最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

S4 S5的子群

IT圈 admin 35浏览 0评论

2024年5月29日发(作者:喻锦)

S

4

及其子群

S

4

的元

已知|S

4

|=24及S

4

的的元的形式为(a),(ab),(abc),(abcd),(ab)(cd),

其中a,b,c,d∈{1,2,3,4}

1阶元:因为(a)=(b)=(c)=(d),所以1阶元有1个,即单位元(1);

2阶元:形式为(ab)或(ab)(cd),共有C

4

2

+

1

( C

4

2

•C

2

2

)=9个,即:

2

(12),(34),(13),(24),(14),(23), (12)(34),(13)(24),(14)(23);

3阶元:形式为(abc),共有C

4

3

A

2

2

=8个,即 :

(123),(132),(134),(143),(124),(142),(234),(243);

4阶元:形式为(abcd),共有C

4

4

A

3

3

= 6,即:

(1234),(1243),(1324),(1342),(1423),(1432);

S

4

的子群

因为|S

4

|=24,由定理1,知S

5

子群的阶可能为:1,2,3,4,6,8,12,24,又因为

|24|=2

3

×3,根据sylow定理,S

4

必存在2阶、3阶、4阶和8阶子群,另S

4

平凡子群1阶子群和24阶子群,可能有6阶和12阶子群。

1阶子群:N

1

={(1)}, 为一共轭类。

2阶子群:由S

4

的2阶元生成的循环群,因为S

4

的2阶元有9个,所以S

4

的2阶子群有9个,即:

N

2

=<(12)>={(1),(12)},

N

3

=<(13)>={(1),(13)},

N

4

=<(23)>={(1),(23)} ,

N

5

=<(24)>={(1),(24)} ,

N

6

=<(14)>={(1),(14)} ,

N

7

=<(34)>={(1),(34)} ,

N

8

=<(12)(34)>={(1),(12)(34)},

N

9

=<(13)(24)>={(1),(13)(24)},

N

10

=<(14)(23)>={(1),(14)(23)},

1

其中N

2

至N

7

为一共轭类,N

8

至 N

10

为一共轭类。

3阶子群:由S

4

的3阶元生成的循环群,因为每两个互逆的3阶元同单位元

可以组成一个子群,而S

4

的3阶元有6个,所以S

4

的3阶子群有3个,且为一

共轭类,即:

N

11

=<(123)>={(1),(123),(132)} ,

N

12

=<(134)>={(1),(134),(143)} ,

N

13

=<(124)>={(1),(124),(142)} ,

N

14

=<(234)>={(1),(234),(243)} ,

4阶子群:(循环群和非循环群)

循环群:由S

4

的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶

元生成的子群里包含有一对互逆的4阶元,而S

4

的4阶元有三对互逆的元,故4

阶循环子群有3个,且为一共轭类,即:

N

15

=<(1234)>={(1),(1234),(13)(24),(1432)},

N

16

=<(1324)>={(1),(1324),(12)(34),(1423)},

N

17

=<(1243)>={(1),(1243),(14)(23),(1342)},

非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,

满足这一条件可构成的4阶非循环群只有4个,且为2个共轭类,即:

N

18

={(1),(12),(34),(12)(34)} ,

N

19

={(1),(13),(24),(13)(24)},

N

20

={(1),(14),(23),(14)(23)},

和N

21

={(1),(12)(34),(13)(24),(14)(23)}

8阶子群:此群里的元的阶只能为1阶、2阶、4阶,且由sylow 定理,8

阶子群里必含有4阶子群,故可先确定8阶子群里的4个元素,其余4个元素可

由已确定的元来给出,经由此算法,由全部的4阶子群只找出3个8阶子群,故

8阶子群有3个,且为一共轭类,即:

N

22

={(1),(1234),(13)(24),(1432),(13),(12)(34),(24),

2

(14)(23)},

N

23

={(1),(1324),(12)(34),(1423),(12),(13)(24),(34),

(14)(32)},

N

24

={(1),(1243),(14)(23),(1342),(14),(12)(43),(23),

(13)(24)},

24阶子群:即N

25

=S

4

以上为S

4

里必存在的子群,下面讨论S

4

里可能存在的子群:

6阶子群:因为S

4

包含着S

3

,故S

4

必有同构于S

3

的一类6阶子群,而同构

于S

3

的S

4

的6阶子群有4个,且其元为1阶、2阶和3阶,所以S

4

的6阶子群

有4个,且为一共轭类,即:

N

26

={(1),(12),(13),(23),(123),(132)},

N

27

={(1),(12),(24),(14),(124),(142)},

N

28

={(1),(34),(13),(14),(143),(134)},

N

29

={(1),(34),(24),(23),(234),(243)},

12阶子群:若S

4

有12阶子群,则由sylow定理,该子群里必存在2阶子群、

4阶子群和3阶子群,经计算,S

4

的12阶子群只有一个,即:

N

30

={(1),(123),(132),(134),(143),(124),(142),(234),(243),

(12)(34),(13)(24),(14)(23)}。

综上,S

4

共有30个子群,分为10个共轭类,其中,由正规子群定义及定理

6知S

4

的1阶子群,N

21

,12阶子群和24阶子群为正规子群。

§3.2 S

5

的元

3

已知|S

5

|=120及S

5

的的元的形式为(a),(ab),(abc),(abcd),(abcde),

(ab)(cd),(ab)(cde)其中a,b,c,d,e∈{1,2,3,4,5}

1阶元:因为(a)=(b)=(c)=(d)=(e),所以1阶元有1个,即单位元(1);

2阶元:形式为(ab)或(ab)(cd),共有C

5

2

+

1

( C

5

2

C

3

2

)=25个,即:

2

(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),(12)(34),

(12)(35),(12)(45),(13)(24),(13)(25),(13)(45)(14)(23),(14)(25)(14)(35)

(15)(23),(15)(24),(15)(34),(23)(45),(24)(35),(25)(34);

3 阶元 :形式为(abc),共有C

5

3

A

2

2

=20个,即:

(123), (124),(125),(132), (134),(135),(142),(143),(145), (152),

(153), (154),(234),(235),(243),(245), (253),(254),(345),(354);

4阶元:形式为(abcd),共有C

5

4

A

3

3

= 30,即:

(1234),(1235),(1243),(1245),(1253),(1254),(1324),(1325),(1342),

(1345),(1352),(1354),(1423),(1425),(1432),(1435),(1452),(1453),

(1523),(1524),(1532),(1534),(1542),(1543),(2345),(2354),(2435),

(2453),(2534),(2543);

5阶元:形式为(abcde),共有C

5

A

4

= 24,即:

(12345),(12354),(12435),(12453),(12534),(12543), (13245),(13254),

(13425), (13452) ,(13524),(13542), (14235),(14253), (14325),(14352),

(14523),(14532),(15234),(15243),(15324),(15342), (15423),(15432);

6阶元: 形式为(ab)(cde),共有C

5

2

C

3

3

A

2

2

=20,即:

(12)(345),(12)(354),(13)(245),(13)(254),(14)(235),(14)(253),

(15)(234),(15)(243),(23)(145),(23)(154) , (24)(135), (24)(153),

(25)(134),(25)(143),(34)(125),(34)(152),(35)(124),(35)(142),

(45)(123),(45)(132);

54

§3.3 S

5

的子群

4

因为|S

5

|=120,由定理1,知S

5

子群的阶可能为:1,2,3,4,5,6,8,10,12,15,20,

24,30,40,60,120,又因为|120|=2

3

×3×5,根据sylow定理,S

5

必存在2阶、3

阶、4阶、5阶和8阶子群,另S

5

有平凡子群1阶子群和120阶子群,可能有6

阶、10阶、12阶、15阶、20阶、24阶、30阶、40阶和60阶子群。下述S

5

各个阶子群的情况:

1阶子群:

S

5

的一阶子群为平凡子群,只包含单位元(1),即

H

1

={(1)}。

2阶子群:

由S

5

的2阶元生成的循环群,由于2阶子群里只有两个元,其中一个为单位元,

由定理2,可知另一个元必为2阶元,因为S

5

共有25个二阶元,所以S

5

共有25个2

阶子群,其中分为两个共轭类,第一个共轭类为:

H

1

=<(12)>={(1),(12)},

H

2

=<(13)>={(1),(13)},

H

3

=<(14)>={(1),(14)},

H

4

=<(15)>={(1),(15)},

H

5

=<(23)>={(1),(23)},

H

6

=<(24)>={(1),(24)},

H

7

=<(25)>={(1),(25)},

H

8

=<(34)>={(1),(34)},

H

9

=<(35)>={(1),(35)I,

H

10

=<(45)>={(1),(45)};

第二个共轭类为:

H

11

=<(12)(34)>={(1),(12)(34)},

H

12

=<(12)(35)>={(1),(12)(35)},

H

13

=<(12)(45)>={(1),(12)(45)},

H

14

=<(13)(24)>={(1),(13)(24)},

H

15

=<(13)(25)>={(1),(13)(25)},

5

H

16

=<(13)(45)>={(1),(13)(45)},

H

17

=<(14)(23)>={(1),(14)(23)},

H

18

=<(14)(25)>={(1),(14)(25)},

H

19

=<(14)(35)>={(1),(14)(35)},

H

20

=<(15)(23)>={(1),(15)(23)},

H

21

=<(15)(24)>={(1),(15)(24)},

H

22

=<(15)(34)>={(1),(15)(34)},

H

23

=<(23)(45)>={(1),(23)(45)},

H

24

=<(24)(35)>={(1),(24)(35)},

H

25

=<(25)(34)>={(1),(25)(34)}。

3阶子群:

由S

4

的3阶元生成的循环群,由定理1,3阶子群里元的阶只可能为1阶和

3阶,S

5

里1阶的元为单位元,3阶元有20个,3阶元恰好有10组互为逆元,

经计算S

5

的3阶子群有10个,为一个共轭类,即:

H

1

=<(123)>={(1),(123),(132)},

H

2

=<(124)>={(1),(124),(142)},

H

3

=<(125)>={(1),(125),(152)},

H

4

=<(134)>={(1),(134),(143)},

H

5

=<(135)>={(1),(135),(153)},

H

6

=<(145)>={(1),(145),(154)},

H

7

=<(234)>={(1),(234),(243)},

H

8

=<(235)>={(1),(235),(253)},

H

9

=<(245)>={(1),(245),(254)},

H

10

=<(345)>={(1),(345),(354)}。

4阶子群:(循环群和非循环群)

循环群:由S

5

的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶

元生成的子群里包含有一对互逆的4阶元,而S

5

的4阶元有三对互逆的元,故4

6

阶循环子群有3个,且为一共轭类,即:

H

1

=<(1234)>={(1),(1234),(13)(24),(1432)},

H

2

=<(1243)>={(1),(1243),(14)(23),(1342)},

H

3

=<(1235)>={(1),(1235),(13)(25),(1532)},

H

4

=<(1253)>={(1),(1253),(15)(23),(1352)},

H

5

=<(1245)>={(1),(1245),(14)(25),(1542)},

H

6

=<(1254)>={(1),(1254),(15)(24),(1452)},

H

7

=<(1324)>={(1),(1324),(12)(34),(1423)},

H

8

=<(1325)>={(1),(1325),(12)(35),(1523)},

H

9

=<(1345)>={(1),(1345),(14)(35),(1543)},

H1

0

=<(1354)>={(1),(1354),(15)(34),(1453)},

H1

1

=<(1435)>={(1),(1435),(13)(45),(1534)},

H1

2

=<(1524)>={(1),(1524),(12)(45),(1425)},

H

13

=<(2345)>={(1),(2345),(24)(35),(2543)},

H

14

=<(2354)>={(1),(2354),(25)(34),(2453)},

H

15

=<(2435)>={(1),(2435),(23)(45),(2534)}。

非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,

满足这一条件可构成的4阶非循环群有20个,且为2个共轭类,即:

H

16

={(1),(12),(34),(12)(34)},

H

17

={(1),(12),(35),(12)(35)},

H

18

={(1),(12),(45),(12)(45)},

H

19

={(1),(13),(24),(13)(24)},

H

20

={(1),(13),(25),(13)(25)},

H

21

={(1),(13),(45),(13)(45)},

H

22

={(1),(14),(23),(14)(23)},

H

23

={(1),(14),(25),(14)(25)},

H

24

={(1),(14),(35),(14)(35)},

H

25

={(1),(15),(23),(15)(23)},

H

26

={(1),(15),(24),(15)(24)},

7

H

27

={(1),(15),(24),(15)(24)},

H

28

={(1),(23),(45),(23)(45)},

H

29

={(1),(24),(35),(24)(35)},

H

30

={(1),(25),(34),(25)(34)},

H

31

={(1),(12)(34),(13)(24),(14)(23)},

H

32

={(1),(12)(35),(13)(25),(15)(23)},

H

33

={(1),(12)(45),(14)(25),(15)(24)},

H

34

={(1),(13)(45),(14)(35),(15)(34)},

H

35

={(1),(23)(45),(24)(35),(25)(34)};

其中H

16

至H

30

为一共轭类,H

31

至H

35

为另一共轭类。

5阶子群:

由定理1,5阶子群里元的阶只能为1阶和5阶,故S

5

的5阶子群为由S

5

的5

阶元生成的循坏群,S

5

里1阶的元为单位元,5阶元有24个,经计算S

5

的5阶子

群有6个,为一个共轭类,即:

H

1

=<(12345)>={(1),(12345),(13524),(14253),(15432)},

H

2

=<(12354)>={(1),(12354),(13425),(15243),(14532)},

H

3

=<(12435)>={(1),(12435),(14523),(13254),(15342)},

H

4

=<(12453)>={(1),(12453),(14325),(15234),(13542)},

H

5

=<(12534)>={(1),(12534),(15423),(13245),(14352)},

H

6

=<(12543)>={(1),(12543),(15324),(14235),(13452)}。

S

5

的8阶子群:

由定理1,8阶子群里元的阶只能为1阶、2阶和4阶,仿照S

4

的8阶子群,

经计算,S

5

有15个8阶子群,一个共轭类,即:

H

1

={(1),(1234),(13)(24),(1432),(13),(12)(34),(24), (14)(23)},

H

1

={(1),(1324),(12)(34),(1423),(12),(13)(24),(34), (14)(32)},

H

1

={(1),(1243),(14)(23),(1342),(14),(12)(43),(23), (13)(24)},

H

1

={(1),(1235),(13)(25),(1532),(13),(12)(35),(25), (15)(23)},

8

H

1

={(1),(1245),(14)(25),(1542),(14),(12)(45),(25), (15)(24)},

H

1

={(1),(1253),(15)(23),(1352),(15),(12)(53),(23), (13)(25)},

H

1

={(1),(1254),(15)(24),(1452),(15),(12)(54),(24), (14)(25)},

H

1

={(1),(1325),(12)(35),(1523),(12),(13)(25),(35), (15)(32)},

H

1

={(1),(1345),(14)(35),(1543),(14),(13)(45),(35), (15)(34)},

H

1

={(1),(1354),(15)(34),(1453),(15),(13)(54),(34), (14)(35)},

H

1

={(1),(1425),(12)(45),(1524),(12),(14)(25),(45), (15)(42)},

H

1

={(1),(1435),(13)(45),(1534),(13),(14)(35),(45), (15)(43)},

H

1

={(1),(2345),(24)(35),(1543),(24),(23)(45),(35), (25)(34)},

H

1

={(1),(2354),(25)(34),(2453),(25),(23)(45),(34), (24)(35)},

H

1

={(1),(2435),(23)(45),(2534),(23),(24)(35),(45), (25)(34)}。

S

5

的120阶子群:

S

5

的120阶子群即为S

5

本身。

以上为S

5

里必存在的子群,下面讨论S

5

里可能存在的子群:

S

5

的6阶子群:

由定理1,6阶子群里元的阶只能为1阶、2阶和3阶,同构于S3的为一个

共轭类,即:

H

1

= {(1),(12),(13),(23),(123),(132)},

H

2

= {(1),(12),(14),(24),(124),(142)},

H

3

= {(1),(12),(15),(25),(125),(152)},

H

4

= {(1),(13),(15),(35),(135),(153)},

H

5

= {(1),(13),(14),(34),(143),(134)},

H

6

= {(1),(14),(15),(45),(145),(154)},

H

7

= {(1),(23),(25),(35),(235),(253)},

H

8

= {(1),(24),(25),(45),(245),(254)},

H

9

= {(1),(24),(23),(34),(234),(243)},

H

10

= {(1),(34),(35),(45),(345),(354)},

9

由2阶元,3阶元,和2×3循环置换构成一个共轭类,即:

H

11

={(1),(12)(345),(12)(354),(12),(345),(354)},

H

12

={(1),(13)(245),(13)(254),(13),(245),(254)},

H

13

={(1),(14)(235),(14)(253),(14),(235),(253)},

H

14

={(1),(15)(234),(15)(243),(15),(234),(243)},

H

15

={(1),(23)(145),(23)(154),(23),(145),(154)},

H

16

={(1),(24)(135),(24)(153),(24),(135),(153)},

H

17

={(1),(25)(134),(25)(143),(25),(134),(143)},

H

18

={(1),(34)(125),(34)(152),(34),(125),(152)},

H

19

={(1),(35)(124),(35)(142),(35),(124),(142)},

H

20

={(1),(45)(123),(45)(132),(45),(123),(132)}。

由3阶元,和2×2循环置换构成一个共轭类,即:

H

21

={(1),(12)(34),(345),(354),(12)(35),(12)(45)},

H

22

={(1),(14)(23),(235),(253),(14)(25),(14)(35)},

H

23

={(1),(15)(23),(234),(243),(15)(24),(15)(34)},

H

24

={(1),(13)(24),(245),(254),(13)(25),(13)(45)},

H

25

={(1),(12)(34),(152),(125),(15)(34),(25)(34)},

H

26

={(1),(12)(45),(123),(132),(13)(45),(23)(45)},

H

27

={(1),(12)(35),(124),(142),(14)(35),(24)(35)},

H

28

={(1),(13)(25),(134),(143),(14)(25),(25)(34)},

H

29

={(1),(13)(24),(135),(153),(15)(24),(24)(35)},

H

30

={(1),(14)(23),(145),(154),(15)(23),(23)(45)}。

所以S

5

的6阶子群共有30个。

S

5

的10阶子群:

若S

5

的10阶子群存在,则由Sylow定理,该10阶子群里必存在5阶子群,

且此5阶子群亦为S

5

的5阶子群,又因为S

5

的10阶子群里的元的阶只能为1

阶、2阶和5阶,所以经计算S

5

的10阶子群有6个,为一共轭类,即:

H

1

={(1),(12345),(13524),(14253),(15432),(12)(35),(13)(45),

10

(14)(23),(15)(24),(25)(34)},

H

2

={(1),(12354),(13425),(15243),(14532),(12)(34),(13)(45),

(15)(23),(14)(25),(24)(35)},

H

3

={(1),(12435),(14523),(13254),(15342),(12)(45),(14)(35),

(13)(24),(15)(23),(25)(34)},

H

4

={(1),(12453),(14325),(15234),(13542),(12)(34),(14)(35),

(15)(24),(13)(25),(23)(45)},

H

5

={(1),(12534),(15423),(13245),(14352),(12)(45),(15)(34),

(13)(25),(14)(23),(24)(35)},

H

6

={(1),(12543),(15324),(14235),(13452),(12)(35),(15)(34),

(14)(25),(13)(24),(23)(45)}。

S

5

的12阶子群:

由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S

4

的12

阶子群,经计算S

5

的12阶子群的一个共轭类:

H

1

={(1),(123),(132),(134),(143),(124),(142),(234),(243),

(12)(34),(13)(24),(14)(23)},

H

2

={(1),(123),(125),(132),(135),(152),(153),(235)(253),(12)(35),

(13)(25),(15)(23)},

H

3

={(1),(124),(125),(142),(145),(152),(154),(245),(254),(12)(45),

(14)(25),(15)(24)},

H

4

={(1),(134),(135),(143),(145),(153),(154),(345),(354),(13)(45),

(14)(35),(15)(34)},

H

5

={(1),(234),(235),(243),(245),(253),(254),(345),(354),(23)(45),

(24)(35),(25)(34)},

另经计算,由2阶元、3阶元和2×3循环置换也可构成一共轭类子群:

H

6

={(1),(12)(345),(12)(354),(345),(354),(12)(34), (12)(35),

(12)(45),(12),(34),(35),(45)},

H

7

={(1),(13)(245),(13)(254),(245),(254),(13)(24), (13)(25),

11

(13)(45),(13),(24),(25),(45)},

H

8

={(1),(14)(235),(14)(253),(235),(253),(14)(23), (14)(25),

(14)(35),(14),(23),(25),(35)},

H

9

={(1),(15)(234),(15)(243),(234),(243),(15)(23), (15)(24),

(15)(34),(15),(23),(24),(34)},

H

10

={(1),(23)(145),(23)(154),(145),(154),(14)(23), (15)(23),

(23)(45),(23),(14),(15),(45)},

H

11

={(1),(24)(135),(24)(153),(135),(153),(13)(24), (15)(24),

(24)(35),(24),(13),(15),(35)},

H

12

={(1),(25)(134),(25)(134),(134),(143),(13)(25), (14)(25),

(25)(34),(25),(13),(14),(34)},

H

13

={(1),(34)(125),(34)(152),(125),(152),(12)(34), (15)(34),

(25)(34),(12),(15),(25),(34)},

H

14

={(1),(35)(124),(35)(142),(124),(142),(12)(35), (14)(35),

(24)(35),(12),(14),(24),(35)},

H

15

={(1),(45)(123),(45)(132),(123),(132),(12)(45), (13)(45),

(23)(45),(12),(13),(23),(45)}。

S

5

的15阶子群:

由定理1,15阶子群里元的阶只能为1阶、3阶和5阶,若H为S

5

的15阶

子群,由Sylow定理,H必有3阶和5阶子群,此3阶子群和5阶子群必也是

S

5

的子群,因为任意3阶子群里的3阶元乘以5阶子群里的5阶元必会出现2

阶元,例如:3阶子群{(1),(123),(132)}与5阶子群{(1),(12345),(13524),

(14253),(15432)}中,(123)(13524)=(14)(25)为2阶元,此以H中不

含有2阶元矛盾,故S

5

不含有15阶子群。

S

5

的20阶子群:

由定理1,20阶子群里元的阶只能为1阶、2阶、4阶和5阶,经计算,S

5

含有6

个20阶子群,为一共轭类:

12

H

1

={(1),(12354),(13425),(15243),(14532),(1253),(1324),(1542),

(1435),(2345),(15)(23),(12)(34),(14)(25),(13)(45),(24)(35),(1352),

(1423),(1245),(1534),(2543)},

H

2

={(1),(12435),(14523),(13254),(15342), (1234),(1425),(1352),

(1543),(2453),(13)(24),(12)(45),(15)(23),(14)(35),(25)(34),(1432),

(1524),(1253),(1345),(2354)},

H

3

={(1),(12453),(14325),(15234),(13542), (1254),(1423),(1532),

(1345),(2435),(15)(24),(12)(34),(13)(25),(14)(35),(23)(45),(1452),

(1324),(1235),(1543),(2534)},

H

4

={(1),(12345),(13524),(14253),(15432), (1243),(1325),(1452),

(1534),(2354),(14)(23),(12)(35),(15)(24),(13)(45),(25)(34),(1342),

(1523),(1254),(1435),(2453)},

H

5

={(1),(12543),(15324),(14235),(13452), (1245),(1523),(1432),

(1354),(2534),(14)(25),(12)(35),(13)(24),(15)(34),(23)(45),(1542),

(1325),(1234),(1453),(2435)},

H

6

={(12534),(15423),(13245),(14352),(1),(1235),(1524),(1342),

(1453),(2543),(13)(25),(12)(45),(14)(23),(15)(34),(24)(35),(1532),

(1425),(1243),(1354),(2345)}。

S

5

的24阶子群:

由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S

4

的24

阶子群,S

5

有5个24阶子群,为一个共轭类:

H

1

={(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),

(14)(23),(123),(132),(124),(142),(134),(143),(234),(243),(1234),

(1243),(1432),(1423),(1324),(1342)},

H

2

={(1),(12),(13),(15),(23),(25),(35),(12)(35),(13)(25),

(15)(23),(123),(132),(125),(152),(135),(153),(235),(253),(1235),

(1253),(1532),(1523),(1325),(1352)},

H

3

={(1),(12),(14),(15),(24),(25),(45),(12)(45),(14)(25),

13

(15)(24),(124),(142),(125),(152),((145),(154),(245),(254),(1245),

(1254),(1542),(1524),(1425),(1452)},

H

4

={(1),(13),(14),(15),(34),(35),(45),(13)(45),(14)(35),

(15)(34),(134),(143),(135),(153),(145),(154),(345),(354),(1345),

(1354),(1543),(1534),(1435),(1453)},

H

5

={(1),(23),(24),(25),(34),(35),(45),(23)(45),(24)(35),

(25)(34),(234),(243),(235),(253),(245),(254),(345),(354),(2345),

(2354),(2543),(2534),(2435),(2453)}。

S

5

的30阶子群:

由定理1,30阶子群里元的阶只能为1阶、2阶、3阶和5阶,若H为S

5

的30阶子群,由Sylow定理,H必有2阶子群、3阶子群和5阶子群,此2阶

子群、3阶子群和5阶子群必也是S

5

的子群,因为任意2阶子群里的2阶元乘以

5阶子群里的5阶元必会出现4阶元,例如:2阶子群{(1),(12)}与5阶子群

{(1),(12345),(13524),(14253),(15432)}里,(12)(12345)=(1345)

为4阶元,此与H中不含有4阶元矛盾,故S

5

不含有30阶子群。

S

5

的40阶子群:

由定理1,40阶子群里元的阶只能为1阶、2阶、4阶和5阶,若H为S

5

的40阶子群,由Sylow定理,H必有2阶子群、4阶子群和5阶子群,此2阶

子群、4阶子群和5阶子群必也是S

5

的子群,因为任意3阶子群里的3阶元乘以

任意5阶子群里的5阶元必会出现3阶元,例如:3阶子群{(1),(123),(132)}

与5阶子群{(1),(12345),(13524),(14253),(15432)}中,(123)(13524)

=(354)为3阶元,此与H中不含有3阶元矛盾,故S

5

不含有40阶子群。

S

5

的60阶子群:

由定理1,60阶子群里元的阶为1阶、2阶、3阶、4阶和5阶,经计算,S

5

含有

1个60阶子群,为一共轭类:

H

1

={(1),(123), (124),(125),(132), (134),(135),(142),(143),

14

(145), (152),(153), (154),(234),(235),(243),(245), (253), (254),

(345),(354), (12345),(12354),(12435),(12453),(12534),(12543),(13245),

(13254),(13425), (13452) ,(13524),(13542), (14235),(14253),(14325),

(14352),(14523),(14532),(15234),(15243),(15324),(15342),(15423),

(15432),(12)(34),(12)(35),(12)(45),(13)(24),(13)(25),(13)(45),

(14)(23), (14)(25),(14)(35),(15)(23), (15)(24), (15)(34),(23)(45),

(24)(35),(25)(34)}。

由正规子群的定义及定理6知S

5

的1阶子群,60阶子群和120阶子群为正

规子群。

15

16

2024年5月29日发(作者:喻锦)

S

4

及其子群

S

4

的元

已知|S

4

|=24及S

4

的的元的形式为(a),(ab),(abc),(abcd),(ab)(cd),

其中a,b,c,d∈{1,2,3,4}

1阶元:因为(a)=(b)=(c)=(d),所以1阶元有1个,即单位元(1);

2阶元:形式为(ab)或(ab)(cd),共有C

4

2

+

1

( C

4

2

•C

2

2

)=9个,即:

2

(12),(34),(13),(24),(14),(23), (12)(34),(13)(24),(14)(23);

3阶元:形式为(abc),共有C

4

3

A

2

2

=8个,即 :

(123),(132),(134),(143),(124),(142),(234),(243);

4阶元:形式为(abcd),共有C

4

4

A

3

3

= 6,即:

(1234),(1243),(1324),(1342),(1423),(1432);

S

4

的子群

因为|S

4

|=24,由定理1,知S

5

子群的阶可能为:1,2,3,4,6,8,12,24,又因为

|24|=2

3

×3,根据sylow定理,S

4

必存在2阶、3阶、4阶和8阶子群,另S

4

平凡子群1阶子群和24阶子群,可能有6阶和12阶子群。

1阶子群:N

1

={(1)}, 为一共轭类。

2阶子群:由S

4

的2阶元生成的循环群,因为S

4

的2阶元有9个,所以S

4

的2阶子群有9个,即:

N

2

=<(12)>={(1),(12)},

N

3

=<(13)>={(1),(13)},

N

4

=<(23)>={(1),(23)} ,

N

5

=<(24)>={(1),(24)} ,

N

6

=<(14)>={(1),(14)} ,

N

7

=<(34)>={(1),(34)} ,

N

8

=<(12)(34)>={(1),(12)(34)},

N

9

=<(13)(24)>={(1),(13)(24)},

N

10

=<(14)(23)>={(1),(14)(23)},

1

其中N

2

至N

7

为一共轭类,N

8

至 N

10

为一共轭类。

3阶子群:由S

4

的3阶元生成的循环群,因为每两个互逆的3阶元同单位元

可以组成一个子群,而S

4

的3阶元有6个,所以S

4

的3阶子群有3个,且为一

共轭类,即:

N

11

=<(123)>={(1),(123),(132)} ,

N

12

=<(134)>={(1),(134),(143)} ,

N

13

=<(124)>={(1),(124),(142)} ,

N

14

=<(234)>={(1),(234),(243)} ,

4阶子群:(循环群和非循环群)

循环群:由S

4

的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶

元生成的子群里包含有一对互逆的4阶元,而S

4

的4阶元有三对互逆的元,故4

阶循环子群有3个,且为一共轭类,即:

N

15

=<(1234)>={(1),(1234),(13)(24),(1432)},

N

16

=<(1324)>={(1),(1324),(12)(34),(1423)},

N

17

=<(1243)>={(1),(1243),(14)(23),(1342)},

非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,

满足这一条件可构成的4阶非循环群只有4个,且为2个共轭类,即:

N

18

={(1),(12),(34),(12)(34)} ,

N

19

={(1),(13),(24),(13)(24)},

N

20

={(1),(14),(23),(14)(23)},

和N

21

={(1),(12)(34),(13)(24),(14)(23)}

8阶子群:此群里的元的阶只能为1阶、2阶、4阶,且由sylow 定理,8

阶子群里必含有4阶子群,故可先确定8阶子群里的4个元素,其余4个元素可

由已确定的元来给出,经由此算法,由全部的4阶子群只找出3个8阶子群,故

8阶子群有3个,且为一共轭类,即:

N

22

={(1),(1234),(13)(24),(1432),(13),(12)(34),(24),

2

(14)(23)},

N

23

={(1),(1324),(12)(34),(1423),(12),(13)(24),(34),

(14)(32)},

N

24

={(1),(1243),(14)(23),(1342),(14),(12)(43),(23),

(13)(24)},

24阶子群:即N

25

=S

4

以上为S

4

里必存在的子群,下面讨论S

4

里可能存在的子群:

6阶子群:因为S

4

包含着S

3

,故S

4

必有同构于S

3

的一类6阶子群,而同构

于S

3

的S

4

的6阶子群有4个,且其元为1阶、2阶和3阶,所以S

4

的6阶子群

有4个,且为一共轭类,即:

N

26

={(1),(12),(13),(23),(123),(132)},

N

27

={(1),(12),(24),(14),(124),(142)},

N

28

={(1),(34),(13),(14),(143),(134)},

N

29

={(1),(34),(24),(23),(234),(243)},

12阶子群:若S

4

有12阶子群,则由sylow定理,该子群里必存在2阶子群、

4阶子群和3阶子群,经计算,S

4

的12阶子群只有一个,即:

N

30

={(1),(123),(132),(134),(143),(124),(142),(234),(243),

(12)(34),(13)(24),(14)(23)}。

综上,S

4

共有30个子群,分为10个共轭类,其中,由正规子群定义及定理

6知S

4

的1阶子群,N

21

,12阶子群和24阶子群为正规子群。

§3.2 S

5

的元

3

已知|S

5

|=120及S

5

的的元的形式为(a),(ab),(abc),(abcd),(abcde),

(ab)(cd),(ab)(cde)其中a,b,c,d,e∈{1,2,3,4,5}

1阶元:因为(a)=(b)=(c)=(d)=(e),所以1阶元有1个,即单位元(1);

2阶元:形式为(ab)或(ab)(cd),共有C

5

2

+

1

( C

5

2

C

3

2

)=25个,即:

2

(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),(12)(34),

(12)(35),(12)(45),(13)(24),(13)(25),(13)(45)(14)(23),(14)(25)(14)(35)

(15)(23),(15)(24),(15)(34),(23)(45),(24)(35),(25)(34);

3 阶元 :形式为(abc),共有C

5

3

A

2

2

=20个,即:

(123), (124),(125),(132), (134),(135),(142),(143),(145), (152),

(153), (154),(234),(235),(243),(245), (253),(254),(345),(354);

4阶元:形式为(abcd),共有C

5

4

A

3

3

= 30,即:

(1234),(1235),(1243),(1245),(1253),(1254),(1324),(1325),(1342),

(1345),(1352),(1354),(1423),(1425),(1432),(1435),(1452),(1453),

(1523),(1524),(1532),(1534),(1542),(1543),(2345),(2354),(2435),

(2453),(2534),(2543);

5阶元:形式为(abcde),共有C

5

A

4

= 24,即:

(12345),(12354),(12435),(12453),(12534),(12543), (13245),(13254),

(13425), (13452) ,(13524),(13542), (14235),(14253), (14325),(14352),

(14523),(14532),(15234),(15243),(15324),(15342), (15423),(15432);

6阶元: 形式为(ab)(cde),共有C

5

2

C

3

3

A

2

2

=20,即:

(12)(345),(12)(354),(13)(245),(13)(254),(14)(235),(14)(253),

(15)(234),(15)(243),(23)(145),(23)(154) , (24)(135), (24)(153),

(25)(134),(25)(143),(34)(125),(34)(152),(35)(124),(35)(142),

(45)(123),(45)(132);

54

§3.3 S

5

的子群

4

因为|S

5

|=120,由定理1,知S

5

子群的阶可能为:1,2,3,4,5,6,8,10,12,15,20,

24,30,40,60,120,又因为|120|=2

3

×3×5,根据sylow定理,S

5

必存在2阶、3

阶、4阶、5阶和8阶子群,另S

5

有平凡子群1阶子群和120阶子群,可能有6

阶、10阶、12阶、15阶、20阶、24阶、30阶、40阶和60阶子群。下述S

5

各个阶子群的情况:

1阶子群:

S

5

的一阶子群为平凡子群,只包含单位元(1),即

H

1

={(1)}。

2阶子群:

由S

5

的2阶元生成的循环群,由于2阶子群里只有两个元,其中一个为单位元,

由定理2,可知另一个元必为2阶元,因为S

5

共有25个二阶元,所以S

5

共有25个2

阶子群,其中分为两个共轭类,第一个共轭类为:

H

1

=<(12)>={(1),(12)},

H

2

=<(13)>={(1),(13)},

H

3

=<(14)>={(1),(14)},

H

4

=<(15)>={(1),(15)},

H

5

=<(23)>={(1),(23)},

H

6

=<(24)>={(1),(24)},

H

7

=<(25)>={(1),(25)},

H

8

=<(34)>={(1),(34)},

H

9

=<(35)>={(1),(35)I,

H

10

=<(45)>={(1),(45)};

第二个共轭类为:

H

11

=<(12)(34)>={(1),(12)(34)},

H

12

=<(12)(35)>={(1),(12)(35)},

H

13

=<(12)(45)>={(1),(12)(45)},

H

14

=<(13)(24)>={(1),(13)(24)},

H

15

=<(13)(25)>={(1),(13)(25)},

5

H

16

=<(13)(45)>={(1),(13)(45)},

H

17

=<(14)(23)>={(1),(14)(23)},

H

18

=<(14)(25)>={(1),(14)(25)},

H

19

=<(14)(35)>={(1),(14)(35)},

H

20

=<(15)(23)>={(1),(15)(23)},

H

21

=<(15)(24)>={(1),(15)(24)},

H

22

=<(15)(34)>={(1),(15)(34)},

H

23

=<(23)(45)>={(1),(23)(45)},

H

24

=<(24)(35)>={(1),(24)(35)},

H

25

=<(25)(34)>={(1),(25)(34)}。

3阶子群:

由S

4

的3阶元生成的循环群,由定理1,3阶子群里元的阶只可能为1阶和

3阶,S

5

里1阶的元为单位元,3阶元有20个,3阶元恰好有10组互为逆元,

经计算S

5

的3阶子群有10个,为一个共轭类,即:

H

1

=<(123)>={(1),(123),(132)},

H

2

=<(124)>={(1),(124),(142)},

H

3

=<(125)>={(1),(125),(152)},

H

4

=<(134)>={(1),(134),(143)},

H

5

=<(135)>={(1),(135),(153)},

H

6

=<(145)>={(1),(145),(154)},

H

7

=<(234)>={(1),(234),(243)},

H

8

=<(235)>={(1),(235),(253)},

H

9

=<(245)>={(1),(245),(254)},

H

10

=<(345)>={(1),(345),(354)}。

4阶子群:(循环群和非循环群)

循环群:由S

5

的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶

元生成的子群里包含有一对互逆的4阶元,而S

5

的4阶元有三对互逆的元,故4

6

阶循环子群有3个,且为一共轭类,即:

H

1

=<(1234)>={(1),(1234),(13)(24),(1432)},

H

2

=<(1243)>={(1),(1243),(14)(23),(1342)},

H

3

=<(1235)>={(1),(1235),(13)(25),(1532)},

H

4

=<(1253)>={(1),(1253),(15)(23),(1352)},

H

5

=<(1245)>={(1),(1245),(14)(25),(1542)},

H

6

=<(1254)>={(1),(1254),(15)(24),(1452)},

H

7

=<(1324)>={(1),(1324),(12)(34),(1423)},

H

8

=<(1325)>={(1),(1325),(12)(35),(1523)},

H

9

=<(1345)>={(1),(1345),(14)(35),(1543)},

H1

0

=<(1354)>={(1),(1354),(15)(34),(1453)},

H1

1

=<(1435)>={(1),(1435),(13)(45),(1534)},

H1

2

=<(1524)>={(1),(1524),(12)(45),(1425)},

H

13

=<(2345)>={(1),(2345),(24)(35),(2543)},

H

14

=<(2354)>={(1),(2354),(25)(34),(2453)},

H

15

=<(2435)>={(1),(2435),(23)(45),(2534)}。

非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,

满足这一条件可构成的4阶非循环群有20个,且为2个共轭类,即:

H

16

={(1),(12),(34),(12)(34)},

H

17

={(1),(12),(35),(12)(35)},

H

18

={(1),(12),(45),(12)(45)},

H

19

={(1),(13),(24),(13)(24)},

H

20

={(1),(13),(25),(13)(25)},

H

21

={(1),(13),(45),(13)(45)},

H

22

={(1),(14),(23),(14)(23)},

H

23

={(1),(14),(25),(14)(25)},

H

24

={(1),(14),(35),(14)(35)},

H

25

={(1),(15),(23),(15)(23)},

H

26

={(1),(15),(24),(15)(24)},

7

H

27

={(1),(15),(24),(15)(24)},

H

28

={(1),(23),(45),(23)(45)},

H

29

={(1),(24),(35),(24)(35)},

H

30

={(1),(25),(34),(25)(34)},

H

31

={(1),(12)(34),(13)(24),(14)(23)},

H

32

={(1),(12)(35),(13)(25),(15)(23)},

H

33

={(1),(12)(45),(14)(25),(15)(24)},

H

34

={(1),(13)(45),(14)(35),(15)(34)},

H

35

={(1),(23)(45),(24)(35),(25)(34)};

其中H

16

至H

30

为一共轭类,H

31

至H

35

为另一共轭类。

5阶子群:

由定理1,5阶子群里元的阶只能为1阶和5阶,故S

5

的5阶子群为由S

5

的5

阶元生成的循坏群,S

5

里1阶的元为单位元,5阶元有24个,经计算S

5

的5阶子

群有6个,为一个共轭类,即:

H

1

=<(12345)>={(1),(12345),(13524),(14253),(15432)},

H

2

=<(12354)>={(1),(12354),(13425),(15243),(14532)},

H

3

=<(12435)>={(1),(12435),(14523),(13254),(15342)},

H

4

=<(12453)>={(1),(12453),(14325),(15234),(13542)},

H

5

=<(12534)>={(1),(12534),(15423),(13245),(14352)},

H

6

=<(12543)>={(1),(12543),(15324),(14235),(13452)}。

S

5

的8阶子群:

由定理1,8阶子群里元的阶只能为1阶、2阶和4阶,仿照S

4

的8阶子群,

经计算,S

5

有15个8阶子群,一个共轭类,即:

H

1

={(1),(1234),(13)(24),(1432),(13),(12)(34),(24), (14)(23)},

H

1

={(1),(1324),(12)(34),(1423),(12),(13)(24),(34), (14)(32)},

H

1

={(1),(1243),(14)(23),(1342),(14),(12)(43),(23), (13)(24)},

H

1

={(1),(1235),(13)(25),(1532),(13),(12)(35),(25), (15)(23)},

8

H

1

={(1),(1245),(14)(25),(1542),(14),(12)(45),(25), (15)(24)},

H

1

={(1),(1253),(15)(23),(1352),(15),(12)(53),(23), (13)(25)},

H

1

={(1),(1254),(15)(24),(1452),(15),(12)(54),(24), (14)(25)},

H

1

={(1),(1325),(12)(35),(1523),(12),(13)(25),(35), (15)(32)},

H

1

={(1),(1345),(14)(35),(1543),(14),(13)(45),(35), (15)(34)},

H

1

={(1),(1354),(15)(34),(1453),(15),(13)(54),(34), (14)(35)},

H

1

={(1),(1425),(12)(45),(1524),(12),(14)(25),(45), (15)(42)},

H

1

={(1),(1435),(13)(45),(1534),(13),(14)(35),(45), (15)(43)},

H

1

={(1),(2345),(24)(35),(1543),(24),(23)(45),(35), (25)(34)},

H

1

={(1),(2354),(25)(34),(2453),(25),(23)(45),(34), (24)(35)},

H

1

={(1),(2435),(23)(45),(2534),(23),(24)(35),(45), (25)(34)}。

S

5

的120阶子群:

S

5

的120阶子群即为S

5

本身。

以上为S

5

里必存在的子群,下面讨论S

5

里可能存在的子群:

S

5

的6阶子群:

由定理1,6阶子群里元的阶只能为1阶、2阶和3阶,同构于S3的为一个

共轭类,即:

H

1

= {(1),(12),(13),(23),(123),(132)},

H

2

= {(1),(12),(14),(24),(124),(142)},

H

3

= {(1),(12),(15),(25),(125),(152)},

H

4

= {(1),(13),(15),(35),(135),(153)},

H

5

= {(1),(13),(14),(34),(143),(134)},

H

6

= {(1),(14),(15),(45),(145),(154)},

H

7

= {(1),(23),(25),(35),(235),(253)},

H

8

= {(1),(24),(25),(45),(245),(254)},

H

9

= {(1),(24),(23),(34),(234),(243)},

H

10

= {(1),(34),(35),(45),(345),(354)},

9

由2阶元,3阶元,和2×3循环置换构成一个共轭类,即:

H

11

={(1),(12)(345),(12)(354),(12),(345),(354)},

H

12

={(1),(13)(245),(13)(254),(13),(245),(254)},

H

13

={(1),(14)(235),(14)(253),(14),(235),(253)},

H

14

={(1),(15)(234),(15)(243),(15),(234),(243)},

H

15

={(1),(23)(145),(23)(154),(23),(145),(154)},

H

16

={(1),(24)(135),(24)(153),(24),(135),(153)},

H

17

={(1),(25)(134),(25)(143),(25),(134),(143)},

H

18

={(1),(34)(125),(34)(152),(34),(125),(152)},

H

19

={(1),(35)(124),(35)(142),(35),(124),(142)},

H

20

={(1),(45)(123),(45)(132),(45),(123),(132)}。

由3阶元,和2×2循环置换构成一个共轭类,即:

H

21

={(1),(12)(34),(345),(354),(12)(35),(12)(45)},

H

22

={(1),(14)(23),(235),(253),(14)(25),(14)(35)},

H

23

={(1),(15)(23),(234),(243),(15)(24),(15)(34)},

H

24

={(1),(13)(24),(245),(254),(13)(25),(13)(45)},

H

25

={(1),(12)(34),(152),(125),(15)(34),(25)(34)},

H

26

={(1),(12)(45),(123),(132),(13)(45),(23)(45)},

H

27

={(1),(12)(35),(124),(142),(14)(35),(24)(35)},

H

28

={(1),(13)(25),(134),(143),(14)(25),(25)(34)},

H

29

={(1),(13)(24),(135),(153),(15)(24),(24)(35)},

H

30

={(1),(14)(23),(145),(154),(15)(23),(23)(45)}。

所以S

5

的6阶子群共有30个。

S

5

的10阶子群:

若S

5

的10阶子群存在,则由Sylow定理,该10阶子群里必存在5阶子群,

且此5阶子群亦为S

5

的5阶子群,又因为S

5

的10阶子群里的元的阶只能为1

阶、2阶和5阶,所以经计算S

5

的10阶子群有6个,为一共轭类,即:

H

1

={(1),(12345),(13524),(14253),(15432),(12)(35),(13)(45),

10

(14)(23),(15)(24),(25)(34)},

H

2

={(1),(12354),(13425),(15243),(14532),(12)(34),(13)(45),

(15)(23),(14)(25),(24)(35)},

H

3

={(1),(12435),(14523),(13254),(15342),(12)(45),(14)(35),

(13)(24),(15)(23),(25)(34)},

H

4

={(1),(12453),(14325),(15234),(13542),(12)(34),(14)(35),

(15)(24),(13)(25),(23)(45)},

H

5

={(1),(12534),(15423),(13245),(14352),(12)(45),(15)(34),

(13)(25),(14)(23),(24)(35)},

H

6

={(1),(12543),(15324),(14235),(13452),(12)(35),(15)(34),

(14)(25),(13)(24),(23)(45)}。

S

5

的12阶子群:

由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S

4

的12

阶子群,经计算S

5

的12阶子群的一个共轭类:

H

1

={(1),(123),(132),(134),(143),(124),(142),(234),(243),

(12)(34),(13)(24),(14)(23)},

H

2

={(1),(123),(125),(132),(135),(152),(153),(235)(253),(12)(35),

(13)(25),(15)(23)},

H

3

={(1),(124),(125),(142),(145),(152),(154),(245),(254),(12)(45),

(14)(25),(15)(24)},

H

4

={(1),(134),(135),(143),(145),(153),(154),(345),(354),(13)(45),

(14)(35),(15)(34)},

H

5

={(1),(234),(235),(243),(245),(253),(254),(345),(354),(23)(45),

(24)(35),(25)(34)},

另经计算,由2阶元、3阶元和2×3循环置换也可构成一共轭类子群:

H

6

={(1),(12)(345),(12)(354),(345),(354),(12)(34), (12)(35),

(12)(45),(12),(34),(35),(45)},

H

7

={(1),(13)(245),(13)(254),(245),(254),(13)(24), (13)(25),

11

(13)(45),(13),(24),(25),(45)},

H

8

={(1),(14)(235),(14)(253),(235),(253),(14)(23), (14)(25),

(14)(35),(14),(23),(25),(35)},

H

9

={(1),(15)(234),(15)(243),(234),(243),(15)(23), (15)(24),

(15)(34),(15),(23),(24),(34)},

H

10

={(1),(23)(145),(23)(154),(145),(154),(14)(23), (15)(23),

(23)(45),(23),(14),(15),(45)},

H

11

={(1),(24)(135),(24)(153),(135),(153),(13)(24), (15)(24),

(24)(35),(24),(13),(15),(35)},

H

12

={(1),(25)(134),(25)(134),(134),(143),(13)(25), (14)(25),

(25)(34),(25),(13),(14),(34)},

H

13

={(1),(34)(125),(34)(152),(125),(152),(12)(34), (15)(34),

(25)(34),(12),(15),(25),(34)},

H

14

={(1),(35)(124),(35)(142),(124),(142),(12)(35), (14)(35),

(24)(35),(12),(14),(24),(35)},

H

15

={(1),(45)(123),(45)(132),(123),(132),(12)(45), (13)(45),

(23)(45),(12),(13),(23),(45)}。

S

5

的15阶子群:

由定理1,15阶子群里元的阶只能为1阶、3阶和5阶,若H为S

5

的15阶

子群,由Sylow定理,H必有3阶和5阶子群,此3阶子群和5阶子群必也是

S

5

的子群,因为任意3阶子群里的3阶元乘以5阶子群里的5阶元必会出现2

阶元,例如:3阶子群{(1),(123),(132)}与5阶子群{(1),(12345),(13524),

(14253),(15432)}中,(123)(13524)=(14)(25)为2阶元,此以H中不

含有2阶元矛盾,故S

5

不含有15阶子群。

S

5

的20阶子群:

由定理1,20阶子群里元的阶只能为1阶、2阶、4阶和5阶,经计算,S

5

含有6

个20阶子群,为一共轭类:

12

H

1

={(1),(12354),(13425),(15243),(14532),(1253),(1324),(1542),

(1435),(2345),(15)(23),(12)(34),(14)(25),(13)(45),(24)(35),(1352),

(1423),(1245),(1534),(2543)},

H

2

={(1),(12435),(14523),(13254),(15342), (1234),(1425),(1352),

(1543),(2453),(13)(24),(12)(45),(15)(23),(14)(35),(25)(34),(1432),

(1524),(1253),(1345),(2354)},

H

3

={(1),(12453),(14325),(15234),(13542), (1254),(1423),(1532),

(1345),(2435),(15)(24),(12)(34),(13)(25),(14)(35),(23)(45),(1452),

(1324),(1235),(1543),(2534)},

H

4

={(1),(12345),(13524),(14253),(15432), (1243),(1325),(1452),

(1534),(2354),(14)(23),(12)(35),(15)(24),(13)(45),(25)(34),(1342),

(1523),(1254),(1435),(2453)},

H

5

={(1),(12543),(15324),(14235),(13452), (1245),(1523),(1432),

(1354),(2534),(14)(25),(12)(35),(13)(24),(15)(34),(23)(45),(1542),

(1325),(1234),(1453),(2435)},

H

6

={(12534),(15423),(13245),(14352),(1),(1235),(1524),(1342),

(1453),(2543),(13)(25),(12)(45),(14)(23),(15)(34),(24)(35),(1532),

(1425),(1243),(1354),(2345)}。

S

5

的24阶子群:

由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S

4

的24

阶子群,S

5

有5个24阶子群,为一个共轭类:

H

1

={(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),

(14)(23),(123),(132),(124),(142),(134),(143),(234),(243),(1234),

(1243),(1432),(1423),(1324),(1342)},

H

2

={(1),(12),(13),(15),(23),(25),(35),(12)(35),(13)(25),

(15)(23),(123),(132),(125),(152),(135),(153),(235),(253),(1235),

(1253),(1532),(1523),(1325),(1352)},

H

3

={(1),(12),(14),(15),(24),(25),(45),(12)(45),(14)(25),

13

(15)(24),(124),(142),(125),(152),((145),(154),(245),(254),(1245),

(1254),(1542),(1524),(1425),(1452)},

H

4

={(1),(13),(14),(15),(34),(35),(45),(13)(45),(14)(35),

(15)(34),(134),(143),(135),(153),(145),(154),(345),(354),(1345),

(1354),(1543),(1534),(1435),(1453)},

H

5

={(1),(23),(24),(25),(34),(35),(45),(23)(45),(24)(35),

(25)(34),(234),(243),(235),(253),(245),(254),(345),(354),(2345),

(2354),(2543),(2534),(2435),(2453)}。

S

5

的30阶子群:

由定理1,30阶子群里元的阶只能为1阶、2阶、3阶和5阶,若H为S

5

的30阶子群,由Sylow定理,H必有2阶子群、3阶子群和5阶子群,此2阶

子群、3阶子群和5阶子群必也是S

5

的子群,因为任意2阶子群里的2阶元乘以

5阶子群里的5阶元必会出现4阶元,例如:2阶子群{(1),(12)}与5阶子群

{(1),(12345),(13524),(14253),(15432)}里,(12)(12345)=(1345)

为4阶元,此与H中不含有4阶元矛盾,故S

5

不含有30阶子群。

S

5

的40阶子群:

由定理1,40阶子群里元的阶只能为1阶、2阶、4阶和5阶,若H为S

5

的40阶子群,由Sylow定理,H必有2阶子群、4阶子群和5阶子群,此2阶

子群、4阶子群和5阶子群必也是S

5

的子群,因为任意3阶子群里的3阶元乘以

任意5阶子群里的5阶元必会出现3阶元,例如:3阶子群{(1),(123),(132)}

与5阶子群{(1),(12345),(13524),(14253),(15432)}中,(123)(13524)

=(354)为3阶元,此与H中不含有3阶元矛盾,故S

5

不含有40阶子群。

S

5

的60阶子群:

由定理1,60阶子群里元的阶为1阶、2阶、3阶、4阶和5阶,经计算,S

5

含有

1个60阶子群,为一共轭类:

H

1

={(1),(123), (124),(125),(132), (134),(135),(142),(143),

14

(145), (152),(153), (154),(234),(235),(243),(245), (253), (254),

(345),(354), (12345),(12354),(12435),(12453),(12534),(12543),(13245),

(13254),(13425), (13452) ,(13524),(13542), (14235),(14253),(14325),

(14352),(14523),(14532),(15234),(15243),(15324),(15342),(15423),

(15432),(12)(34),(12)(35),(12)(45),(13)(24),(13)(25),(13)(45),

(14)(23), (14)(25),(14)(35),(15)(23), (15)(24), (15)(34),(23)(45),

(24)(35),(25)(34)}。

由正规子群的定义及定理6知S

5

的1阶子群,60阶子群和120阶子群为正

规子群。

15

16

发布评论

评论列表 (0)

  1. 暂无评论