2024年4月28日发(作者:义秀越)
液晶显示器高压板的维修
一、液晶显示器的工作原理。
液晶显示器的工作原理:液晶是一种介于固体和液体之间的特殊物质,它是一种有机化合物,常态下呈液
态,但是它的分子排列却和固体晶体一样非常规则,因此取名液晶,它的另一个特殊性质在于,如果给液晶施
加一个电场,会改变它的分子排列,这时如果给它配合偏振光片,它就具有阴止光线通过的作用(在不施加电
场时,光线可以顺利透过),如果再配合彩色滤光片,改变加给液晶电压大小,就能改变某一颜色透光量的多少,
也可以形象地说改变液晶两端的电压就能改变它的透光度(但实际中这必须和偏光板配合)。
液晶显示器的组成及工作原理:从液晶显示器的结构来说,无论是笔记本屏还是桌面液晶显示器,采用的
液晶显示器屏全是由不同部分组成的分层结构。液晶显示器由两块板构成,厚约1mm,其间由包含有液晶材料
的5um均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏下边都设有作为光源的灯管,而在液晶显示
器屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成,可以发射光线,其作用主要是提
供均匀的背光源。
背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万液晶液滴的液晶层。
液晶层中的液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与
液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,
液晶材料的作用类似于一个个小光阀。在液晶材料周边是控制电路部分和驱动电路部分。当液晶显示器中的电
极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的
过滤在屏幕上显示出来。
对于液晶显示器来说,亮度往往和背光板光源有光。背板光源越亮,整个液晶显示器的亮度也会随之提高。
而在早期的液晶显示器中,因为只使用两个冷光源灯管,往往会造成亮度不均匀现象,同时明亮度也不尽人如
意。到后来使用四个冷光源灯管的推出,才有很大的的改善。
二、液晶显示器的高压板电路:
液晶显示器本身我们给它加了驱动电路,但它并不发光,我们看到的液晶显示器发出来的光是它内部灯管
发出的,灯管的特性类似于家用的日光灯,它工作需要高压。也就是要和它配合的高压电路,这部分电路通常
称为高压背光电路。或叫高压背光驱动电路,液晶显示器所消耗的电能基本全是它消耗了。相对而言,这部分
电路工作在高压大电流下,因此容易出现故障,液晶显示器的自然故障大多数是这个部分出现了电路故障。
1、 液晶显示器的光源。
① EL:电场致发光,可以做得很薄。发光均匀。高压交流供电。需DC-AC逆变器,功耗低,但亮度
也低,同时相比之下寿命短。
② LED:低压直流供电,亮度高,寿命长。目前手机大多为LED背光。
③ CCFL:(Cold Cathode Fluorescent Lamp.):冷阴极荧光灯型的背光源。优点:亮度高,背光源
的面积可以做得较大,灯管也可以做得很细(目前可以做到1.8mm直径灯管),高压交流供电,需DC-AC逆
变器,启动电压在1500V左右,工作电压600—1000V,寿命长(20000h以上),工作电流小2~~10mA:
缺点:发光效率低(低于20%),放电电压高,低温下放电特性变差,加热达到稳辉度时间长。
④ 热阴极荧光灯:放电电压低,加热达到稳定辉度的时间短,发光效率高,现在用的日光灯就是这一
种(启动电压500~600V,正常工作电压90~130V),有一部分台式液晶显示器和小液晶电视采用这种灯管。
工作电流10mA以上。缺点:细管化困难(4mm以上),寿命短,5000~8000h。
目前液晶显示器主要使用的是冷阴极荧光灯管,这是由于CCFL灯管细小,结构简单,灯管表面温升小。
发光原理:当高压加在灯管两端后,灯管内少数电子高速撞击电极后产生二次电子发射,开始放电,管内
的水银受电子撞击后,激发辐射出253.7nm的紫外光,产生的紫外光激发涂在管内壁上的荧光粉而产生可见光
(可见光颜色将依据所选用的荧光粉的不同而不同),目前可以生产*1.8mm、*2.6mm *3.0mm *4.1mm,色
温从2700~~27000K、管长100~~500mm不等的产品。
三、高压板高压产生电路
所谓高压板主要是用来产生高压,以驱动冷阴极灯管发光,对特性及要求如下。
① 高启动电压,启动时需要高达1500V的电压,正常工作时降侄至600~800V。
② 亮度可调,体现到电路上即为高压可调。台式液晶显示器一般采用先下降压再升压方式,用降压电
路进行调光,笔记本显示器一般采用PWM式。
目前液晶显示器的背光电路大致可分为两大类:
第一类是由降压变换成电路和推挽自激式高压变换电路组成,输入的12~16V直流电压进入背光电路后先
经降压电路变换,得到一个低于输入电压的受控电压,再加到自激式推挽升压变换得到1500V左右的高压。输
入电压超高,输出电压及电流就越大。
这种电路形式在液晶显示器中应用较多,在笔记本中就用不多,其实可以看出,由于液晶显示器内部空间
小,许多元件都是采用贴片形式封装的,同时这也是液晶显示器的故障高发区,具体如下。
① 保险丝,实际中应用的保险丝还有更小的。
② 低压变换用的开关管做成了集成电路形式,实际就是一只场效管,它虽然有八个脚,但是等于三个,
有一组是三个引脚连在一起,一般是D极,有一组就一个引脚的,是G极,另外一组四个脚连在一起的是S极,
它若损坏,可用主板上较常用的3055代换。
③ 此电路中所用的续流二极管为肖特基二极管,在测量上正向电压降为100~~200mV,反向无穷大,
这是正常的,若损坏,也必须用肖特基代换,可用ATX电源中损坏的肖特基二极管来代换(ATX电源中肖特基
二极管为两个封装在一起,一般情况下只是其中一个坏,另一个可用,这里所说的就是其中一个没坏的那个)。
④ 它的储存能电感体积较大,在工作一段时间后,或受强烈振动后,引脚很容易开焊,造成背光不亮。
⑤ 自激励高压产生开关管较易损坏,根据它的电路形式可以分析出此开关管的大致电气参数为
60~100V/3~~5A的NPN型晶体管,此管通代性较强,不必管原型号用的是什么,因为大多数买不到,可以
直接用D794(70V/3A/10W)、D1725(120V/3A/20W)、D1691、D2583、C3852(80V/3A/10W)等TO-126
封装的晶体管代换。
⑥ 两高压产生晶体管集电极间的电容也常坏,尤其是采用黄色方块有机薄膜电容,它的参数一般为
224/250V,可用参数涤纶电容代换。
⑦ 由于背光电路产生的高压较高(启动时可达1500V左右),其高压变器也较特殊,是分段绕制的,
不但低压绕与高压绕组是分开,高压绕组自身也是分成几段绕制的,这是为了防止高压跳火,但即使是这样,
此变压器仍有击穿损坏的,可试着将其重绕。
⑧ 背光电路与大电路板间的连线一般配有四条,它们是:电源、地、开关机控制、亮度控制,其中开
关机控制为高低电平,高电平(5V)时,背光工作,亮度控制为经过积分虑波的PWM电压(0~5V),亮度随
其电压高低变化。
一、维修注意事项:
① 高压板在维修过程中尽量不断开灯管通电试验,以防击穿高压产生开关管及高压变压器。
② 维修中尽量使用维修电源供电,并将维修电流调到2A左右。
③ 维修后要注意高压电路部分的绝缘。
④ 拆机修理注意事项:
不良的LCD也应小心操作
1.为了防止造成其它不良,请小心操作不良LCD片
2.不良LCD片可以修理,不要堆叠LCD
3. LCD是由易碎的零件组成,如TCP、玻璃等, 堆叠LCD会造成不必要的损坏.
4.连接时请勿重压,重压会转移到LCD最脆弱的部分TCP,并最终造成TCP破裂或其它意想不到的损坏,
将背光灯的连接线置于LCD后。
5.如果背光灯的连接线放在LCD之前,背光灯的连接器会划伤偏光镜表面,千万不要在电源开启的状态下
连接或断开LCD。
是由CMOS(金属氧化物半导体)组成的,这种物质在EOS(电压不稳)状态下非常脆弱,请勿在
电源开启的状态下连接或移动LCD。
7.静电会导致损坏,组装产品时必须佩带静电手坏。
8.在通常状况不能直接用手接触表面的连接头或改变装置
液晶屏幕的工作原理
先别急,在学习如何正确使用和保养液晶屏幕之前,还是让我们先来简单的了解一下液晶屏幕是如何工作
的吧,这对我们今后正确的使用和保养液晶屏幕有很大的好处。
传统的CRT显示器主要是依靠显象管内的电子枪发射的电子束射击显示屏内侧的荧光粉来发光,在显示器
内部人造磁场的有意干扰下,电子束会发生一定角度的偏转,扫描目标单元格的荧光粉而显示不同的色彩。
而TFT-LCD却是采用背光(backlight)原理,使用灯管作为背光光源,通过辅助光学模组和液晶层对光
线的控制莉来达到较为理想的显示效果。 液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间
的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。液晶本身并不能构发
光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。
液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色虑光片构成的夹层所组成。偏光板、彩
色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,
这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。
简单的说就是后面的平面上的沟槽是纵向排列的话,那么前面的平面就是横向排列的。
位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过
液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z轴向的扭曲,从
而能够通过前层平面。如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不
能通过前层平面,以此来阻断光线。
介绍三种液晶显示器的工作原理。
1.“扭曲向列型液晶显示器”(Twisted Nematic Liquid crystal display),简称“TN型液晶显示器”。这种
显示器的液晶组件构造如图11所示。向列型液晶夹在两片玻璃中间。这种玻璃的表面上先镀有一层透明而导电
的薄膜以作电极之用。这种薄膜通常是一种铟(Indium)和锡(Tin)的氧化物(Oxide),简称ito。然后再在有ito
的玻璃上镀表面配向剂,以使液晶顺着一个特定且平行于玻璃表面之方向排列。(图11 a)中左边玻璃使液晶排
成上下的方向,右边玻璃则使液晶排成垂直于图面之方向。此组件中之液晶的自然状态具有从左到右共的扭曲,
这也是为什么被称为扭曲型液晶显示器的原因。利用电场可使液晶旋转的原理,在两电极上加上电压则会使得
液晶偏振化方向转向与电场方向平行。 因为液态晶的折射率随液晶的方向而改变,其结果是光经过TN型液晶
盒以后其偏振性会发生变化。我们可以选择适当的厚度使光的偏振化方向刚好改变。那么,我们就可利用两个
平行偏振片使得光完全不能通过(如图12所示)。若外加足够大的电压V使得液晶方向转成与电场方向平行,光
的偏振性就不会改变。因此光可顺利通过第二个偏光器。于是,我们可利用电的开关达到控制光的明暗。这样
会形成透光时为白、不透光时为黑,字符就可以显示在屏幕上了。
型液晶显示器的原理 TFT型液晶显示器也采用了两夹层间填充液晶分子的设计。只不过是把左边夹
层的电极改为了FET晶体管,而右边夹层的电极改为了共通电极。在光源设计上,TFT的显示采用"背透式"照
射方式,即假想的光源路径不是像TN液晶那样的从左至右,而是从右向左,这样的作法是在液晶的背部设置
了类似日光灯的光管。 光源照射时先通过右偏振片向左透出,借助液晶分子来传导光线。由于左右夹层的电极
改成FET电极和共通电极,在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通
过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光
的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。 相对而言,TN就没有这
个特性,液晶分子一旦没有被施压,立刻就返回原始状态,这是TFT液晶和TN液晶显示原理的最大不同。
3. “高分子散布型液晶显示器”(Polymer dispersed liquid crystal liquid crystal display),简称“PDLC
型液晶显示器”。这种显示器的液晶组件构造如图13所示。高分子的单体(monomer)与液晶混合后夹在两片
玻璃中间,做成一液晶盒。这种玻璃与上面所用的相同,是表面上先镀有一层透明而导电的薄膜作电极。但是
不需要在玻璃上镀表面配向剂。此时将液晶盒放在紫外灯下照射使个单体连结成高分子聚合物。在高分子形成
的同时,液晶与高分子分开而形成许多液晶小颗粒。这些小颗粒被高分子聚合物固定住。 当光照射在此液晶盒
上,因折射率不同,而在颗粒表面处产生折射及反射。经过多次反射与折射,就产生了散射(scattering)。此液
晶盒就像牛奶一样呈现出不透明的乳白色。
足够大电压加在液晶盒两侧的玻璃上﹐液晶顺着电场方向排列,而使每颗液晶的排列均相同。对正面入射
光而言,这些液晶有着相同的折射率n。如果我们可以选用的高分子材料的折射率与n相同,对光而言这些液
晶颗粒与高分子材料是相同的;因而在液晶盒内部没有任何折射或反射的现象产生。此时的液晶盒就像透明的清
水一样。
常见的液晶显示器按物理结构分为四种:
(1)扭曲向列型(TN-Twisted Nematic);
(2)超扭曲向列型(STN-Super TN);
(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);
(4)薄膜晶体管型(TFT-Thin Film Transistor)。
型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来
进行改良。而且,它的运作原理也较其它技术来的简单。请参照下方的图片。图中所表示的是TN型液晶显示
器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基
板。 广泛应用于入门级和中端的面板,在性能指标上并不出彩,不能表现16.7M色彩,并且可视角度 有天然
痼疾。市场上看到的TN面板都是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,同
时色彩抖动技术的使用 也使得原本只能显示26万色的TN面板获得了16.2M的显示能力。要说TN面板唯一
胜过前面两种面板的地方,就是由于他的输出灰阶级数较少,液晶分子偏转速度快,致使它的响应时间容易提
高,目前市场上8ms以下液晶产品均采用的是TN面板。总的来说TN面板是优势和劣势都很明显的产品,价
格便宜,响应时间能满足游戏要求使它的优势所在,可视角度不理想和色彩表现不真实又是明显的劣势。
型的显示原理与TN相类似。不同的是,TN扭转式向列场效应的液晶分子是将入射光旋转90度,
而STN超扭转式向列场效应是将入射光旋转180~270度。
是通过双扫描方式来扫描扭曲向列型液晶显示屏,从而达到完成显示目的。DSTN是由超扭曲向
列型显示器(STN)发展而来的。由于DSTN采用双扫描技术,因此显示效果相对STN来说,有大幅度提高。
型的液晶显示器,IPS(In-Plane Switching,平面转换)技术是日立于2001推出的面板技术,
它也被俗称为 “Super TFT”。较为复杂,主要是由:萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、
液晶材料、薄模式晶体管等等构成。首先,液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些
光源会先经过一个偏光板然后再经过液晶。这时液晶分子的排列方式就会改变穿透液晶的光线角度,然后这些
光线还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变加在液晶上的电压值就可以控制最后
出现的光线强度与色彩,这样就能在液晶面板上变化出有不同色调的颜色组合了。是目前主流液晶显示器的面
板。从技术角度看,传统LCD显示器的液晶分子一般都在垂直-平行状态间切换,MVA和PVA将之改良为垂
直-双向倾斜的切换方式,而IPS 技术与上述技术最大的差异就在于,不管在何种状态下液晶分子始终都与屏幕
平行,只是在加电/常规状态下分子的旋转方向有所不同——注意,MVA、PVA液晶分子的旋转属于空间旋转
(Z轴),而IPS液晶分子的旋转则属于平面内的旋转(X-Y轴)。为了配合这种结构,IPS要求对电极进行改良,
电极做到了同侧,形成平面电场。这样的设计带来的问题是双重的,一方面可视角度问 题得到了解决,另一方
面由于液晶分子转动角度大、面板开口率低(光线透过率),所以IPS也有响应时间较慢和对比度较难提高的缺
点。16.7M色、170度可视角度和16ms响应时间代表现在IPS液晶显示器的最高水平。
2024年4月28日发(作者:义秀越)
液晶显示器高压板的维修
一、液晶显示器的工作原理。
液晶显示器的工作原理:液晶是一种介于固体和液体之间的特殊物质,它是一种有机化合物,常态下呈液
态,但是它的分子排列却和固体晶体一样非常规则,因此取名液晶,它的另一个特殊性质在于,如果给液晶施
加一个电场,会改变它的分子排列,这时如果给它配合偏振光片,它就具有阴止光线通过的作用(在不施加电
场时,光线可以顺利透过),如果再配合彩色滤光片,改变加给液晶电压大小,就能改变某一颜色透光量的多少,
也可以形象地说改变液晶两端的电压就能改变它的透光度(但实际中这必须和偏光板配合)。
液晶显示器的组成及工作原理:从液晶显示器的结构来说,无论是笔记本屏还是桌面液晶显示器,采用的
液晶显示器屏全是由不同部分组成的分层结构。液晶显示器由两块板构成,厚约1mm,其间由包含有液晶材料
的5um均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏下边都设有作为光源的灯管,而在液晶显示
器屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成,可以发射光线,其作用主要是提
供均匀的背光源。
背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万液晶液滴的液晶层。
液晶层中的液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与
液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,
液晶材料的作用类似于一个个小光阀。在液晶材料周边是控制电路部分和驱动电路部分。当液晶显示器中的电
极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的
过滤在屏幕上显示出来。
对于液晶显示器来说,亮度往往和背光板光源有光。背板光源越亮,整个液晶显示器的亮度也会随之提高。
而在早期的液晶显示器中,因为只使用两个冷光源灯管,往往会造成亮度不均匀现象,同时明亮度也不尽人如
意。到后来使用四个冷光源灯管的推出,才有很大的的改善。
二、液晶显示器的高压板电路:
液晶显示器本身我们给它加了驱动电路,但它并不发光,我们看到的液晶显示器发出来的光是它内部灯管
发出的,灯管的特性类似于家用的日光灯,它工作需要高压。也就是要和它配合的高压电路,这部分电路通常
称为高压背光电路。或叫高压背光驱动电路,液晶显示器所消耗的电能基本全是它消耗了。相对而言,这部分
电路工作在高压大电流下,因此容易出现故障,液晶显示器的自然故障大多数是这个部分出现了电路故障。
1、 液晶显示器的光源。
① EL:电场致发光,可以做得很薄。发光均匀。高压交流供电。需DC-AC逆变器,功耗低,但亮度
也低,同时相比之下寿命短。
② LED:低压直流供电,亮度高,寿命长。目前手机大多为LED背光。
③ CCFL:(Cold Cathode Fluorescent Lamp.):冷阴极荧光灯型的背光源。优点:亮度高,背光源
的面积可以做得较大,灯管也可以做得很细(目前可以做到1.8mm直径灯管),高压交流供电,需DC-AC逆
变器,启动电压在1500V左右,工作电压600—1000V,寿命长(20000h以上),工作电流小2~~10mA:
缺点:发光效率低(低于20%),放电电压高,低温下放电特性变差,加热达到稳辉度时间长。
④ 热阴极荧光灯:放电电压低,加热达到稳定辉度的时间短,发光效率高,现在用的日光灯就是这一
种(启动电压500~600V,正常工作电压90~130V),有一部分台式液晶显示器和小液晶电视采用这种灯管。
工作电流10mA以上。缺点:细管化困难(4mm以上),寿命短,5000~8000h。
目前液晶显示器主要使用的是冷阴极荧光灯管,这是由于CCFL灯管细小,结构简单,灯管表面温升小。
发光原理:当高压加在灯管两端后,灯管内少数电子高速撞击电极后产生二次电子发射,开始放电,管内
的水银受电子撞击后,激发辐射出253.7nm的紫外光,产生的紫外光激发涂在管内壁上的荧光粉而产生可见光
(可见光颜色将依据所选用的荧光粉的不同而不同),目前可以生产*1.8mm、*2.6mm *3.0mm *4.1mm,色
温从2700~~27000K、管长100~~500mm不等的产品。
三、高压板高压产生电路
所谓高压板主要是用来产生高压,以驱动冷阴极灯管发光,对特性及要求如下。
① 高启动电压,启动时需要高达1500V的电压,正常工作时降侄至600~800V。
② 亮度可调,体现到电路上即为高压可调。台式液晶显示器一般采用先下降压再升压方式,用降压电
路进行调光,笔记本显示器一般采用PWM式。
目前液晶显示器的背光电路大致可分为两大类:
第一类是由降压变换成电路和推挽自激式高压变换电路组成,输入的12~16V直流电压进入背光电路后先
经降压电路变换,得到一个低于输入电压的受控电压,再加到自激式推挽升压变换得到1500V左右的高压。输
入电压超高,输出电压及电流就越大。
这种电路形式在液晶显示器中应用较多,在笔记本中就用不多,其实可以看出,由于液晶显示器内部空间
小,许多元件都是采用贴片形式封装的,同时这也是液晶显示器的故障高发区,具体如下。
① 保险丝,实际中应用的保险丝还有更小的。
② 低压变换用的开关管做成了集成电路形式,实际就是一只场效管,它虽然有八个脚,但是等于三个,
有一组是三个引脚连在一起,一般是D极,有一组就一个引脚的,是G极,另外一组四个脚连在一起的是S极,
它若损坏,可用主板上较常用的3055代换。
③ 此电路中所用的续流二极管为肖特基二极管,在测量上正向电压降为100~~200mV,反向无穷大,
这是正常的,若损坏,也必须用肖特基代换,可用ATX电源中损坏的肖特基二极管来代换(ATX电源中肖特基
二极管为两个封装在一起,一般情况下只是其中一个坏,另一个可用,这里所说的就是其中一个没坏的那个)。
④ 它的储存能电感体积较大,在工作一段时间后,或受强烈振动后,引脚很容易开焊,造成背光不亮。
⑤ 自激励高压产生开关管较易损坏,根据它的电路形式可以分析出此开关管的大致电气参数为
60~100V/3~~5A的NPN型晶体管,此管通代性较强,不必管原型号用的是什么,因为大多数买不到,可以
直接用D794(70V/3A/10W)、D1725(120V/3A/20W)、D1691、D2583、C3852(80V/3A/10W)等TO-126
封装的晶体管代换。
⑥ 两高压产生晶体管集电极间的电容也常坏,尤其是采用黄色方块有机薄膜电容,它的参数一般为
224/250V,可用参数涤纶电容代换。
⑦ 由于背光电路产生的高压较高(启动时可达1500V左右),其高压变器也较特殊,是分段绕制的,
不但低压绕与高压绕组是分开,高压绕组自身也是分成几段绕制的,这是为了防止高压跳火,但即使是这样,
此变压器仍有击穿损坏的,可试着将其重绕。
⑧ 背光电路与大电路板间的连线一般配有四条,它们是:电源、地、开关机控制、亮度控制,其中开
关机控制为高低电平,高电平(5V)时,背光工作,亮度控制为经过积分虑波的PWM电压(0~5V),亮度随
其电压高低变化。
一、维修注意事项:
① 高压板在维修过程中尽量不断开灯管通电试验,以防击穿高压产生开关管及高压变压器。
② 维修中尽量使用维修电源供电,并将维修电流调到2A左右。
③ 维修后要注意高压电路部分的绝缘。
④ 拆机修理注意事项:
不良的LCD也应小心操作
1.为了防止造成其它不良,请小心操作不良LCD片
2.不良LCD片可以修理,不要堆叠LCD
3. LCD是由易碎的零件组成,如TCP、玻璃等, 堆叠LCD会造成不必要的损坏.
4.连接时请勿重压,重压会转移到LCD最脆弱的部分TCP,并最终造成TCP破裂或其它意想不到的损坏,
将背光灯的连接线置于LCD后。
5.如果背光灯的连接线放在LCD之前,背光灯的连接器会划伤偏光镜表面,千万不要在电源开启的状态下
连接或断开LCD。
是由CMOS(金属氧化物半导体)组成的,这种物质在EOS(电压不稳)状态下非常脆弱,请勿在
电源开启的状态下连接或移动LCD。
7.静电会导致损坏,组装产品时必须佩带静电手坏。
8.在通常状况不能直接用手接触表面的连接头或改变装置
液晶屏幕的工作原理
先别急,在学习如何正确使用和保养液晶屏幕之前,还是让我们先来简单的了解一下液晶屏幕是如何工作
的吧,这对我们今后正确的使用和保养液晶屏幕有很大的好处。
传统的CRT显示器主要是依靠显象管内的电子枪发射的电子束射击显示屏内侧的荧光粉来发光,在显示器
内部人造磁场的有意干扰下,电子束会发生一定角度的偏转,扫描目标单元格的荧光粉而显示不同的色彩。
而TFT-LCD却是采用背光(backlight)原理,使用灯管作为背光光源,通过辅助光学模组和液晶层对光
线的控制莉来达到较为理想的显示效果。 液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间
的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。液晶本身并不能构发
光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。
液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色虑光片构成的夹层所组成。偏光板、彩
色滤光片决定了有多少光可以通过以及生成何种颜色的光线。液晶被灌在两个制作精良的平面之间构成液晶层,
这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。
简单的说就是后面的平面上的沟槽是纵向排列的话,那么前面的平面就是横向排列的。
位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。背光光源即灯管发出的光线通过
液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z轴向的扭曲,从
而能够通过前层平面。如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不
能通过前层平面,以此来阻断光线。
介绍三种液晶显示器的工作原理。
1.“扭曲向列型液晶显示器”(Twisted Nematic Liquid crystal display),简称“TN型液晶显示器”。这种
显示器的液晶组件构造如图11所示。向列型液晶夹在两片玻璃中间。这种玻璃的表面上先镀有一层透明而导电
的薄膜以作电极之用。这种薄膜通常是一种铟(Indium)和锡(Tin)的氧化物(Oxide),简称ito。然后再在有ito
的玻璃上镀表面配向剂,以使液晶顺着一个特定且平行于玻璃表面之方向排列。(图11 a)中左边玻璃使液晶排
成上下的方向,右边玻璃则使液晶排成垂直于图面之方向。此组件中之液晶的自然状态具有从左到右共的扭曲,
这也是为什么被称为扭曲型液晶显示器的原因。利用电场可使液晶旋转的原理,在两电极上加上电压则会使得
液晶偏振化方向转向与电场方向平行。 因为液态晶的折射率随液晶的方向而改变,其结果是光经过TN型液晶
盒以后其偏振性会发生变化。我们可以选择适当的厚度使光的偏振化方向刚好改变。那么,我们就可利用两个
平行偏振片使得光完全不能通过(如图12所示)。若外加足够大的电压V使得液晶方向转成与电场方向平行,光
的偏振性就不会改变。因此光可顺利通过第二个偏光器。于是,我们可利用电的开关达到控制光的明暗。这样
会形成透光时为白、不透光时为黑,字符就可以显示在屏幕上了。
型液晶显示器的原理 TFT型液晶显示器也采用了两夹层间填充液晶分子的设计。只不过是把左边夹
层的电极改为了FET晶体管,而右边夹层的电极改为了共通电极。在光源设计上,TFT的显示采用"背透式"照
射方式,即假想的光源路径不是像TN液晶那样的从左至右,而是从右向左,这样的作法是在液晶的背部设置
了类似日光灯的光管。 光源照射时先通过右偏振片向左透出,借助液晶分子来传导光线。由于左右夹层的电极
改成FET电极和共通电极,在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通
过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光
的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。 相对而言,TN就没有这
个特性,液晶分子一旦没有被施压,立刻就返回原始状态,这是TFT液晶和TN液晶显示原理的最大不同。
3. “高分子散布型液晶显示器”(Polymer dispersed liquid crystal liquid crystal display),简称“PDLC
型液晶显示器”。这种显示器的液晶组件构造如图13所示。高分子的单体(monomer)与液晶混合后夹在两片
玻璃中间,做成一液晶盒。这种玻璃与上面所用的相同,是表面上先镀有一层透明而导电的薄膜作电极。但是
不需要在玻璃上镀表面配向剂。此时将液晶盒放在紫外灯下照射使个单体连结成高分子聚合物。在高分子形成
的同时,液晶与高分子分开而形成许多液晶小颗粒。这些小颗粒被高分子聚合物固定住。 当光照射在此液晶盒
上,因折射率不同,而在颗粒表面处产生折射及反射。经过多次反射与折射,就产生了散射(scattering)。此液
晶盒就像牛奶一样呈现出不透明的乳白色。
足够大电压加在液晶盒两侧的玻璃上﹐液晶顺着电场方向排列,而使每颗液晶的排列均相同。对正面入射
光而言,这些液晶有着相同的折射率n。如果我们可以选用的高分子材料的折射率与n相同,对光而言这些液
晶颗粒与高分子材料是相同的;因而在液晶盒内部没有任何折射或反射的现象产生。此时的液晶盒就像透明的清
水一样。
常见的液晶显示器按物理结构分为四种:
(1)扭曲向列型(TN-Twisted Nematic);
(2)超扭曲向列型(STN-Super TN);
(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);
(4)薄膜晶体管型(TFT-Thin Film Transistor)。
型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来
进行改良。而且,它的运作原理也较其它技术来的简单。请参照下方的图片。图中所表示的是TN型液晶显示
器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基
板。 广泛应用于入门级和中端的面板,在性能指标上并不出彩,不能表现16.7M色彩,并且可视角度 有天然
痼疾。市场上看到的TN面板都是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,同
时色彩抖动技术的使用 也使得原本只能显示26万色的TN面板获得了16.2M的显示能力。要说TN面板唯一
胜过前面两种面板的地方,就是由于他的输出灰阶级数较少,液晶分子偏转速度快,致使它的响应时间容易提
高,目前市场上8ms以下液晶产品均采用的是TN面板。总的来说TN面板是优势和劣势都很明显的产品,价
格便宜,响应时间能满足游戏要求使它的优势所在,可视角度不理想和色彩表现不真实又是明显的劣势。
型的显示原理与TN相类似。不同的是,TN扭转式向列场效应的液晶分子是将入射光旋转90度,
而STN超扭转式向列场效应是将入射光旋转180~270度。
是通过双扫描方式来扫描扭曲向列型液晶显示屏,从而达到完成显示目的。DSTN是由超扭曲向
列型显示器(STN)发展而来的。由于DSTN采用双扫描技术,因此显示效果相对STN来说,有大幅度提高。
型的液晶显示器,IPS(In-Plane Switching,平面转换)技术是日立于2001推出的面板技术,
它也被俗称为 “Super TFT”。较为复杂,主要是由:萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、
液晶材料、薄模式晶体管等等构成。首先,液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些
光源会先经过一个偏光板然后再经过液晶。这时液晶分子的排列方式就会改变穿透液晶的光线角度,然后这些
光线还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变加在液晶上的电压值就可以控制最后
出现的光线强度与色彩,这样就能在液晶面板上变化出有不同色调的颜色组合了。是目前主流液晶显示器的面
板。从技术角度看,传统LCD显示器的液晶分子一般都在垂直-平行状态间切换,MVA和PVA将之改良为垂
直-双向倾斜的切换方式,而IPS 技术与上述技术最大的差异就在于,不管在何种状态下液晶分子始终都与屏幕
平行,只是在加电/常规状态下分子的旋转方向有所不同——注意,MVA、PVA液晶分子的旋转属于空间旋转
(Z轴),而IPS液晶分子的旋转则属于平面内的旋转(X-Y轴)。为了配合这种结构,IPS要求对电极进行改良,
电极做到了同侧,形成平面电场。这样的设计带来的问题是双重的,一方面可视角度问 题得到了解决,另一方
面由于液晶分子转动角度大、面板开口率低(光线透过率),所以IPS也有响应时间较慢和对比度较难提高的缺
点。16.7M色、170度可视角度和16ms响应时间代表现在IPS液晶显示器的最高水平。