2024年5月7日发(作者:乜文敏)
1 如果limx→x0fx存在,则下列极限一定存在的为
(A) limx→x0fxα (B)limx→x0fx (C)limx→x0lnfx (D)
limx→x0arcsinfx
2 设fx在x=0处可导,f0=0,则limx→0x2fx-2fx3x3 =
(A)-2f'0 (B -f'0 (C)f'0 (D)0
3.设fx,gx连续x→0时,fx和gx为同阶无穷小则x→0时,0xfx-tt为 01xgxtt
的
(A)低阶无穷小 (B)高阶无穷小 (C)等价无穷小 (D)同阶无穷小
4.设正数列an 满足limn→∞0anxnx =2 则limn→∞an=
(A)2 (B)1 (C)0 (D)12
5.x→1时函数x2-1x-11x-1的极限为
(A)2 (B)0 (C)∞ (D)不存在,但不为∞
6.设fx 在x=0的左右极限均存在则下列不成立的为
(A)limx→0+fx = limx→0-f-x (B) limx→0fx2 = limx→0+fx
(C)limx→0fx = limx→0+fx (D)limx→0fx3 = limx→0+fx
6. 极限limx→∞sin1x-11+1xα-1+1x=A≠0的充要条件为
(A)α>1 (B)α≠1 (C)α>0 (D)和α无关
7.
.已知limx→∞x21+x-ax-b=0,其中a,b为常数则a,b的值为
(A)a=l ,b=1 (B)a=-1 ,b=1
(C)a=1,b=-1 (D a=-1,b=-1
8. 当x→0 时下列四个无穷小量中比其他三个更高阶的无穷小为
(A)x2 (B)1-cosx (C)1-x2-1 (D)x-tanx
9.已知xn+1=xnyn ,yn+1=12xn+yn ,x1=a>0,y1=b>0 (a
则数列xn和yn
(A) 均收敛同一值(B)均收敛但不为同一值 (C)均发散 (D)无法判定敛散性
10. 设α>0,β≠0,limx→∞x2α+xα1α-x2=β则α,β为
11. 若 limx→x0fx+gx存在,limx→x0fx-gx不存在,则正确的为
(A)limx→x0fx不一定存在 (B)limx→x0gx不一定存在
(C)limx→x0f2x-g2x 必不存在 (D)limx→x0fx不存在
12. 下列函数中在1,+∞无界的为
(A)fx=x2sin1x2 (B)fx=sinx2+lnx2x
(C)fx=xcosx+x2-x (D)fx=arctan1xx2
13. 设fx连续limx→0fx1-cosx =2且x→0时0sin2xftt为x的n阶无穷小则n=
(A)3 (B)4 (C)5 (D)6
14. 当x→0时下列四个无穷小中比其他三个高阶的为
(A)tanx-sinx (B)1-cosxln1+x
(C)1+sinxx-1 (D)0x2arcsintt
15. 设x表示不超过x的最大整数,则y=x-x是
(A)无界函数 (B)单调函数 (C)偶函数 (D)周期函数
16. 极限limx→∞x2x-ax+bx=
(A)1 (B) (C) a-b (D)b-a
17. 函数fx=x2-xx2-11+1x2的无穷间断点的个数为
(A) 0 (B) 1 (C) 2 (D)
18. 如果limx→01x-1x-ax=1,则a=
(A) 0 (B) 1 (C) 2
19. 函数fx=x-x3sinπx的可去间断点的个数为
(A) 1 (B) 2 (C) 3
20. 当x→0+时,与x等价的无穷小量是
(A) 1-x (B) ln1+x1-x
(C) 1+x-1 (D) 1-cosx
21.设函数fx=1xx-1-1 ,则
(A) x=0,x=1都是fx的第一类间断点
3
(D) 3
(D)无穷多个
(B)x=0,x=1都是fx的第二类间断点
(C)x=0是fx的第一类间断点,x=1是fx的第二类间断点
(D)x=0是fx的第二类间断点,x=1是fx的第一类间断点
22 limn→∞ lnn1+1n21+2n2…1+nn2等于
(A)12ln2xx (B) 212lnxx (C) 212 ln1+xx (D) 12ln21+xx
23.若limx→0sin6x+xfxx3=0,则limx→06+fxx2为
(A)0 (B)6 (C)36 (D)∞
24.对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有“xn-a≤2ε”
列收敛于a的
(A)充分必要条件 (B)充分非必要条件
(C)必要非充分条件 (D)非充要条件
25.设函数fx=limn→∞1+x1+x2n,讨论函数fx的间断点,其结论为
(A) 不存在间断点 (B)存在间断点x=0
(C)存在间断点x=1 (D)存在间断点x=-1
是数
26. . limn→∞tanπ4+2nn=
ln1+3x-sinln1+1x =
28. 已知limx→∞3xfx=limx→∞4fx+5 则limx→∞xfx=
29. 在0,1上函数fx=nx1-xn的最大值记为Mn 则limn→∞Mn =
30. 设k、L、δ>0则limx→0δk-x+1-δL-x-1x =
→+∞arcsinx2+x-x =
32. limx→0 0x3sint+t2cos1tt1+cosx0xln1+tt =
→+∞1+2x+3x1x+sinx =
34. α~β(x→a)则limx→aβαβ2β2-α2 =
.limx→00xtsinx2-t2t1-cosxln1+2x2 =
→0+x-1-x1lnx =
有连续的导数f0=0,f'0=6,则limx→00x3ftt0xftt3 =
的周期T=3且f'-1=1,则limh→0hf2-3h-f2 =
→∞2nn!nn =
39.设fx在x=1连续且limx→1fx+xx-3x-1 =-3,则f'1=
40.极限p=-22limn→∞n2n+x2nx =
→01+tanx1+sinx1x3 =
→+∞lnx1x-1 =
43.x→0时fx=x-1+ax1+bx为x的3阶无穷小则a= , b =
44. 极限limx→-∞4x2+x-1+x+1x2+sinx =
→∞1-1221-132⋯1-1n2 =
→+∞6x6+x5-6x6-x5 =
47. f''x存在f0=f'0=0,f''x>0,ux为曲线fx在x,fx处切线 在x轴的截距则
limx→0xux =
48. a>0,bc≠0,limx→+∞xaln1+bx-x =c (c≠0)则a= b= c=
→∞ sinn2+1π =
50.已知x→0时x-a+bcosxsinx为x的5阶无穷小则a = ,b=
limx→0 1+x1x 1x =
→+∞0xsinttx =
可导对于∀x∈-∞,+∞有fx≤x2则f'0=
→∞01xn1+xx=
38.如果limx→∞1+xxax=-∞attt 则a=
39.设x→1+时3x2-2x-1 lnx与x-1n为同阶无穷小则n=
40 .limx→+∞x1+1x x2 =
→0lnsin2x+x-xlnx2+2x-2x =
42. x<1时limn→∞1+x1+x2⋯1+x2n=
43. 设极限limx→+∞x5+7x4+2a-x=b(b≠0)则a= b =
44. limx→∞x-x2ln1+1x =
45. w= limx→0 1lnx+1+x2-1ln1+x =
46. 设y=yx由y2+xy+x2-x=0确定满足y1=-1的连续函数
则limx→1x-12yx+1 =
47 .设a1,a2…am为正数(m≥2)则limn→∞a1n+a2n+…+amn1n =
48. fx连续x→0时Fx=0xx2+1-costftt为x3的等价无穷小
则f0=
49. fx连续 f0=0,f'0≠0则limx→00x2fx2-ttx301fxtt =
50. fx=x2xsinxttt则limx→0fxx2=
51. 极限limx→∞x2 a1x+1-a1x =
52. 已知fx在x=a可导fx>0 ,n∈N,fa=1,f'a=2
则极限limn→∞ fa+1nfa n=
53. limx→0cot2x-1x2=
54. limx→1lncosx-11-sinπ2x =
55. 如果limx→-∞x2+x+1+ax+b=0
则a= b=
56. limx→0arcsinxx11-cosx =
57. 已知曲线y=fx在点(0,0)处切线经过点(1,2)则极限
limx→0cosx+0xftt1x2 =
58. 已知fx在x=0邻域内可导且limx→0sinxx2+fxx=2
f'0= limx→0xfx+x =
59. limx→01+tanx-1+sinxxlnx+1-x2 =
60 limx→1lnxln1-x=
61. limn→∞12+322+523+…+2n-12n =
62. limx→0a x-1x2-a2ln1+ax = (a≠0)
63 .limx→01x+11x-1arctan1x=
64.设fx在a,b连续则limn→+∞01xnfxx =
65. w=limx→0arcsinx-sinxarctanx-tanx =
66 . limx→0x+3x-3xx2=
则f0=
67 .limx→+∞1x0x1+t2t2-x2t =
68. limx→02-x+12xx =
69. limx→0 x21+xsinx-cosx =
70. limn→∞1+12n21+22n2+…+1+n2n21n =
71. 设xn=1n2+1+2n2+22+…+nn2+n2 则limn→+∞xn=
72 .P= limx→0 ln1+2xln1+1x+ax 存在求p及a的值.
→+∞0x1+t2t2txx2 =
74. limx→0 1ln1+x2-1sin2x =
75. limx→+∞ x+x1x =
76. limx→1 x-xx1-x+lnx =
77. limn→∞1.3.5.7…2n-12.4.6.8…2n =
78. limn→∞ 1nnnn-1⋯2n-1 =
79. 极限limx→01-cosx1-3cosx…1-ncosx1-cosxn-1 =
80. 设fx一阶连续可导且f0=0,f'0=1则下列极限limx→01+fx1arcsinx =
81. 函数fx满足f0=0 ,f'0>0则极限limx→0+xfx=
82. limx→+∞x+1+x22x =
83. limx→+∞ π2-arctanx 1lnx =
84. limx→01-cosxcos2x3cos3xx2 =
85. 函数fx=xln1-x的第一类间断点的个数为
86. limx→0cotx2sinx =
→+∞x-2πxarctanxx+x =
88. limn→∞1n2+1+1n2+22+…+1n2+n2 =
89. limx→+∞ x2lnarctanx+1-lnarctanx =
90. limx→+∞ x32x+2-2x+1+x =
91 设x≠0时 limn→∞cosx2cosx4…cosx2n =
92极限w=limx→+∞1+2x1+xarctanx =
93. limx→0tanx+1-cosxln1-2x+1-x2 =
94 fx=arcsinx在0,b上用拉格朗日中值定理且中值为ε则limb→0εb =
95 已知曲线y=fx与y=sinx在0,0处相切则limn→∞ 1+f2n n =
96 limn→∞1n2+n+1+2n2+n+2+…+nn2+n+n =
97 limx→+∞ a1x+b1x+c1x3x =
98 极限limx→01+x1x-x =
99.设fx 在x=1处可导且在(1,f1)处的切线方程为y=x-1,
求极限P = limx→00x2tf1+x2-ttx2lncosx
100.如果limx→+∞xn+7x4+1m-x=b (n>4 ,b≠0)求m,n及b的值
p
2024年5月7日发(作者:乜文敏)
1 如果limx→x0fx存在,则下列极限一定存在的为
(A) limx→x0fxα (B)limx→x0fx (C)limx→x0lnfx (D)
limx→x0arcsinfx
2 设fx在x=0处可导,f0=0,则limx→0x2fx-2fx3x3 =
(A)-2f'0 (B -f'0 (C)f'0 (D)0
3.设fx,gx连续x→0时,fx和gx为同阶无穷小则x→0时,0xfx-tt为 01xgxtt
的
(A)低阶无穷小 (B)高阶无穷小 (C)等价无穷小 (D)同阶无穷小
4.设正数列an 满足limn→∞0anxnx =2 则limn→∞an=
(A)2 (B)1 (C)0 (D)12
5.x→1时函数x2-1x-11x-1的极限为
(A)2 (B)0 (C)∞ (D)不存在,但不为∞
6.设fx 在x=0的左右极限均存在则下列不成立的为
(A)limx→0+fx = limx→0-f-x (B) limx→0fx2 = limx→0+fx
(C)limx→0fx = limx→0+fx (D)limx→0fx3 = limx→0+fx
6. 极限limx→∞sin1x-11+1xα-1+1x=A≠0的充要条件为
(A)α>1 (B)α≠1 (C)α>0 (D)和α无关
7.
.已知limx→∞x21+x-ax-b=0,其中a,b为常数则a,b的值为
(A)a=l ,b=1 (B)a=-1 ,b=1
(C)a=1,b=-1 (D a=-1,b=-1
8. 当x→0 时下列四个无穷小量中比其他三个更高阶的无穷小为
(A)x2 (B)1-cosx (C)1-x2-1 (D)x-tanx
9.已知xn+1=xnyn ,yn+1=12xn+yn ,x1=a>0,y1=b>0 (a
则数列xn和yn
(A) 均收敛同一值(B)均收敛但不为同一值 (C)均发散 (D)无法判定敛散性
10. 设α>0,β≠0,limx→∞x2α+xα1α-x2=β则α,β为
11. 若 limx→x0fx+gx存在,limx→x0fx-gx不存在,则正确的为
(A)limx→x0fx不一定存在 (B)limx→x0gx不一定存在
(C)limx→x0f2x-g2x 必不存在 (D)limx→x0fx不存在
12. 下列函数中在1,+∞无界的为
(A)fx=x2sin1x2 (B)fx=sinx2+lnx2x
(C)fx=xcosx+x2-x (D)fx=arctan1xx2
13. 设fx连续limx→0fx1-cosx =2且x→0时0sin2xftt为x的n阶无穷小则n=
(A)3 (B)4 (C)5 (D)6
14. 当x→0时下列四个无穷小中比其他三个高阶的为
(A)tanx-sinx (B)1-cosxln1+x
(C)1+sinxx-1 (D)0x2arcsintt
15. 设x表示不超过x的最大整数,则y=x-x是
(A)无界函数 (B)单调函数 (C)偶函数 (D)周期函数
16. 极限limx→∞x2x-ax+bx=
(A)1 (B) (C) a-b (D)b-a
17. 函数fx=x2-xx2-11+1x2的无穷间断点的个数为
(A) 0 (B) 1 (C) 2 (D)
18. 如果limx→01x-1x-ax=1,则a=
(A) 0 (B) 1 (C) 2
19. 函数fx=x-x3sinπx的可去间断点的个数为
(A) 1 (B) 2 (C) 3
20. 当x→0+时,与x等价的无穷小量是
(A) 1-x (B) ln1+x1-x
(C) 1+x-1 (D) 1-cosx
21.设函数fx=1xx-1-1 ,则
(A) x=0,x=1都是fx的第一类间断点
3
(D) 3
(D)无穷多个
(B)x=0,x=1都是fx的第二类间断点
(C)x=0是fx的第一类间断点,x=1是fx的第二类间断点
(D)x=0是fx的第二类间断点,x=1是fx的第一类间断点
22 limn→∞ lnn1+1n21+2n2…1+nn2等于
(A)12ln2xx (B) 212lnxx (C) 212 ln1+xx (D) 12ln21+xx
23.若limx→0sin6x+xfxx3=0,则limx→06+fxx2为
(A)0 (B)6 (C)36 (D)∞
24.对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有“xn-a≤2ε”
列收敛于a的
(A)充分必要条件 (B)充分非必要条件
(C)必要非充分条件 (D)非充要条件
25.设函数fx=limn→∞1+x1+x2n,讨论函数fx的间断点,其结论为
(A) 不存在间断点 (B)存在间断点x=0
(C)存在间断点x=1 (D)存在间断点x=-1
是数
26. . limn→∞tanπ4+2nn=
ln1+3x-sinln1+1x =
28. 已知limx→∞3xfx=limx→∞4fx+5 则limx→∞xfx=
29. 在0,1上函数fx=nx1-xn的最大值记为Mn 则limn→∞Mn =
30. 设k、L、δ>0则limx→0δk-x+1-δL-x-1x =
→+∞arcsinx2+x-x =
32. limx→0 0x3sint+t2cos1tt1+cosx0xln1+tt =
→+∞1+2x+3x1x+sinx =
34. α~β(x→a)则limx→aβαβ2β2-α2 =
.limx→00xtsinx2-t2t1-cosxln1+2x2 =
→0+x-1-x1lnx =
有连续的导数f0=0,f'0=6,则limx→00x3ftt0xftt3 =
的周期T=3且f'-1=1,则limh→0hf2-3h-f2 =
→∞2nn!nn =
39.设fx在x=1连续且limx→1fx+xx-3x-1 =-3,则f'1=
40.极限p=-22limn→∞n2n+x2nx =
→01+tanx1+sinx1x3 =
→+∞lnx1x-1 =
43.x→0时fx=x-1+ax1+bx为x的3阶无穷小则a= , b =
44. 极限limx→-∞4x2+x-1+x+1x2+sinx =
→∞1-1221-132⋯1-1n2 =
→+∞6x6+x5-6x6-x5 =
47. f''x存在f0=f'0=0,f''x>0,ux为曲线fx在x,fx处切线 在x轴的截距则
limx→0xux =
48. a>0,bc≠0,limx→+∞xaln1+bx-x =c (c≠0)则a= b= c=
→∞ sinn2+1π =
50.已知x→0时x-a+bcosxsinx为x的5阶无穷小则a = ,b=
limx→0 1+x1x 1x =
→+∞0xsinttx =
可导对于∀x∈-∞,+∞有fx≤x2则f'0=
→∞01xn1+xx=
38.如果limx→∞1+xxax=-∞attt 则a=
39.设x→1+时3x2-2x-1 lnx与x-1n为同阶无穷小则n=
40 .limx→+∞x1+1x x2 =
→0lnsin2x+x-xlnx2+2x-2x =
42. x<1时limn→∞1+x1+x2⋯1+x2n=
43. 设极限limx→+∞x5+7x4+2a-x=b(b≠0)则a= b =
44. limx→∞x-x2ln1+1x =
45. w= limx→0 1lnx+1+x2-1ln1+x =
46. 设y=yx由y2+xy+x2-x=0确定满足y1=-1的连续函数
则limx→1x-12yx+1 =
47 .设a1,a2…am为正数(m≥2)则limn→∞a1n+a2n+…+amn1n =
48. fx连续x→0时Fx=0xx2+1-costftt为x3的等价无穷小
则f0=
49. fx连续 f0=0,f'0≠0则limx→00x2fx2-ttx301fxtt =
50. fx=x2xsinxttt则limx→0fxx2=
51. 极限limx→∞x2 a1x+1-a1x =
52. 已知fx在x=a可导fx>0 ,n∈N,fa=1,f'a=2
则极限limn→∞ fa+1nfa n=
53. limx→0cot2x-1x2=
54. limx→1lncosx-11-sinπ2x =
55. 如果limx→-∞x2+x+1+ax+b=0
则a= b=
56. limx→0arcsinxx11-cosx =
57. 已知曲线y=fx在点(0,0)处切线经过点(1,2)则极限
limx→0cosx+0xftt1x2 =
58. 已知fx在x=0邻域内可导且limx→0sinxx2+fxx=2
f'0= limx→0xfx+x =
59. limx→01+tanx-1+sinxxlnx+1-x2 =
60 limx→1lnxln1-x=
61. limn→∞12+322+523+…+2n-12n =
62. limx→0a x-1x2-a2ln1+ax = (a≠0)
63 .limx→01x+11x-1arctan1x=
64.设fx在a,b连续则limn→+∞01xnfxx =
65. w=limx→0arcsinx-sinxarctanx-tanx =
66 . limx→0x+3x-3xx2=
则f0=
67 .limx→+∞1x0x1+t2t2-x2t =
68. limx→02-x+12xx =
69. limx→0 x21+xsinx-cosx =
70. limn→∞1+12n21+22n2+…+1+n2n21n =
71. 设xn=1n2+1+2n2+22+…+nn2+n2 则limn→+∞xn=
72 .P= limx→0 ln1+2xln1+1x+ax 存在求p及a的值.
→+∞0x1+t2t2txx2 =
74. limx→0 1ln1+x2-1sin2x =
75. limx→+∞ x+x1x =
76. limx→1 x-xx1-x+lnx =
77. limn→∞1.3.5.7…2n-12.4.6.8…2n =
78. limn→∞ 1nnnn-1⋯2n-1 =
79. 极限limx→01-cosx1-3cosx…1-ncosx1-cosxn-1 =
80. 设fx一阶连续可导且f0=0,f'0=1则下列极限limx→01+fx1arcsinx =
81. 函数fx满足f0=0 ,f'0>0则极限limx→0+xfx=
82. limx→+∞x+1+x22x =
83. limx→+∞ π2-arctanx 1lnx =
84. limx→01-cosxcos2x3cos3xx2 =
85. 函数fx=xln1-x的第一类间断点的个数为
86. limx→0cotx2sinx =
→+∞x-2πxarctanxx+x =
88. limn→∞1n2+1+1n2+22+…+1n2+n2 =
89. limx→+∞ x2lnarctanx+1-lnarctanx =
90. limx→+∞ x32x+2-2x+1+x =
91 设x≠0时 limn→∞cosx2cosx4…cosx2n =
92极限w=limx→+∞1+2x1+xarctanx =
93. limx→0tanx+1-cosxln1-2x+1-x2 =
94 fx=arcsinx在0,b上用拉格朗日中值定理且中值为ε则limb→0εb =
95 已知曲线y=fx与y=sinx在0,0处相切则limn→∞ 1+f2n n =
96 limn→∞1n2+n+1+2n2+n+2+…+nn2+n+n =
97 limx→+∞ a1x+b1x+c1x3x =
98 极限limx→01+x1x-x =
99.设fx 在x=1处可导且在(1,f1)处的切线方程为y=x-1,
求极限P = limx→00x2tf1+x2-ttx2lncosx
100.如果limx→+∞xn+7x4+1m-x=b (n>4 ,b≠0)求m,n及b的值
p