2024年5月29日发(作者:喻锦)
S
4
及其子群
S
4
的元
已知|S
4
|=24及S
4
的的元的形式为(a),(ab),(abc),(abcd),(ab)(cd),
其中a,b,c,d∈{1,2,3,4}
1阶元:因为(a)=(b)=(c)=(d),所以1阶元有1个,即单位元(1);
2阶元:形式为(ab)或(ab)(cd),共有C
4
2
+
1
( C
4
2
•C
2
2
)=9个,即:
2
(12),(34),(13),(24),(14),(23), (12)(34),(13)(24),(14)(23);
3阶元:形式为(abc),共有C
4
3
A
2
2
=8个,即 :
(123),(132),(134),(143),(124),(142),(234),(243);
4阶元:形式为(abcd),共有C
4
4
A
3
3
= 6,即:
(1234),(1243),(1324),(1342),(1423),(1432);
S
4
的子群
因为|S
4
|=24,由定理1,知S
5
子群的阶可能为:1,2,3,4,6,8,12,24,又因为
|24|=2
3
×3,根据sylow定理,S
4
必存在2阶、3阶、4阶和8阶子群,另S
4
有
平凡子群1阶子群和24阶子群,可能有6阶和12阶子群。
1阶子群:N
1
={(1)}, 为一共轭类。
2阶子群:由S
4
的2阶元生成的循环群,因为S
4
的2阶元有9个,所以S
4
的2阶子群有9个,即:
N
2
=<(12)>={(1),(12)},
N
3
=<(13)>={(1),(13)},
N
4
=<(23)>={(1),(23)} ,
N
5
=<(24)>={(1),(24)} ,
N
6
=<(14)>={(1),(14)} ,
N
7
=<(34)>={(1),(34)} ,
N
8
=<(12)(34)>={(1),(12)(34)},
N
9
=<(13)(24)>={(1),(13)(24)},
N
10
=<(14)(23)>={(1),(14)(23)},
1
其中N
2
至N
7
为一共轭类,N
8
至 N
10
为一共轭类。
3阶子群:由S
4
的3阶元生成的循环群,因为每两个互逆的3阶元同单位元
可以组成一个子群,而S
4
的3阶元有6个,所以S
4
的3阶子群有3个,且为一
共轭类,即:
N
11
=<(123)>={(1),(123),(132)} ,
N
12
=<(134)>={(1),(134),(143)} ,
N
13
=<(124)>={(1),(124),(142)} ,
N
14
=<(234)>={(1),(234),(243)} ,
4阶子群:(循环群和非循环群)
循环群:由S
4
的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶
元生成的子群里包含有一对互逆的4阶元,而S
4
的4阶元有三对互逆的元,故4
阶循环子群有3个,且为一共轭类,即:
N
15
=<(1234)>={(1),(1234),(13)(24),(1432)},
N
16
=<(1324)>={(1),(1324),(12)(34),(1423)},
N
17
=<(1243)>={(1),(1243),(14)(23),(1342)},
非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,
满足这一条件可构成的4阶非循环群只有4个,且为2个共轭类,即:
N
18
={(1),(12),(34),(12)(34)} ,
N
19
={(1),(13),(24),(13)(24)},
N
20
={(1),(14),(23),(14)(23)},
和N
21
={(1),(12)(34),(13)(24),(14)(23)}
8阶子群:此群里的元的阶只能为1阶、2阶、4阶,且由sylow 定理,8
阶子群里必含有4阶子群,故可先确定8阶子群里的4个元素,其余4个元素可
由已确定的元来给出,经由此算法,由全部的4阶子群只找出3个8阶子群,故
8阶子群有3个,且为一共轭类,即:
N
22
={(1),(1234),(13)(24),(1432),(13),(12)(34),(24),
2
(14)(23)},
N
23
={(1),(1324),(12)(34),(1423),(12),(13)(24),(34),
(14)(32)},
N
24
={(1),(1243),(14)(23),(1342),(14),(12)(43),(23),
(13)(24)},
24阶子群:即N
25
=S
4
以上为S
4
里必存在的子群,下面讨论S
4
里可能存在的子群:
6阶子群:因为S
4
包含着S
3
,故S
4
必有同构于S
3
的一类6阶子群,而同构
于S
3
的S
4
的6阶子群有4个,且其元为1阶、2阶和3阶,所以S
4
的6阶子群
有4个,且为一共轭类,即:
N
26
={(1),(12),(13),(23),(123),(132)},
N
27
={(1),(12),(24),(14),(124),(142)},
N
28
={(1),(34),(13),(14),(143),(134)},
N
29
={(1),(34),(24),(23),(234),(243)},
12阶子群:若S
4
有12阶子群,则由sylow定理,该子群里必存在2阶子群、
4阶子群和3阶子群,经计算,S
4
的12阶子群只有一个,即:
N
30
={(1),(123),(132),(134),(143),(124),(142),(234),(243),
(12)(34),(13)(24),(14)(23)}。
综上,S
4
共有30个子群,分为10个共轭类,其中,由正规子群定义及定理
6知S
4
的1阶子群,N
21
,12阶子群和24阶子群为正规子群。
§3.2 S
5
的元
3
已知|S
5
|=120及S
5
的的元的形式为(a),(ab),(abc),(abcd),(abcde),
(ab)(cd),(ab)(cde)其中a,b,c,d,e∈{1,2,3,4,5}
1阶元:因为(a)=(b)=(c)=(d)=(e),所以1阶元有1个,即单位元(1);
2阶元:形式为(ab)或(ab)(cd),共有C
5
2
+
1
( C
5
2
C
3
2
)=25个,即:
2
(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),(12)(34),
(12)(35),(12)(45),(13)(24),(13)(25),(13)(45)(14)(23),(14)(25)(14)(35)
(15)(23),(15)(24),(15)(34),(23)(45),(24)(35),(25)(34);
3 阶元 :形式为(abc),共有C
5
3
A
2
2
=20个,即:
(123), (124),(125),(132), (134),(135),(142),(143),(145), (152),
(153), (154),(234),(235),(243),(245), (253),(254),(345),(354);
4阶元:形式为(abcd),共有C
5
4
A
3
3
= 30,即:
(1234),(1235),(1243),(1245),(1253),(1254),(1324),(1325),(1342),
(1345),(1352),(1354),(1423),(1425),(1432),(1435),(1452),(1453),
(1523),(1524),(1532),(1534),(1542),(1543),(2345),(2354),(2435),
(2453),(2534),(2543);
5阶元:形式为(abcde),共有C
5
A
4
= 24,即:
(12345),(12354),(12435),(12453),(12534),(12543), (13245),(13254),
(13425), (13452) ,(13524),(13542), (14235),(14253), (14325),(14352),
(14523),(14532),(15234),(15243),(15324),(15342), (15423),(15432);
6阶元: 形式为(ab)(cde),共有C
5
2
C
3
3
A
2
2
=20,即:
(12)(345),(12)(354),(13)(245),(13)(254),(14)(235),(14)(253),
(15)(234),(15)(243),(23)(145),(23)(154) , (24)(135), (24)(153),
(25)(134),(25)(143),(34)(125),(34)(152),(35)(124),(35)(142),
(45)(123),(45)(132);
54
§3.3 S
5
的子群
4
因为|S
5
|=120,由定理1,知S
5
子群的阶可能为:1,2,3,4,5,6,8,10,12,15,20,
24,30,40,60,120,又因为|120|=2
3
×3×5,根据sylow定理,S
5
必存在2阶、3
阶、4阶、5阶和8阶子群,另S
5
有平凡子群1阶子群和120阶子群,可能有6
阶、10阶、12阶、15阶、20阶、24阶、30阶、40阶和60阶子群。下述S
5
的
各个阶子群的情况:
1阶子群:
S
5
的一阶子群为平凡子群,只包含单位元(1),即
H
1
={(1)}。
2阶子群:
由S
5
的2阶元生成的循环群,由于2阶子群里只有两个元,其中一个为单位元,
由定理2,可知另一个元必为2阶元,因为S
5
共有25个二阶元,所以S
5
共有25个2
阶子群,其中分为两个共轭类,第一个共轭类为:
H
1
=<(12)>={(1),(12)},
H
2
=<(13)>={(1),(13)},
H
3
=<(14)>={(1),(14)},
H
4
=<(15)>={(1),(15)},
H
5
=<(23)>={(1),(23)},
H
6
=<(24)>={(1),(24)},
H
7
=<(25)>={(1),(25)},
H
8
=<(34)>={(1),(34)},
H
9
=<(35)>={(1),(35)I,
H
10
=<(45)>={(1),(45)};
第二个共轭类为:
H
11
=<(12)(34)>={(1),(12)(34)},
H
12
=<(12)(35)>={(1),(12)(35)},
H
13
=<(12)(45)>={(1),(12)(45)},
H
14
=<(13)(24)>={(1),(13)(24)},
H
15
=<(13)(25)>={(1),(13)(25)},
5
H
16
=<(13)(45)>={(1),(13)(45)},
H
17
=<(14)(23)>={(1),(14)(23)},
H
18
=<(14)(25)>={(1),(14)(25)},
H
19
=<(14)(35)>={(1),(14)(35)},
H
20
=<(15)(23)>={(1),(15)(23)},
H
21
=<(15)(24)>={(1),(15)(24)},
H
22
=<(15)(34)>={(1),(15)(34)},
H
23
=<(23)(45)>={(1),(23)(45)},
H
24
=<(24)(35)>={(1),(24)(35)},
H
25
=<(25)(34)>={(1),(25)(34)}。
3阶子群:
由S
4
的3阶元生成的循环群,由定理1,3阶子群里元的阶只可能为1阶和
3阶,S
5
里1阶的元为单位元,3阶元有20个,3阶元恰好有10组互为逆元,
经计算S
5
的3阶子群有10个,为一个共轭类,即:
H
1
=<(123)>={(1),(123),(132)},
H
2
=<(124)>={(1),(124),(142)},
H
3
=<(125)>={(1),(125),(152)},
H
4
=<(134)>={(1),(134),(143)},
H
5
=<(135)>={(1),(135),(153)},
H
6
=<(145)>={(1),(145),(154)},
H
7
=<(234)>={(1),(234),(243)},
H
8
=<(235)>={(1),(235),(253)},
H
9
=<(245)>={(1),(245),(254)},
H
10
=<(345)>={(1),(345),(354)}。
4阶子群:(循环群和非循环群)
循环群:由S
5
的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶
元生成的子群里包含有一对互逆的4阶元,而S
5
的4阶元有三对互逆的元,故4
6
阶循环子群有3个,且为一共轭类,即:
H
1
=<(1234)>={(1),(1234),(13)(24),(1432)},
H
2
=<(1243)>={(1),(1243),(14)(23),(1342)},
H
3
=<(1235)>={(1),(1235),(13)(25),(1532)},
H
4
=<(1253)>={(1),(1253),(15)(23),(1352)},
H
5
=<(1245)>={(1),(1245),(14)(25),(1542)},
H
6
=<(1254)>={(1),(1254),(15)(24),(1452)},
H
7
=<(1324)>={(1),(1324),(12)(34),(1423)},
H
8
=<(1325)>={(1),(1325),(12)(35),(1523)},
H
9
=<(1345)>={(1),(1345),(14)(35),(1543)},
H1
0
=<(1354)>={(1),(1354),(15)(34),(1453)},
H1
1
=<(1435)>={(1),(1435),(13)(45),(1534)},
H1
2
=<(1524)>={(1),(1524),(12)(45),(1425)},
H
13
=<(2345)>={(1),(2345),(24)(35),(2543)},
H
14
=<(2354)>={(1),(2354),(25)(34),(2453)},
H
15
=<(2435)>={(1),(2435),(23)(45),(2534)}。
非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,
满足这一条件可构成的4阶非循环群有20个,且为2个共轭类,即:
H
16
={(1),(12),(34),(12)(34)},
H
17
={(1),(12),(35),(12)(35)},
H
18
={(1),(12),(45),(12)(45)},
H
19
={(1),(13),(24),(13)(24)},
H
20
={(1),(13),(25),(13)(25)},
H
21
={(1),(13),(45),(13)(45)},
H
22
={(1),(14),(23),(14)(23)},
H
23
={(1),(14),(25),(14)(25)},
H
24
={(1),(14),(35),(14)(35)},
H
25
={(1),(15),(23),(15)(23)},
H
26
={(1),(15),(24),(15)(24)},
7
H
27
={(1),(15),(24),(15)(24)},
H
28
={(1),(23),(45),(23)(45)},
H
29
={(1),(24),(35),(24)(35)},
H
30
={(1),(25),(34),(25)(34)},
H
31
={(1),(12)(34),(13)(24),(14)(23)},
H
32
={(1),(12)(35),(13)(25),(15)(23)},
H
33
={(1),(12)(45),(14)(25),(15)(24)},
H
34
={(1),(13)(45),(14)(35),(15)(34)},
H
35
={(1),(23)(45),(24)(35),(25)(34)};
其中H
16
至H
30
为一共轭类,H
31
至H
35
为另一共轭类。
5阶子群:
由定理1,5阶子群里元的阶只能为1阶和5阶,故S
5
的5阶子群为由S
5
的5
阶元生成的循坏群,S
5
里1阶的元为单位元,5阶元有24个,经计算S
5
的5阶子
群有6个,为一个共轭类,即:
H
1
=<(12345)>={(1),(12345),(13524),(14253),(15432)},
H
2
=<(12354)>={(1),(12354),(13425),(15243),(14532)},
H
3
=<(12435)>={(1),(12435),(14523),(13254),(15342)},
H
4
=<(12453)>={(1),(12453),(14325),(15234),(13542)},
H
5
=<(12534)>={(1),(12534),(15423),(13245),(14352)},
H
6
=<(12543)>={(1),(12543),(15324),(14235),(13452)}。
S
5
的8阶子群:
由定理1,8阶子群里元的阶只能为1阶、2阶和4阶,仿照S
4
的8阶子群,
经计算,S
5
有15个8阶子群,一个共轭类,即:
H
1
={(1),(1234),(13)(24),(1432),(13),(12)(34),(24), (14)(23)},
H
1
={(1),(1324),(12)(34),(1423),(12),(13)(24),(34), (14)(32)},
H
1
={(1),(1243),(14)(23),(1342),(14),(12)(43),(23), (13)(24)},
H
1
={(1),(1235),(13)(25),(1532),(13),(12)(35),(25), (15)(23)},
8
H
1
={(1),(1245),(14)(25),(1542),(14),(12)(45),(25), (15)(24)},
H
1
={(1),(1253),(15)(23),(1352),(15),(12)(53),(23), (13)(25)},
H
1
={(1),(1254),(15)(24),(1452),(15),(12)(54),(24), (14)(25)},
H
1
={(1),(1325),(12)(35),(1523),(12),(13)(25),(35), (15)(32)},
H
1
={(1),(1345),(14)(35),(1543),(14),(13)(45),(35), (15)(34)},
H
1
={(1),(1354),(15)(34),(1453),(15),(13)(54),(34), (14)(35)},
H
1
={(1),(1425),(12)(45),(1524),(12),(14)(25),(45), (15)(42)},
H
1
={(1),(1435),(13)(45),(1534),(13),(14)(35),(45), (15)(43)},
H
1
={(1),(2345),(24)(35),(1543),(24),(23)(45),(35), (25)(34)},
H
1
={(1),(2354),(25)(34),(2453),(25),(23)(45),(34), (24)(35)},
H
1
={(1),(2435),(23)(45),(2534),(23),(24)(35),(45), (25)(34)}。
S
5
的120阶子群:
S
5
的120阶子群即为S
5
本身。
以上为S
5
里必存在的子群,下面讨论S
5
里可能存在的子群:
S
5
的6阶子群:
由定理1,6阶子群里元的阶只能为1阶、2阶和3阶,同构于S3的为一个
共轭类,即:
H
1
= {(1),(12),(13),(23),(123),(132)},
H
2
= {(1),(12),(14),(24),(124),(142)},
H
3
= {(1),(12),(15),(25),(125),(152)},
H
4
= {(1),(13),(15),(35),(135),(153)},
H
5
= {(1),(13),(14),(34),(143),(134)},
H
6
= {(1),(14),(15),(45),(145),(154)},
H
7
= {(1),(23),(25),(35),(235),(253)},
H
8
= {(1),(24),(25),(45),(245),(254)},
H
9
= {(1),(24),(23),(34),(234),(243)},
H
10
= {(1),(34),(35),(45),(345),(354)},
9
由2阶元,3阶元,和2×3循环置换构成一个共轭类,即:
H
11
={(1),(12)(345),(12)(354),(12),(345),(354)},
H
12
={(1),(13)(245),(13)(254),(13),(245),(254)},
H
13
={(1),(14)(235),(14)(253),(14),(235),(253)},
H
14
={(1),(15)(234),(15)(243),(15),(234),(243)},
H
15
={(1),(23)(145),(23)(154),(23),(145),(154)},
H
16
={(1),(24)(135),(24)(153),(24),(135),(153)},
H
17
={(1),(25)(134),(25)(143),(25),(134),(143)},
H
18
={(1),(34)(125),(34)(152),(34),(125),(152)},
H
19
={(1),(35)(124),(35)(142),(35),(124),(142)},
H
20
={(1),(45)(123),(45)(132),(45),(123),(132)}。
由3阶元,和2×2循环置换构成一个共轭类,即:
H
21
={(1),(12)(34),(345),(354),(12)(35),(12)(45)},
H
22
={(1),(14)(23),(235),(253),(14)(25),(14)(35)},
H
23
={(1),(15)(23),(234),(243),(15)(24),(15)(34)},
H
24
={(1),(13)(24),(245),(254),(13)(25),(13)(45)},
H
25
={(1),(12)(34),(152),(125),(15)(34),(25)(34)},
H
26
={(1),(12)(45),(123),(132),(13)(45),(23)(45)},
H
27
={(1),(12)(35),(124),(142),(14)(35),(24)(35)},
H
28
={(1),(13)(25),(134),(143),(14)(25),(25)(34)},
H
29
={(1),(13)(24),(135),(153),(15)(24),(24)(35)},
H
30
={(1),(14)(23),(145),(154),(15)(23),(23)(45)}。
所以S
5
的6阶子群共有30个。
S
5
的10阶子群:
若S
5
的10阶子群存在,则由Sylow定理,该10阶子群里必存在5阶子群,
且此5阶子群亦为S
5
的5阶子群,又因为S
5
的10阶子群里的元的阶只能为1
阶、2阶和5阶,所以经计算S
5
的10阶子群有6个,为一共轭类,即:
H
1
={(1),(12345),(13524),(14253),(15432),(12)(35),(13)(45),
10
(14)(23),(15)(24),(25)(34)},
H
2
={(1),(12354),(13425),(15243),(14532),(12)(34),(13)(45),
(15)(23),(14)(25),(24)(35)},
H
3
={(1),(12435),(14523),(13254),(15342),(12)(45),(14)(35),
(13)(24),(15)(23),(25)(34)},
H
4
={(1),(12453),(14325),(15234),(13542),(12)(34),(14)(35),
(15)(24),(13)(25),(23)(45)},
H
5
={(1),(12534),(15423),(13245),(14352),(12)(45),(15)(34),
(13)(25),(14)(23),(24)(35)},
H
6
={(1),(12543),(15324),(14235),(13452),(12)(35),(15)(34),
(14)(25),(13)(24),(23)(45)}。
S
5
的12阶子群:
由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S
4
的12
阶子群,经计算S
5
的12阶子群的一个共轭类:
H
1
={(1),(123),(132),(134),(143),(124),(142),(234),(243),
(12)(34),(13)(24),(14)(23)},
H
2
={(1),(123),(125),(132),(135),(152),(153),(235)(253),(12)(35),
(13)(25),(15)(23)},
H
3
={(1),(124),(125),(142),(145),(152),(154),(245),(254),(12)(45),
(14)(25),(15)(24)},
H
4
={(1),(134),(135),(143),(145),(153),(154),(345),(354),(13)(45),
(14)(35),(15)(34)},
H
5
={(1),(234),(235),(243),(245),(253),(254),(345),(354),(23)(45),
(24)(35),(25)(34)},
另经计算,由2阶元、3阶元和2×3循环置换也可构成一共轭类子群:
H
6
={(1),(12)(345),(12)(354),(345),(354),(12)(34), (12)(35),
(12)(45),(12),(34),(35),(45)},
H
7
={(1),(13)(245),(13)(254),(245),(254),(13)(24), (13)(25),
11
(13)(45),(13),(24),(25),(45)},
H
8
={(1),(14)(235),(14)(253),(235),(253),(14)(23), (14)(25),
(14)(35),(14),(23),(25),(35)},
H
9
={(1),(15)(234),(15)(243),(234),(243),(15)(23), (15)(24),
(15)(34),(15),(23),(24),(34)},
H
10
={(1),(23)(145),(23)(154),(145),(154),(14)(23), (15)(23),
(23)(45),(23),(14),(15),(45)},
H
11
={(1),(24)(135),(24)(153),(135),(153),(13)(24), (15)(24),
(24)(35),(24),(13),(15),(35)},
H
12
={(1),(25)(134),(25)(134),(134),(143),(13)(25), (14)(25),
(25)(34),(25),(13),(14),(34)},
H
13
={(1),(34)(125),(34)(152),(125),(152),(12)(34), (15)(34),
(25)(34),(12),(15),(25),(34)},
H
14
={(1),(35)(124),(35)(142),(124),(142),(12)(35), (14)(35),
(24)(35),(12),(14),(24),(35)},
H
15
={(1),(45)(123),(45)(132),(123),(132),(12)(45), (13)(45),
(23)(45),(12),(13),(23),(45)}。
S
5
的15阶子群:
由定理1,15阶子群里元的阶只能为1阶、3阶和5阶,若H为S
5
的15阶
子群,由Sylow定理,H必有3阶和5阶子群,此3阶子群和5阶子群必也是
S
5
的子群,因为任意3阶子群里的3阶元乘以5阶子群里的5阶元必会出现2
阶元,例如:3阶子群{(1),(123),(132)}与5阶子群{(1),(12345),(13524),
(14253),(15432)}中,(123)(13524)=(14)(25)为2阶元,此以H中不
含有2阶元矛盾,故S
5
不含有15阶子群。
S
5
的20阶子群:
由定理1,20阶子群里元的阶只能为1阶、2阶、4阶和5阶,经计算,S
5
含有6
个20阶子群,为一共轭类:
12
H
1
={(1),(12354),(13425),(15243),(14532),(1253),(1324),(1542),
(1435),(2345),(15)(23),(12)(34),(14)(25),(13)(45),(24)(35),(1352),
(1423),(1245),(1534),(2543)},
H
2
={(1),(12435),(14523),(13254),(15342), (1234),(1425),(1352),
(1543),(2453),(13)(24),(12)(45),(15)(23),(14)(35),(25)(34),(1432),
(1524),(1253),(1345),(2354)},
H
3
={(1),(12453),(14325),(15234),(13542), (1254),(1423),(1532),
(1345),(2435),(15)(24),(12)(34),(13)(25),(14)(35),(23)(45),(1452),
(1324),(1235),(1543),(2534)},
H
4
={(1),(12345),(13524),(14253),(15432), (1243),(1325),(1452),
(1534),(2354),(14)(23),(12)(35),(15)(24),(13)(45),(25)(34),(1342),
(1523),(1254),(1435),(2453)},
H
5
={(1),(12543),(15324),(14235),(13452), (1245),(1523),(1432),
(1354),(2534),(14)(25),(12)(35),(13)(24),(15)(34),(23)(45),(1542),
(1325),(1234),(1453),(2435)},
H
6
={(12534),(15423),(13245),(14352),(1),(1235),(1524),(1342),
(1453),(2543),(13)(25),(12)(45),(14)(23),(15)(34),(24)(35),(1532),
(1425),(1243),(1354),(2345)}。
S
5
的24阶子群:
由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S
4
的24
阶子群,S
5
有5个24阶子群,为一个共轭类:
H
1
={(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),
(14)(23),(123),(132),(124),(142),(134),(143),(234),(243),(1234),
(1243),(1432),(1423),(1324),(1342)},
H
2
={(1),(12),(13),(15),(23),(25),(35),(12)(35),(13)(25),
(15)(23),(123),(132),(125),(152),(135),(153),(235),(253),(1235),
(1253),(1532),(1523),(1325),(1352)},
H
3
={(1),(12),(14),(15),(24),(25),(45),(12)(45),(14)(25),
13
(15)(24),(124),(142),(125),(152),((145),(154),(245),(254),(1245),
(1254),(1542),(1524),(1425),(1452)},
H
4
={(1),(13),(14),(15),(34),(35),(45),(13)(45),(14)(35),
(15)(34),(134),(143),(135),(153),(145),(154),(345),(354),(1345),
(1354),(1543),(1534),(1435),(1453)},
H
5
={(1),(23),(24),(25),(34),(35),(45),(23)(45),(24)(35),
(25)(34),(234),(243),(235),(253),(245),(254),(345),(354),(2345),
(2354),(2543),(2534),(2435),(2453)}。
S
5
的30阶子群:
由定理1,30阶子群里元的阶只能为1阶、2阶、3阶和5阶,若H为S
5
的30阶子群,由Sylow定理,H必有2阶子群、3阶子群和5阶子群,此2阶
子群、3阶子群和5阶子群必也是S
5
的子群,因为任意2阶子群里的2阶元乘以
5阶子群里的5阶元必会出现4阶元,例如:2阶子群{(1),(12)}与5阶子群
{(1),(12345),(13524),(14253),(15432)}里,(12)(12345)=(1345)
为4阶元,此与H中不含有4阶元矛盾,故S
5
不含有30阶子群。
S
5
的40阶子群:
由定理1,40阶子群里元的阶只能为1阶、2阶、4阶和5阶,若H为S
5
的40阶子群,由Sylow定理,H必有2阶子群、4阶子群和5阶子群,此2阶
子群、4阶子群和5阶子群必也是S
5
的子群,因为任意3阶子群里的3阶元乘以
任意5阶子群里的5阶元必会出现3阶元,例如:3阶子群{(1),(123),(132)}
与5阶子群{(1),(12345),(13524),(14253),(15432)}中,(123)(13524)
=(354)为3阶元,此与H中不含有3阶元矛盾,故S
5
不含有40阶子群。
S
5
的60阶子群:
由定理1,60阶子群里元的阶为1阶、2阶、3阶、4阶和5阶,经计算,S
5
含有
1个60阶子群,为一共轭类:
H
1
={(1),(123), (124),(125),(132), (134),(135),(142),(143),
14
(145), (152),(153), (154),(234),(235),(243),(245), (253), (254),
(345),(354), (12345),(12354),(12435),(12453),(12534),(12543),(13245),
(13254),(13425), (13452) ,(13524),(13542), (14235),(14253),(14325),
(14352),(14523),(14532),(15234),(15243),(15324),(15342),(15423),
(15432),(12)(34),(12)(35),(12)(45),(13)(24),(13)(25),(13)(45),
(14)(23), (14)(25),(14)(35),(15)(23), (15)(24), (15)(34),(23)(45),
(24)(35),(25)(34)}。
由正规子群的定义及定理6知S
5
的1阶子群,60阶子群和120阶子群为正
规子群。
15
16
2024年5月29日发(作者:喻锦)
S
4
及其子群
S
4
的元
已知|S
4
|=24及S
4
的的元的形式为(a),(ab),(abc),(abcd),(ab)(cd),
其中a,b,c,d∈{1,2,3,4}
1阶元:因为(a)=(b)=(c)=(d),所以1阶元有1个,即单位元(1);
2阶元:形式为(ab)或(ab)(cd),共有C
4
2
+
1
( C
4
2
•C
2
2
)=9个,即:
2
(12),(34),(13),(24),(14),(23), (12)(34),(13)(24),(14)(23);
3阶元:形式为(abc),共有C
4
3
A
2
2
=8个,即 :
(123),(132),(134),(143),(124),(142),(234),(243);
4阶元:形式为(abcd),共有C
4
4
A
3
3
= 6,即:
(1234),(1243),(1324),(1342),(1423),(1432);
S
4
的子群
因为|S
4
|=24,由定理1,知S
5
子群的阶可能为:1,2,3,4,6,8,12,24,又因为
|24|=2
3
×3,根据sylow定理,S
4
必存在2阶、3阶、4阶和8阶子群,另S
4
有
平凡子群1阶子群和24阶子群,可能有6阶和12阶子群。
1阶子群:N
1
={(1)}, 为一共轭类。
2阶子群:由S
4
的2阶元生成的循环群,因为S
4
的2阶元有9个,所以S
4
的2阶子群有9个,即:
N
2
=<(12)>={(1),(12)},
N
3
=<(13)>={(1),(13)},
N
4
=<(23)>={(1),(23)} ,
N
5
=<(24)>={(1),(24)} ,
N
6
=<(14)>={(1),(14)} ,
N
7
=<(34)>={(1),(34)} ,
N
8
=<(12)(34)>={(1),(12)(34)},
N
9
=<(13)(24)>={(1),(13)(24)},
N
10
=<(14)(23)>={(1),(14)(23)},
1
其中N
2
至N
7
为一共轭类,N
8
至 N
10
为一共轭类。
3阶子群:由S
4
的3阶元生成的循环群,因为每两个互逆的3阶元同单位元
可以组成一个子群,而S
4
的3阶元有6个,所以S
4
的3阶子群有3个,且为一
共轭类,即:
N
11
=<(123)>={(1),(123),(132)} ,
N
12
=<(134)>={(1),(134),(143)} ,
N
13
=<(124)>={(1),(124),(142)} ,
N
14
=<(234)>={(1),(234),(243)} ,
4阶子群:(循环群和非循环群)
循环群:由S
4
的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶
元生成的子群里包含有一对互逆的4阶元,而S
4
的4阶元有三对互逆的元,故4
阶循环子群有3个,且为一共轭类,即:
N
15
=<(1234)>={(1),(1234),(13)(24),(1432)},
N
16
=<(1324)>={(1),(1324),(12)(34),(1423)},
N
17
=<(1243)>={(1),(1243),(14)(23),(1342)},
非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,
满足这一条件可构成的4阶非循环群只有4个,且为2个共轭类,即:
N
18
={(1),(12),(34),(12)(34)} ,
N
19
={(1),(13),(24),(13)(24)},
N
20
={(1),(14),(23),(14)(23)},
和N
21
={(1),(12)(34),(13)(24),(14)(23)}
8阶子群:此群里的元的阶只能为1阶、2阶、4阶,且由sylow 定理,8
阶子群里必含有4阶子群,故可先确定8阶子群里的4个元素,其余4个元素可
由已确定的元来给出,经由此算法,由全部的4阶子群只找出3个8阶子群,故
8阶子群有3个,且为一共轭类,即:
N
22
={(1),(1234),(13)(24),(1432),(13),(12)(34),(24),
2
(14)(23)},
N
23
={(1),(1324),(12)(34),(1423),(12),(13)(24),(34),
(14)(32)},
N
24
={(1),(1243),(14)(23),(1342),(14),(12)(43),(23),
(13)(24)},
24阶子群:即N
25
=S
4
以上为S
4
里必存在的子群,下面讨论S
4
里可能存在的子群:
6阶子群:因为S
4
包含着S
3
,故S
4
必有同构于S
3
的一类6阶子群,而同构
于S
3
的S
4
的6阶子群有4个,且其元为1阶、2阶和3阶,所以S
4
的6阶子群
有4个,且为一共轭类,即:
N
26
={(1),(12),(13),(23),(123),(132)},
N
27
={(1),(12),(24),(14),(124),(142)},
N
28
={(1),(34),(13),(14),(143),(134)},
N
29
={(1),(34),(24),(23),(234),(243)},
12阶子群:若S
4
有12阶子群,则由sylow定理,该子群里必存在2阶子群、
4阶子群和3阶子群,经计算,S
4
的12阶子群只有一个,即:
N
30
={(1),(123),(132),(134),(143),(124),(142),(234),(243),
(12)(34),(13)(24),(14)(23)}。
综上,S
4
共有30个子群,分为10个共轭类,其中,由正规子群定义及定理
6知S
4
的1阶子群,N
21
,12阶子群和24阶子群为正规子群。
§3.2 S
5
的元
3
已知|S
5
|=120及S
5
的的元的形式为(a),(ab),(abc),(abcd),(abcde),
(ab)(cd),(ab)(cde)其中a,b,c,d,e∈{1,2,3,4,5}
1阶元:因为(a)=(b)=(c)=(d)=(e),所以1阶元有1个,即单位元(1);
2阶元:形式为(ab)或(ab)(cd),共有C
5
2
+
1
( C
5
2
C
3
2
)=25个,即:
2
(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),(12)(34),
(12)(35),(12)(45),(13)(24),(13)(25),(13)(45)(14)(23),(14)(25)(14)(35)
(15)(23),(15)(24),(15)(34),(23)(45),(24)(35),(25)(34);
3 阶元 :形式为(abc),共有C
5
3
A
2
2
=20个,即:
(123), (124),(125),(132), (134),(135),(142),(143),(145), (152),
(153), (154),(234),(235),(243),(245), (253),(254),(345),(354);
4阶元:形式为(abcd),共有C
5
4
A
3
3
= 30,即:
(1234),(1235),(1243),(1245),(1253),(1254),(1324),(1325),(1342),
(1345),(1352),(1354),(1423),(1425),(1432),(1435),(1452),(1453),
(1523),(1524),(1532),(1534),(1542),(1543),(2345),(2354),(2435),
(2453),(2534),(2543);
5阶元:形式为(abcde),共有C
5
A
4
= 24,即:
(12345),(12354),(12435),(12453),(12534),(12543), (13245),(13254),
(13425), (13452) ,(13524),(13542), (14235),(14253), (14325),(14352),
(14523),(14532),(15234),(15243),(15324),(15342), (15423),(15432);
6阶元: 形式为(ab)(cde),共有C
5
2
C
3
3
A
2
2
=20,即:
(12)(345),(12)(354),(13)(245),(13)(254),(14)(235),(14)(253),
(15)(234),(15)(243),(23)(145),(23)(154) , (24)(135), (24)(153),
(25)(134),(25)(143),(34)(125),(34)(152),(35)(124),(35)(142),
(45)(123),(45)(132);
54
§3.3 S
5
的子群
4
因为|S
5
|=120,由定理1,知S
5
子群的阶可能为:1,2,3,4,5,6,8,10,12,15,20,
24,30,40,60,120,又因为|120|=2
3
×3×5,根据sylow定理,S
5
必存在2阶、3
阶、4阶、5阶和8阶子群,另S
5
有平凡子群1阶子群和120阶子群,可能有6
阶、10阶、12阶、15阶、20阶、24阶、30阶、40阶和60阶子群。下述S
5
的
各个阶子群的情况:
1阶子群:
S
5
的一阶子群为平凡子群,只包含单位元(1),即
H
1
={(1)}。
2阶子群:
由S
5
的2阶元生成的循环群,由于2阶子群里只有两个元,其中一个为单位元,
由定理2,可知另一个元必为2阶元,因为S
5
共有25个二阶元,所以S
5
共有25个2
阶子群,其中分为两个共轭类,第一个共轭类为:
H
1
=<(12)>={(1),(12)},
H
2
=<(13)>={(1),(13)},
H
3
=<(14)>={(1),(14)},
H
4
=<(15)>={(1),(15)},
H
5
=<(23)>={(1),(23)},
H
6
=<(24)>={(1),(24)},
H
7
=<(25)>={(1),(25)},
H
8
=<(34)>={(1),(34)},
H
9
=<(35)>={(1),(35)I,
H
10
=<(45)>={(1),(45)};
第二个共轭类为:
H
11
=<(12)(34)>={(1),(12)(34)},
H
12
=<(12)(35)>={(1),(12)(35)},
H
13
=<(12)(45)>={(1),(12)(45)},
H
14
=<(13)(24)>={(1),(13)(24)},
H
15
=<(13)(25)>={(1),(13)(25)},
5
H
16
=<(13)(45)>={(1),(13)(45)},
H
17
=<(14)(23)>={(1),(14)(23)},
H
18
=<(14)(25)>={(1),(14)(25)},
H
19
=<(14)(35)>={(1),(14)(35)},
H
20
=<(15)(23)>={(1),(15)(23)},
H
21
=<(15)(24)>={(1),(15)(24)},
H
22
=<(15)(34)>={(1),(15)(34)},
H
23
=<(23)(45)>={(1),(23)(45)},
H
24
=<(24)(35)>={(1),(24)(35)},
H
25
=<(25)(34)>={(1),(25)(34)}。
3阶子群:
由S
4
的3阶元生成的循环群,由定理1,3阶子群里元的阶只可能为1阶和
3阶,S
5
里1阶的元为单位元,3阶元有20个,3阶元恰好有10组互为逆元,
经计算S
5
的3阶子群有10个,为一个共轭类,即:
H
1
=<(123)>={(1),(123),(132)},
H
2
=<(124)>={(1),(124),(142)},
H
3
=<(125)>={(1),(125),(152)},
H
4
=<(134)>={(1),(134),(143)},
H
5
=<(135)>={(1),(135),(153)},
H
6
=<(145)>={(1),(145),(154)},
H
7
=<(234)>={(1),(234),(243)},
H
8
=<(235)>={(1),(235),(253)},
H
9
=<(245)>={(1),(245),(254)},
H
10
=<(345)>={(1),(345),(354)}。
4阶子群:(循环群和非循环群)
循环群:由S
5
的4阶元生成的循环群,根据生成的子群的元的情况,一个4阶
元生成的子群里包含有一对互逆的4阶元,而S
5
的4阶元有三对互逆的元,故4
6
阶循环子群有3个,且为一共轭类,即:
H
1
=<(1234)>={(1),(1234),(13)(24),(1432)},
H
2
=<(1243)>={(1),(1243),(14)(23),(1342)},
H
3
=<(1235)>={(1),(1235),(13)(25),(1532)},
H
4
=<(1253)>={(1),(1253),(15)(23),(1352)},
H
5
=<(1245)>={(1),(1245),(14)(25),(1542)},
H
6
=<(1254)>={(1),(1254),(15)(24),(1452)},
H
7
=<(1324)>={(1),(1324),(12)(34),(1423)},
H
8
=<(1325)>={(1),(1325),(12)(35),(1523)},
H
9
=<(1345)>={(1),(1345),(14)(35),(1543)},
H1
0
=<(1354)>={(1),(1354),(15)(34),(1453)},
H1
1
=<(1435)>={(1),(1435),(13)(45),(1534)},
H1
2
=<(1524)>={(1),(1524),(12)(45),(1425)},
H
13
=<(2345)>={(1),(2345),(24)(35),(2543)},
H
14
=<(2354)>={(1),(2354),(25)(34),(2453)},
H
15
=<(2435)>={(1),(2435),(23)(45),(2534)}。
非循环群:其元都为2阶元,且两个互不相同的2阶元相乘可得另一个2阶元,
满足这一条件可构成的4阶非循环群有20个,且为2个共轭类,即:
H
16
={(1),(12),(34),(12)(34)},
H
17
={(1),(12),(35),(12)(35)},
H
18
={(1),(12),(45),(12)(45)},
H
19
={(1),(13),(24),(13)(24)},
H
20
={(1),(13),(25),(13)(25)},
H
21
={(1),(13),(45),(13)(45)},
H
22
={(1),(14),(23),(14)(23)},
H
23
={(1),(14),(25),(14)(25)},
H
24
={(1),(14),(35),(14)(35)},
H
25
={(1),(15),(23),(15)(23)},
H
26
={(1),(15),(24),(15)(24)},
7
H
27
={(1),(15),(24),(15)(24)},
H
28
={(1),(23),(45),(23)(45)},
H
29
={(1),(24),(35),(24)(35)},
H
30
={(1),(25),(34),(25)(34)},
H
31
={(1),(12)(34),(13)(24),(14)(23)},
H
32
={(1),(12)(35),(13)(25),(15)(23)},
H
33
={(1),(12)(45),(14)(25),(15)(24)},
H
34
={(1),(13)(45),(14)(35),(15)(34)},
H
35
={(1),(23)(45),(24)(35),(25)(34)};
其中H
16
至H
30
为一共轭类,H
31
至H
35
为另一共轭类。
5阶子群:
由定理1,5阶子群里元的阶只能为1阶和5阶,故S
5
的5阶子群为由S
5
的5
阶元生成的循坏群,S
5
里1阶的元为单位元,5阶元有24个,经计算S
5
的5阶子
群有6个,为一个共轭类,即:
H
1
=<(12345)>={(1),(12345),(13524),(14253),(15432)},
H
2
=<(12354)>={(1),(12354),(13425),(15243),(14532)},
H
3
=<(12435)>={(1),(12435),(14523),(13254),(15342)},
H
4
=<(12453)>={(1),(12453),(14325),(15234),(13542)},
H
5
=<(12534)>={(1),(12534),(15423),(13245),(14352)},
H
6
=<(12543)>={(1),(12543),(15324),(14235),(13452)}。
S
5
的8阶子群:
由定理1,8阶子群里元的阶只能为1阶、2阶和4阶,仿照S
4
的8阶子群,
经计算,S
5
有15个8阶子群,一个共轭类,即:
H
1
={(1),(1234),(13)(24),(1432),(13),(12)(34),(24), (14)(23)},
H
1
={(1),(1324),(12)(34),(1423),(12),(13)(24),(34), (14)(32)},
H
1
={(1),(1243),(14)(23),(1342),(14),(12)(43),(23), (13)(24)},
H
1
={(1),(1235),(13)(25),(1532),(13),(12)(35),(25), (15)(23)},
8
H
1
={(1),(1245),(14)(25),(1542),(14),(12)(45),(25), (15)(24)},
H
1
={(1),(1253),(15)(23),(1352),(15),(12)(53),(23), (13)(25)},
H
1
={(1),(1254),(15)(24),(1452),(15),(12)(54),(24), (14)(25)},
H
1
={(1),(1325),(12)(35),(1523),(12),(13)(25),(35), (15)(32)},
H
1
={(1),(1345),(14)(35),(1543),(14),(13)(45),(35), (15)(34)},
H
1
={(1),(1354),(15)(34),(1453),(15),(13)(54),(34), (14)(35)},
H
1
={(1),(1425),(12)(45),(1524),(12),(14)(25),(45), (15)(42)},
H
1
={(1),(1435),(13)(45),(1534),(13),(14)(35),(45), (15)(43)},
H
1
={(1),(2345),(24)(35),(1543),(24),(23)(45),(35), (25)(34)},
H
1
={(1),(2354),(25)(34),(2453),(25),(23)(45),(34), (24)(35)},
H
1
={(1),(2435),(23)(45),(2534),(23),(24)(35),(45), (25)(34)}。
S
5
的120阶子群:
S
5
的120阶子群即为S
5
本身。
以上为S
5
里必存在的子群,下面讨论S
5
里可能存在的子群:
S
5
的6阶子群:
由定理1,6阶子群里元的阶只能为1阶、2阶和3阶,同构于S3的为一个
共轭类,即:
H
1
= {(1),(12),(13),(23),(123),(132)},
H
2
= {(1),(12),(14),(24),(124),(142)},
H
3
= {(1),(12),(15),(25),(125),(152)},
H
4
= {(1),(13),(15),(35),(135),(153)},
H
5
= {(1),(13),(14),(34),(143),(134)},
H
6
= {(1),(14),(15),(45),(145),(154)},
H
7
= {(1),(23),(25),(35),(235),(253)},
H
8
= {(1),(24),(25),(45),(245),(254)},
H
9
= {(1),(24),(23),(34),(234),(243)},
H
10
= {(1),(34),(35),(45),(345),(354)},
9
由2阶元,3阶元,和2×3循环置换构成一个共轭类,即:
H
11
={(1),(12)(345),(12)(354),(12),(345),(354)},
H
12
={(1),(13)(245),(13)(254),(13),(245),(254)},
H
13
={(1),(14)(235),(14)(253),(14),(235),(253)},
H
14
={(1),(15)(234),(15)(243),(15),(234),(243)},
H
15
={(1),(23)(145),(23)(154),(23),(145),(154)},
H
16
={(1),(24)(135),(24)(153),(24),(135),(153)},
H
17
={(1),(25)(134),(25)(143),(25),(134),(143)},
H
18
={(1),(34)(125),(34)(152),(34),(125),(152)},
H
19
={(1),(35)(124),(35)(142),(35),(124),(142)},
H
20
={(1),(45)(123),(45)(132),(45),(123),(132)}。
由3阶元,和2×2循环置换构成一个共轭类,即:
H
21
={(1),(12)(34),(345),(354),(12)(35),(12)(45)},
H
22
={(1),(14)(23),(235),(253),(14)(25),(14)(35)},
H
23
={(1),(15)(23),(234),(243),(15)(24),(15)(34)},
H
24
={(1),(13)(24),(245),(254),(13)(25),(13)(45)},
H
25
={(1),(12)(34),(152),(125),(15)(34),(25)(34)},
H
26
={(1),(12)(45),(123),(132),(13)(45),(23)(45)},
H
27
={(1),(12)(35),(124),(142),(14)(35),(24)(35)},
H
28
={(1),(13)(25),(134),(143),(14)(25),(25)(34)},
H
29
={(1),(13)(24),(135),(153),(15)(24),(24)(35)},
H
30
={(1),(14)(23),(145),(154),(15)(23),(23)(45)}。
所以S
5
的6阶子群共有30个。
S
5
的10阶子群:
若S
5
的10阶子群存在,则由Sylow定理,该10阶子群里必存在5阶子群,
且此5阶子群亦为S
5
的5阶子群,又因为S
5
的10阶子群里的元的阶只能为1
阶、2阶和5阶,所以经计算S
5
的10阶子群有6个,为一共轭类,即:
H
1
={(1),(12345),(13524),(14253),(15432),(12)(35),(13)(45),
10
(14)(23),(15)(24),(25)(34)},
H
2
={(1),(12354),(13425),(15243),(14532),(12)(34),(13)(45),
(15)(23),(14)(25),(24)(35)},
H
3
={(1),(12435),(14523),(13254),(15342),(12)(45),(14)(35),
(13)(24),(15)(23),(25)(34)},
H
4
={(1),(12453),(14325),(15234),(13542),(12)(34),(14)(35),
(15)(24),(13)(25),(23)(45)},
H
5
={(1),(12534),(15423),(13245),(14352),(12)(45),(15)(34),
(13)(25),(14)(23),(24)(35)},
H
6
={(1),(12543),(15324),(14235),(13452),(12)(35),(15)(34),
(14)(25),(13)(24),(23)(45)}。
S
5
的12阶子群:
由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S
4
的12
阶子群,经计算S
5
的12阶子群的一个共轭类:
H
1
={(1),(123),(132),(134),(143),(124),(142),(234),(243),
(12)(34),(13)(24),(14)(23)},
H
2
={(1),(123),(125),(132),(135),(152),(153),(235)(253),(12)(35),
(13)(25),(15)(23)},
H
3
={(1),(124),(125),(142),(145),(152),(154),(245),(254),(12)(45),
(14)(25),(15)(24)},
H
4
={(1),(134),(135),(143),(145),(153),(154),(345),(354),(13)(45),
(14)(35),(15)(34)},
H
5
={(1),(234),(235),(243),(245),(253),(254),(345),(354),(23)(45),
(24)(35),(25)(34)},
另经计算,由2阶元、3阶元和2×3循环置换也可构成一共轭类子群:
H
6
={(1),(12)(345),(12)(354),(345),(354),(12)(34), (12)(35),
(12)(45),(12),(34),(35),(45)},
H
7
={(1),(13)(245),(13)(254),(245),(254),(13)(24), (13)(25),
11
(13)(45),(13),(24),(25),(45)},
H
8
={(1),(14)(235),(14)(253),(235),(253),(14)(23), (14)(25),
(14)(35),(14),(23),(25),(35)},
H
9
={(1),(15)(234),(15)(243),(234),(243),(15)(23), (15)(24),
(15)(34),(15),(23),(24),(34)},
H
10
={(1),(23)(145),(23)(154),(145),(154),(14)(23), (15)(23),
(23)(45),(23),(14),(15),(45)},
H
11
={(1),(24)(135),(24)(153),(135),(153),(13)(24), (15)(24),
(24)(35),(24),(13),(15),(35)},
H
12
={(1),(25)(134),(25)(134),(134),(143),(13)(25), (14)(25),
(25)(34),(25),(13),(14),(34)},
H
13
={(1),(34)(125),(34)(152),(125),(152),(12)(34), (15)(34),
(25)(34),(12),(15),(25),(34)},
H
14
={(1),(35)(124),(35)(142),(124),(142),(12)(35), (14)(35),
(24)(35),(12),(14),(24),(35)},
H
15
={(1),(45)(123),(45)(132),(123),(132),(12)(45), (13)(45),
(23)(45),(12),(13),(23),(45)}。
S
5
的15阶子群:
由定理1,15阶子群里元的阶只能为1阶、3阶和5阶,若H为S
5
的15阶
子群,由Sylow定理,H必有3阶和5阶子群,此3阶子群和5阶子群必也是
S
5
的子群,因为任意3阶子群里的3阶元乘以5阶子群里的5阶元必会出现2
阶元,例如:3阶子群{(1),(123),(132)}与5阶子群{(1),(12345),(13524),
(14253),(15432)}中,(123)(13524)=(14)(25)为2阶元,此以H中不
含有2阶元矛盾,故S
5
不含有15阶子群。
S
5
的20阶子群:
由定理1,20阶子群里元的阶只能为1阶、2阶、4阶和5阶,经计算,S
5
含有6
个20阶子群,为一共轭类:
12
H
1
={(1),(12354),(13425),(15243),(14532),(1253),(1324),(1542),
(1435),(2345),(15)(23),(12)(34),(14)(25),(13)(45),(24)(35),(1352),
(1423),(1245),(1534),(2543)},
H
2
={(1),(12435),(14523),(13254),(15342), (1234),(1425),(1352),
(1543),(2453),(13)(24),(12)(45),(15)(23),(14)(35),(25)(34),(1432),
(1524),(1253),(1345),(2354)},
H
3
={(1),(12453),(14325),(15234),(13542), (1254),(1423),(1532),
(1345),(2435),(15)(24),(12)(34),(13)(25),(14)(35),(23)(45),(1452),
(1324),(1235),(1543),(2534)},
H
4
={(1),(12345),(13524),(14253),(15432), (1243),(1325),(1452),
(1534),(2354),(14)(23),(12)(35),(15)(24),(13)(45),(25)(34),(1342),
(1523),(1254),(1435),(2453)},
H
5
={(1),(12543),(15324),(14235),(13452), (1245),(1523),(1432),
(1354),(2534),(14)(25),(12)(35),(13)(24),(15)(34),(23)(45),(1542),
(1325),(1234),(1453),(2435)},
H
6
={(12534),(15423),(13245),(14352),(1),(1235),(1524),(1342),
(1453),(2543),(13)(25),(12)(45),(14)(23),(15)(34),(24)(35),(1532),
(1425),(1243),(1354),(2345)}。
S
5
的24阶子群:
由定理1,12阶子群里元的阶只能为1阶、2阶、3阶和4阶,仿照S
4
的24
阶子群,S
5
有5个24阶子群,为一个共轭类:
H
1
={(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),
(14)(23),(123),(132),(124),(142),(134),(143),(234),(243),(1234),
(1243),(1432),(1423),(1324),(1342)},
H
2
={(1),(12),(13),(15),(23),(25),(35),(12)(35),(13)(25),
(15)(23),(123),(132),(125),(152),(135),(153),(235),(253),(1235),
(1253),(1532),(1523),(1325),(1352)},
H
3
={(1),(12),(14),(15),(24),(25),(45),(12)(45),(14)(25),
13
(15)(24),(124),(142),(125),(152),((145),(154),(245),(254),(1245),
(1254),(1542),(1524),(1425),(1452)},
H
4
={(1),(13),(14),(15),(34),(35),(45),(13)(45),(14)(35),
(15)(34),(134),(143),(135),(153),(145),(154),(345),(354),(1345),
(1354),(1543),(1534),(1435),(1453)},
H
5
={(1),(23),(24),(25),(34),(35),(45),(23)(45),(24)(35),
(25)(34),(234),(243),(235),(253),(245),(254),(345),(354),(2345),
(2354),(2543),(2534),(2435),(2453)}。
S
5
的30阶子群:
由定理1,30阶子群里元的阶只能为1阶、2阶、3阶和5阶,若H为S
5
的30阶子群,由Sylow定理,H必有2阶子群、3阶子群和5阶子群,此2阶
子群、3阶子群和5阶子群必也是S
5
的子群,因为任意2阶子群里的2阶元乘以
5阶子群里的5阶元必会出现4阶元,例如:2阶子群{(1),(12)}与5阶子群
{(1),(12345),(13524),(14253),(15432)}里,(12)(12345)=(1345)
为4阶元,此与H中不含有4阶元矛盾,故S
5
不含有30阶子群。
S
5
的40阶子群:
由定理1,40阶子群里元的阶只能为1阶、2阶、4阶和5阶,若H为S
5
的40阶子群,由Sylow定理,H必有2阶子群、4阶子群和5阶子群,此2阶
子群、4阶子群和5阶子群必也是S
5
的子群,因为任意3阶子群里的3阶元乘以
任意5阶子群里的5阶元必会出现3阶元,例如:3阶子群{(1),(123),(132)}
与5阶子群{(1),(12345),(13524),(14253),(15432)}中,(123)(13524)
=(354)为3阶元,此与H中不含有3阶元矛盾,故S
5
不含有40阶子群。
S
5
的60阶子群:
由定理1,60阶子群里元的阶为1阶、2阶、3阶、4阶和5阶,经计算,S
5
含有
1个60阶子群,为一共轭类:
H
1
={(1),(123), (124),(125),(132), (134),(135),(142),(143),
14
(145), (152),(153), (154),(234),(235),(243),(245), (253), (254),
(345),(354), (12345),(12354),(12435),(12453),(12534),(12543),(13245),
(13254),(13425), (13452) ,(13524),(13542), (14235),(14253),(14325),
(14352),(14523),(14532),(15234),(15243),(15324),(15342),(15423),
(15432),(12)(34),(12)(35),(12)(45),(13)(24),(13)(25),(13)(45),
(14)(23), (14)(25),(14)(35),(15)(23), (15)(24), (15)(34),(23)(45),
(24)(35),(25)(34)}。
由正规子群的定义及定理6知S
5
的1阶子群,60阶子群和120阶子群为正
规子群。
15
16