhand,Rosette
etal.[2008]obtainedreasonableresultsusingthelocationof
thelastGaussianpeakasthegroundleveland,importantly,
foundithadthelowestmeanerror(0.39m).Sincethe
regressiontreemethodologyessentiallyrepresentsoverall
trends,itisimportantthatpotentialbiasintheGLASesti-
mateofcanopyheightbeminimized.
[
10
]Afterthesystematicselectionprocessdescribedin
section2.2,theRH100valueswereroundedtothenearest
meterandusedasinputintheregressiontreetoproducea
wall‐to‐wallcanopyheightmap(seesection2.3).Ifmore
thanoneGLASshotintersecteda1‐kmpixel,allpoints
doflocallycombiningmultipleGLAS
shots,modelaveragingisperformedasthelaststepofthe
regressiontreeapproach(seesection2.3).
rmSelection
[
11
]WeselectedthedataacquiredwithlaserL3C
between2005‐05‐20and2005‐06‐mpaignwas
chosenduetoitstemporaloverlapwiththe2005MODIS
PercentTreeCoverproduct(MOD44B).
[
12
]Theoverallgoalofthewaveformselectionprocedure
wastoisolatedatapointsfromforestedsiteswhilereducing
theimpactofslopesandcloudcontaminationoncanopy
ctedGLASshotsthatfellwithina
forestclassasdefinedbytheGlobcovermap[Hagolleetal.,
2005].Becausethe65mGLASfootprintsamplesonlya
fractionofthe1‐km
2
landcoverpixel,notallwaveformsare
aseswereproblematicgiven
ourobjectivetomodelthetallestcanopiesasopposedto
rethatshotswerereflected
fromaforestcanopy,weselectedwaveformscharacterized
bymorethanoneGaussianpeak,assumingthatwaveforms
withasinglepeakareduetogroundreflectiononly.
[
13
]GLA14waveformswerealsofilteredusingengi-
neeringandsignalparameterstoaccountforcloudcover
14productcontainsacloud
d,we
computedtheSignal‐to‐NoiseRatio(SNR)todetect
waveformhinderedbycloudsaswellaswaveformswith
-
therremovewaveformswithsignaldominatedbyclouds,
weselectedwaveformsthatwereco‐locatedclosetothe
groundasdefinedbySRTM(80mtoaccountfor
forestheightandSRTMelevationerrors).
[
14
]Terrainslopeisthemainfactorcontributingtocanopy
heightestimationerror[Lefskyetal.,2005b;Duncanson
etal.,2010].Theimpactofslopeistobroadenthelidar
waveform,therebyintroducingabiasincanopyheight
rgefootprintlidarsuchasGLAS,pulse
s
HeightEstimation
[
9
]OuranalyseswerebasedontheGLA14landproduct
A14waveformisafitoftheoriginal
GLASwaveform,modeledbyamaximumof6Gaussian
distributions[Brenneretal.,2003].TheGLAS‐derived
estimateofcanopyheightisthewaveformmetricRH100,
definedasthedistancebetweensignalbeginningandthe
locationofthelidargroundpeak[HardingandCarabajal,
2005;Sunetal.,2008;Boudreauetal.,2008].Inthe
GLA14productversion31,thesignalbeginningisdefined
asthelocationatwhichthesignalis3.5timesabovethe
2of12