最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

论文:LGR是世界上激光痕量气体和稳定性同位素分析技术的领导_百

IT圈 admin 23浏览 0评论

2024年5月30日发(作者:明墨)

LGR是世界上激光痕量气体和稳定性同位素分析技术的领导者。随着OA-ICOS技术日臻完

善,为研究者带来了更大的方便,在以往很难测量的领域提供了测量的可能。

因为仪器性能优良,数据稳定,越来越得到用户的认可,目前全世界已有400多台分

析仪在为人类更好的服务。仪器广泛应用在碳水通量测定,大气痕量气体变化的测量,水文

同位素研究,CO

2

/H

2

O稳定性同位素廓线测量和土壤CH

4

通量等方向的研究。在近几年在

国际权威刊物如Nature、Science上发表了大量的文献;同时,很多研究者对LGR激光分

析仪做了性能等方面的测试,结果表明分析仪精度高、稳定性好,是目前世界上最先进的激

光分析仪。现将部分文献目录列出,共各位用户参考。

Los Gatos 参考文献:

[1] Natalia Shakhova, Igor Semiletov, Anatoly Salyuk, Vladimir Yusupov, Denis Kosmach, Örjan Gustafsson.

Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science,

2010, 327: 1246-1250.

[2] D. R. Bowling, J. B. Miller, M. E. Rhodes, S. P. Burns, R. K. Monson, D. Baer. Soil, plant, and transport

influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences, 2009,

6: 1311-1324.

[3] P. Sturm, A. Knohl. Water vapor δ

2

H and δ

18

O measurements using off-axis integrated cavity output

spectroscopy. Atmospheric Measurement Techniques Discussions, 2009, 2: 2055–2085.

[4] Christopher T. et al., The influence of environmental water on the hydrogen stable isotope ratio in aquatic

consumers. Oecologia, 2009, 161: 313-324.

[5] D. Penna, B. Stenni, M. S. Wrede. et al.. On the reproducibility and repeatability of laser absorption

spectroscopy measurements for δ

2

H and δ

18

O isotopic analysis. Hydrology and Earth System Sciences

Discussions, 2010, 7: 2975–3014.

[6] G. Lis, L. I. Wassenaar, M. J. Hendry. High-Precision Laser Spectroscopy D/H and

18

O/

16

O Measurements of

Microliter Natural Water Samples. Analytical Chemistry, 2007.

[7] Mikhail Mastepanov, Charlotte Sigsgaard, Edward J. Dlugokencky. et al.. Nature, 2008, 456: 628-631.

[8] Hideki TOMITA, Kenichi WATANABE, Yu TAKIGUCHI, Jun KAWARABAYASHI, Tetsuo IGUCHI.

Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis. NUCLEAR SCIENCE

and TECHNOLOGY, 2006, 43(4): 311-315.

[9] Irmantas Kakaras. Developing the Method For Collecting Water Vapor From the Atmosphere. Niels Bohr

Institute University of Copenhagen, 2009.

[10] Joshua B. Paul, Larry Lapson, James G. Anderson. Ultrasensitive absorption spectroscopy with a high-finesse

optical cavity and off-axis alignment. APPLIED OPTICS, 2001, 40(27): 4904-4910.

[11] I. Vigano, H. van Weelden, R. Holzinger, F. Keppler, A. McLeod. Effect of UV radiation and temperature on

the emission of methane from plant biomass and structural components. Biogeosciences, 2008, 5: 937–947.

[12] Lixin Wang, Kelly K. Caylor, Danilo Dragoni. On the calibration of continuous, high-precision δ

18

O and δ

2

H

measurements using an off-axis integrated cavity output spectrometer. RAPID COMMUNICATIONS IN

MASS SPECTROMETRY, 2009, 23: 530-536.

[13] Elena S. F. Berman, Manish Gupta, Chris Gabrielli, Tina Garland, Jeffrey J. McDonne. High-frequency

field-deployable isotope analyzer for hydrological applications. WATER RESOURCES RESEARCH, 2009, 45:

1-7.

[14] Xinning Zhang, Aimee L. Gillespieb, Alex L. Sessionsa. Large D/H variations in bacterial lipids reflect

central metabolic pathways. PNAS, 2009, 106(31): 12580-12586.

[15] D. Zona, W. C. Oechel, J. Kochendorfer, K. T. Paw U, A. N. Salyuk, P. C. Olivas, S. F. Oberbauer, D. A.

Lipson. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the

Alaskan Arctic tundra. GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23, GB2013: 1-11.

[16] STEPHANIE. SHAW, FRANK M. MITLOEHNER, al. Volatile Organic Compound

Emissions from Dairy Cows and Their Waste as Measured by Proton-Transfer-Reaction Mass Spectrometry.

ENVIRON. SCI. 2007.

[17] D. M. D. Hendriks, A. J. Dolman, M. K. van der Molen, J. van Huissteden. A compact and stable eddy

covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy.

Atmospheric Chemistry and Physics. 2008, 8: 431-443.

[18] L.I. Wassenaar, S.L. Van Wilgenburg, K. Larson, K.A. Hobson. A groundwater isoscape (δD, δ

18

O) for

Mexico. Geochemical Exploration, 2009, 102: 123–136.

[19] C. J. P. P. Smeets, R. Holzinger, I. Vigano, A. H. Goldstein. Eddy covariance methane measurements

at a Ponderosa pine plantation in California. Atmospheric Chemistry and Physics Disscusions, 2009, 9:

5201–5229.

[20] L. I. WASSENAAR, M. J. HENDRY, V. L. CHOSTNER, G. P. LIS. High Resolution Pore Water δ

2

H and

δ

18

O Measurements by H

2

O(liquid)-H

2

O(vapor) Equilibration Laser Spectroscopy. ENVIRONMENTAL

SCIENCE & TECHNOLOGY, 2008.

[21] Steve W. Lyon, Sharon L. E. Desilets, Peter A. Troch. A tale of two isotopes: differences in hydrograph

separation for a runoff event when using δD versus δ

18

O. HYDROLOGICAL PROCESSES, 2009, 23:

2095-2101.

[22] Patrick D. Broxton, Peter A. Troch, Steve W. Lyon. On the role of aspect to quantify water transit times

in small mountainous catchments. WATER RESOURCES RESEARCH, 2009, 45, W08427: 1-15.

[23] M. Barthel, P. Sturm, L. Gentsch, A. Knohl. Technical Note: A combined soil/canopy chamber system for

tracing δ

13

C in soil respiration after a

13

CO

2

canopy pulse labelling. Biogeosciences Discussions, 2010,

7:1603-1631.

[24] Anna K. Henderson1, Bryan Nolan Shuman. Hydrogen and oxygen isotopic compositions of lake water

in the western United States. GSA Bulletin, 2009, 121(7-8): 1179–1189.

[25] Stephen D. Sebestyen, Elizabeth W. Boyer, James B. Shanley, Carol Kendall, Daniel H. Doctor, George R.

Aiken, Nobuhito Ohte. Sources, transformations, and hydrological processes that control stream nitrate and

dissolved organic matter concentrations during snowmelt in an upland forest. WATER RESOURCES

RESEARCH, 2008, 44, W12410: 1-14.

[26] T. Vogel, M. Sanda, J. Dusek, M. Dohnal, ova. Using Oxygen-18 to Study the Role of Preferential

Flow in the Formation of Hillslope Runoff. Faculty of Civil Engineering, 2010, 9: 252-259.

[27] Peter E. Sauer, Arndt Schimmelmann, Alex L. Sessions, Katarina Topalov. Simplified batch equilibration for

D/H determination of non-exchangeable hydrogen in solid organic material. RAPID COMMUNICATIONS IN

MASS SPECTROMETRY. 2009, 23: 949-956.

2024年5月30日发(作者:明墨)

LGR是世界上激光痕量气体和稳定性同位素分析技术的领导者。随着OA-ICOS技术日臻完

善,为研究者带来了更大的方便,在以往很难测量的领域提供了测量的可能。

因为仪器性能优良,数据稳定,越来越得到用户的认可,目前全世界已有400多台分

析仪在为人类更好的服务。仪器广泛应用在碳水通量测定,大气痕量气体变化的测量,水文

同位素研究,CO

2

/H

2

O稳定性同位素廓线测量和土壤CH

4

通量等方向的研究。在近几年在

国际权威刊物如Nature、Science上发表了大量的文献;同时,很多研究者对LGR激光分

析仪做了性能等方面的测试,结果表明分析仪精度高、稳定性好,是目前世界上最先进的激

光分析仪。现将部分文献目录列出,共各位用户参考。

Los Gatos 参考文献:

[1] Natalia Shakhova, Igor Semiletov, Anatoly Salyuk, Vladimir Yusupov, Denis Kosmach, Örjan Gustafsson.

Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science,

2010, 327: 1246-1250.

[2] D. R. Bowling, J. B. Miller, M. E. Rhodes, S. P. Burns, R. K. Monson, D. Baer. Soil, plant, and transport

influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences, 2009,

6: 1311-1324.

[3] P. Sturm, A. Knohl. Water vapor δ

2

H and δ

18

O measurements using off-axis integrated cavity output

spectroscopy. Atmospheric Measurement Techniques Discussions, 2009, 2: 2055–2085.

[4] Christopher T. et al., The influence of environmental water on the hydrogen stable isotope ratio in aquatic

consumers. Oecologia, 2009, 161: 313-324.

[5] D. Penna, B. Stenni, M. S. Wrede. et al.. On the reproducibility and repeatability of laser absorption

spectroscopy measurements for δ

2

H and δ

18

O isotopic analysis. Hydrology and Earth System Sciences

Discussions, 2010, 7: 2975–3014.

[6] G. Lis, L. I. Wassenaar, M. J. Hendry. High-Precision Laser Spectroscopy D/H and

18

O/

16

O Measurements of

Microliter Natural Water Samples. Analytical Chemistry, 2007.

[7] Mikhail Mastepanov, Charlotte Sigsgaard, Edward J. Dlugokencky. et al.. Nature, 2008, 456: 628-631.

[8] Hideki TOMITA, Kenichi WATANABE, Yu TAKIGUCHI, Jun KAWARABAYASHI, Tetsuo IGUCHI.

Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis. NUCLEAR SCIENCE

and TECHNOLOGY, 2006, 43(4): 311-315.

[9] Irmantas Kakaras. Developing the Method For Collecting Water Vapor From the Atmosphere. Niels Bohr

Institute University of Copenhagen, 2009.

[10] Joshua B. Paul, Larry Lapson, James G. Anderson. Ultrasensitive absorption spectroscopy with a high-finesse

optical cavity and off-axis alignment. APPLIED OPTICS, 2001, 40(27): 4904-4910.

[11] I. Vigano, H. van Weelden, R. Holzinger, F. Keppler, A. McLeod. Effect of UV radiation and temperature on

the emission of methane from plant biomass and structural components. Biogeosciences, 2008, 5: 937–947.

[12] Lixin Wang, Kelly K. Caylor, Danilo Dragoni. On the calibration of continuous, high-precision δ

18

O and δ

2

H

measurements using an off-axis integrated cavity output spectrometer. RAPID COMMUNICATIONS IN

MASS SPECTROMETRY, 2009, 23: 530-536.

[13] Elena S. F. Berman, Manish Gupta, Chris Gabrielli, Tina Garland, Jeffrey J. McDonne. High-frequency

field-deployable isotope analyzer for hydrological applications. WATER RESOURCES RESEARCH, 2009, 45:

1-7.

[14] Xinning Zhang, Aimee L. Gillespieb, Alex L. Sessionsa. Large D/H variations in bacterial lipids reflect

central metabolic pathways. PNAS, 2009, 106(31): 12580-12586.

[15] D. Zona, W. C. Oechel, J. Kochendorfer, K. T. Paw U, A. N. Salyuk, P. C. Olivas, S. F. Oberbauer, D. A.

Lipson. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the

Alaskan Arctic tundra. GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23, GB2013: 1-11.

[16] STEPHANIE. SHAW, FRANK M. MITLOEHNER, al. Volatile Organic Compound

Emissions from Dairy Cows and Their Waste as Measured by Proton-Transfer-Reaction Mass Spectrometry.

ENVIRON. SCI. 2007.

[17] D. M. D. Hendriks, A. J. Dolman, M. K. van der Molen, J. van Huissteden. A compact and stable eddy

covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy.

Atmospheric Chemistry and Physics. 2008, 8: 431-443.

[18] L.I. Wassenaar, S.L. Van Wilgenburg, K. Larson, K.A. Hobson. A groundwater isoscape (δD, δ

18

O) for

Mexico. Geochemical Exploration, 2009, 102: 123–136.

[19] C. J. P. P. Smeets, R. Holzinger, I. Vigano, A. H. Goldstein. Eddy covariance methane measurements

at a Ponderosa pine plantation in California. Atmospheric Chemistry and Physics Disscusions, 2009, 9:

5201–5229.

[20] L. I. WASSENAAR, M. J. HENDRY, V. L. CHOSTNER, G. P. LIS. High Resolution Pore Water δ

2

H and

δ

18

O Measurements by H

2

O(liquid)-H

2

O(vapor) Equilibration Laser Spectroscopy. ENVIRONMENTAL

SCIENCE & TECHNOLOGY, 2008.

[21] Steve W. Lyon, Sharon L. E. Desilets, Peter A. Troch. A tale of two isotopes: differences in hydrograph

separation for a runoff event when using δD versus δ

18

O. HYDROLOGICAL PROCESSES, 2009, 23:

2095-2101.

[22] Patrick D. Broxton, Peter A. Troch, Steve W. Lyon. On the role of aspect to quantify water transit times

in small mountainous catchments. WATER RESOURCES RESEARCH, 2009, 45, W08427: 1-15.

[23] M. Barthel, P. Sturm, L. Gentsch, A. Knohl. Technical Note: A combined soil/canopy chamber system for

tracing δ

13

C in soil respiration after a

13

CO

2

canopy pulse labelling. Biogeosciences Discussions, 2010,

7:1603-1631.

[24] Anna K. Henderson1, Bryan Nolan Shuman. Hydrogen and oxygen isotopic compositions of lake water

in the western United States. GSA Bulletin, 2009, 121(7-8): 1179–1189.

[25] Stephen D. Sebestyen, Elizabeth W. Boyer, James B. Shanley, Carol Kendall, Daniel H. Doctor, George R.

Aiken, Nobuhito Ohte. Sources, transformations, and hydrological processes that control stream nitrate and

dissolved organic matter concentrations during snowmelt in an upland forest. WATER RESOURCES

RESEARCH, 2008, 44, W12410: 1-14.

[26] T. Vogel, M. Sanda, J. Dusek, M. Dohnal, ova. Using Oxygen-18 to Study the Role of Preferential

Flow in the Formation of Hillslope Runoff. Faculty of Civil Engineering, 2010, 9: 252-259.

[27] Peter E. Sauer, Arndt Schimmelmann, Alex L. Sessions, Katarina Topalov. Simplified batch equilibration for

D/H determination of non-exchangeable hydrogen in solid organic material. RAPID COMMUNICATIONS IN

MASS SPECTROMETRY. 2009, 23: 949-956.

发布评论

评论列表 (0)

  1. 暂无评论