2024年5月14日发(作者:步慧捷)
ASimpleMin-CutAlgorithm
MECHTHILDSTOER
TeleverketsForskningsinstitutt,Kjeller,Norway
AND
FRANKWAGNER
FreieUniversita¨tBerlin,Berlin-Dahlem,Germany
entanalgorithmforfindingtheminimumcutofanundirectededge-weighted
shortandcompactdescription,iseasytoimplement,and
timematchesthatofthefastestalgorithm
rasttonearlyallapproachessofar,the
yspeaking,thealgorithmconsistsofabout͉V͉nearly
identicalphaseseachofwhichisamaximumadjacencysearch.
CategoriesandSubjectDescriptors:G.L.2[DiscreteMathematics]:GraphTheory—graphalgorithms
GeneralTerms:Algorithms
AdditionalKeyWordsandPhrases:Min-Cut
uction
Graphconnectivityisoneoftheclassicalsubjectsingraphtheory,andhasmany
practicalapplications,forexample,inchipandcircuitdesign,reliabilityof
communicationnetworks,transportationplanning,g
theminimumcutofanundirectededge-weightedgraphisafundamental
ely,itconsistsinfindinganontrivialpartitionofthe
graphsvertexsetVintotwopartssuchthatthecutweight,thesumoftheweights
oftheedgesconnectingthetwoparts,isminimum.
ApreliminaryversionofthispaperappearedinProceedingsofthe2ndAnnualEuropeanSymposium
eNotesinComputerScience,vol.855,1994,pp.141–147.
ThisworkwassupportedbytheESPRITBRAProjectALCOMII.
Authors’addresses:,TeleverketsForskningsinstitutt,Postboks83,2007Kjeller,Norway;
e-mail:@.;,Institutfu¨rInformatik,FachbereichMathematikund
Informatik,FreieUniversita¨tBerlin,Takustraße9,Berlin-Dahlem,Germany;e-mail:wagner@-
.
Permissiontomakedigital/hardcopyofpartorallofthisworkforpersonalorclassroomuseis
grantedwithoutfeeprovidedthatthecopiesarenotmadeordistributedforprofitorcommercial
advantage,thecopyrightnotice,thetitleofthepublication,anditsdateappear,andnoticeisgiven
thatcopyingisbypermissionoftheAssociationforComputingMachinery(ACM),
otherwise,torepublish,topostonservers,ortoredistributetolists,requirespriorspecificpermission
and/orafee.
᭧1997ACM0004-5411/97/0700-0585$03.50
JournaloftheACM,Vol.44,No.4,July1997,pp.585–591.
586
Theusualapproachtosolvethisproblemistouseitscloserelationshiptothe
ousMax-Flow-Min-Cut-TheorembyFordand
Fulkerson[1956]showedthedualityofthemaximumflowandtheso-called
,sandtaretwoverticesthatarethesourceandthesink
intheflowproblemandhavetobeseparatedbythecut,thatis,theyhavetolie
ecentlyallcutalgorithmswere
gaminimumcutwithout
specifiedverticestobeseparatedcanbedonebyfindingminimums-t-cutsfora
fixedvertexsandall͉V͉Ϫ1possiblechoicesoftʦVگ{s}andthenselecting
thelightestone.
RecentlyHaoandOrlin[1992]showedhowtousethemaximumflow
algorithmbyGoldbergandTarjan[1988]inordertosolvetheminimumcut
problemintimeᏻ(͉VʈE͉log(͉V͉
2
/͉E͉),whichisnearlyasfastasthefastest
maximumflowalgorithmssofar[Alon1990;Ahujaetal.1989;Cheriyanetal.
1990].
NagamochiandIbaraki[1992a]publishedthefirstdeterministicminimumcut
algorithmthatisnotbasedonaflowalgorithm,hastheslightlybetterrunning
timeofᏻ(͉VʈE͉ϩ͉V͉
2
log͉V͉),nweighted
case,theyuseafast-searchtechniquetodecomposeagraph’sedgesetEinto
subsetsE
1
,...,E
suchthattheunionofthefirstkE
i
’sisak-edge-connected
spanningsubgraphofthegivengraphandhasatmostk͉V͉mulate
orkisoneofasmallnumberof
paperstreatingquestionsofgraphconnectivitybynon-flow-basedmethods
[NishizekiandPoljak1989;NagamochiandIbaraki1992a;Matula1992].Karger
andStein[1993]suggestarandomizedalgorithmthatwithhighprobabilityfinds
aminimumcutintimeᏻ(͉V͉
2
log͉V͉).
Inthiscontext,wepresentinthispaperaremarkablysimpledeterministic
minimumcutalgorithmwiththefastestrunningtimesofar,establishedin
NagamochiandIbaraki[1992b].Wereducethecomplexityofthealgorithmof
NagamochiandIbarakibyavoidingtheunnecessarysimulateddecompositionof
ablesustogiveacomparablystraightforwardproofof
correctnessavoiding,forexample,thedistinctionbetweentheunweighted,
integer-,rational-,andreal-weightedcase.
ThisalgorithmwasfoundindependentlybyFrank[1994].
Queyranne[1995]generalizesoursimpleapproachtotheminimizationof
submodularfunctions.
ThealgorithmdescribedinthispaperwasimplementedbyKurtMehlhorn
fromtheMax-Planck-Institut,Saarbru¨ckenandispartofthealgorithmslibrary
LEDA[MehlhornandNa¨her1995].
orithm
Throughoutthepaper,wedealwithanordinaryundirectedgraphGwithvertex
dgeehasnonnegativerealweightw(e).
Thesimplekeyobservationisthat,ifweknowhowtofindtwoverticessandt,
andtheweightofaminimums-t-cut,wearenearlydone:
T
HEOREM
/{s,t}bethe
inimumcutofGcanbeobtainedby
takingthesmallerofaminimums-t-cutofGandaminimumcutofG/{s,t}.
2024年5月14日发(作者:步慧捷)
ASimpleMin-CutAlgorithm
MECHTHILDSTOER
TeleverketsForskningsinstitutt,Kjeller,Norway
AND
FRANKWAGNER
FreieUniversita¨tBerlin,Berlin-Dahlem,Germany
entanalgorithmforfindingtheminimumcutofanundirectededge-weighted
shortandcompactdescription,iseasytoimplement,and
timematchesthatofthefastestalgorithm
rasttonearlyallapproachessofar,the
yspeaking,thealgorithmconsistsofabout͉V͉nearly
identicalphaseseachofwhichisamaximumadjacencysearch.
CategoriesandSubjectDescriptors:G.L.2[DiscreteMathematics]:GraphTheory—graphalgorithms
GeneralTerms:Algorithms
AdditionalKeyWordsandPhrases:Min-Cut
uction
Graphconnectivityisoneoftheclassicalsubjectsingraphtheory,andhasmany
practicalapplications,forexample,inchipandcircuitdesign,reliabilityof
communicationnetworks,transportationplanning,g
theminimumcutofanundirectededge-weightedgraphisafundamental
ely,itconsistsinfindinganontrivialpartitionofthe
graphsvertexsetVintotwopartssuchthatthecutweight,thesumoftheweights
oftheedgesconnectingthetwoparts,isminimum.
ApreliminaryversionofthispaperappearedinProceedingsofthe2ndAnnualEuropeanSymposium
eNotesinComputerScience,vol.855,1994,pp.141–147.
ThisworkwassupportedbytheESPRITBRAProjectALCOMII.
Authors’addresses:,TeleverketsForskningsinstitutt,Postboks83,2007Kjeller,Norway;
e-mail:@.;,Institutfu¨rInformatik,FachbereichMathematikund
Informatik,FreieUniversita¨tBerlin,Takustraße9,Berlin-Dahlem,Germany;e-mail:wagner@-
.
Permissiontomakedigital/hardcopyofpartorallofthisworkforpersonalorclassroomuseis
grantedwithoutfeeprovidedthatthecopiesarenotmadeordistributedforprofitorcommercial
advantage,thecopyrightnotice,thetitleofthepublication,anditsdateappear,andnoticeisgiven
thatcopyingisbypermissionoftheAssociationforComputingMachinery(ACM),
otherwise,torepublish,topostonservers,ortoredistributetolists,requirespriorspecificpermission
and/orafee.
᭧1997ACM0004-5411/97/0700-0585$03.50
JournaloftheACM,Vol.44,No.4,July1997,pp.585–591.
586
Theusualapproachtosolvethisproblemistouseitscloserelationshiptothe
ousMax-Flow-Min-Cut-TheorembyFordand
Fulkerson[1956]showedthedualityofthemaximumflowandtheso-called
,sandtaretwoverticesthatarethesourceandthesink
intheflowproblemandhavetobeseparatedbythecut,thatis,theyhavetolie
ecentlyallcutalgorithmswere
gaminimumcutwithout
specifiedverticestobeseparatedcanbedonebyfindingminimums-t-cutsfora
fixedvertexsandall͉V͉Ϫ1possiblechoicesoftʦVگ{s}andthenselecting
thelightestone.
RecentlyHaoandOrlin[1992]showedhowtousethemaximumflow
algorithmbyGoldbergandTarjan[1988]inordertosolvetheminimumcut
problemintimeᏻ(͉VʈE͉log(͉V͉
2
/͉E͉),whichisnearlyasfastasthefastest
maximumflowalgorithmssofar[Alon1990;Ahujaetal.1989;Cheriyanetal.
1990].
NagamochiandIbaraki[1992a]publishedthefirstdeterministicminimumcut
algorithmthatisnotbasedonaflowalgorithm,hastheslightlybetterrunning
timeofᏻ(͉VʈE͉ϩ͉V͉
2
log͉V͉),nweighted
case,theyuseafast-searchtechniquetodecomposeagraph’sedgesetEinto
subsetsE
1
,...,E
suchthattheunionofthefirstkE
i
’sisak-edge-connected
spanningsubgraphofthegivengraphandhasatmostk͉V͉mulate
orkisoneofasmallnumberof
paperstreatingquestionsofgraphconnectivitybynon-flow-basedmethods
[NishizekiandPoljak1989;NagamochiandIbaraki1992a;Matula1992].Karger
andStein[1993]suggestarandomizedalgorithmthatwithhighprobabilityfinds
aminimumcutintimeᏻ(͉V͉
2
log͉V͉).
Inthiscontext,wepresentinthispaperaremarkablysimpledeterministic
minimumcutalgorithmwiththefastestrunningtimesofar,establishedin
NagamochiandIbaraki[1992b].Wereducethecomplexityofthealgorithmof
NagamochiandIbarakibyavoidingtheunnecessarysimulateddecompositionof
ablesustogiveacomparablystraightforwardproofof
correctnessavoiding,forexample,thedistinctionbetweentheunweighted,
integer-,rational-,andreal-weightedcase.
ThisalgorithmwasfoundindependentlybyFrank[1994].
Queyranne[1995]generalizesoursimpleapproachtotheminimizationof
submodularfunctions.
ThealgorithmdescribedinthispaperwasimplementedbyKurtMehlhorn
fromtheMax-Planck-Institut,Saarbru¨ckenandispartofthealgorithmslibrary
LEDA[MehlhornandNa¨her1995].
orithm
Throughoutthepaper,wedealwithanordinaryundirectedgraphGwithvertex
dgeehasnonnegativerealweightw(e).
Thesimplekeyobservationisthat,ifweknowhowtofindtwoverticessandt,
andtheweightofaminimums-t-cut,wearenearlydone:
T
HEOREM
/{s,t}bethe
inimumcutofGcanbeobtainedby
takingthesmallerofaminimums-t-cutofGandaminimumcutofG/{s,t}.