2024年6月3日发(作者:欧阳孤晴)
第一章
水的密度为1000kg/m
3
,2L水的质量和重量是多少?
m
v1000210
3
2kg
解:
Gmg29.819.6N
1—2 体积为0.5 m
3
的油料,重量为4410N,试求该油料的密度是多少?
mG4410
900kg/m
3
vgv9.80.5
解;
1—3 当空气的温度从0℃增加到20℃时,运动黏滞系数
值增加15%,密度减少
10%,问此时动力黏滞系数
值增加多少?
0
v
0
•
0
(1.0351)v
0
0
0.035v
0
0
解:
1
(115%)v
0
(110%)
0
1.035v
0
0
因此增加了3.5%
1—4 为了进行绝缘处理,将导线从充满绝缘涂料的模具中间拉过。已知导线直径为
0.8mm,涂料的动力黏滞系数
0.02Pa•s
,模具的直径为0.9mm,长度为20mm,导线
的牵 拉速度为50m/s。试求所需牵拉力?
du0.950
6
T
A0.02(2
)210
1
dy2
0.1
2
3
1.004810N
解:
1—5 某底面积为
60cm40cm
的木块,质量5kg,沿着一与水平面成20°的涂有润滑
油的斜面下滑。油层厚度为0.6mm,如以等速度U=0.84m/s下滑时,求油的动力黏滞系
数
?
duU
A
A
dyh
Gsin20
A
mgsin20h/(UA)
=59.8sin200.610
3
/(0.840.60.4)
解:
=0.05Pas
1—6 温度为20℃的空气,在直径为2.5cm的管中流动,距管壁上1mm处的空气
速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少?
5
1.8310Pas
解:因为T=20
0
,故查表得
2
du310
T
A1.8310
5
(
2.510
2
)
dy110
3
T43.1010
6
0.04310
3
N
1—7 一圆锥体绕其铅直中心轴等速旋转,锥体与固定壁面间的距离
1mm
,用
0.1pa•s
的润滑油充满间隙。当旋转角速度
16s
1
,锥体底部半径R=0.3m、高
H=0.5m时,求作用于圆锥的阻力矩。
duwr
dy
dM
2
rdsr
w2
3
R
2
H
2
=rdh
H
w2
R
2
H
2
R
3
3
=hdh
3
HH
H
w2
R
2
H
2
R
3
3
Mhdh
3
0
HH
w
=R
3
R
2
H
2
2
0.116
322
解:
=
20.001
0.30.30.539.5Nm
1—8 水在常温下,压强由5at增加到10at时,密度改变多少?
P
RT
P
5at10at
0
1
RTRTRT
/
0
2
0
解:
1
故变为原来的2倍。
1—9 体积为5m
3
的水,在温度不变的情况下,当压强从1at增加到5at时,体积减
少1L,求水的压缩系数和弹性模量。
解:压缩系数为k
dv/v110
3
/5110
3
k
dP(51)at5498000
=0.510
9
m
2
/N
体积摸量为K
11
92
K210N/m
k0.510
8
1—10 如图所示的采暖系统,由于水温升高引起的水的体积膨胀,为了防止管道及
暖气片胀裂,特在系统顶部设置一膨胀水箱,使水的体积有自由膨胀的余地。若系统内水
的总体积V=8m
3
,加热后温差50℃,水的热胀系数为0.0005/℃
-1
,求膨胀水箱的最小容
积。
1dV
vdT
dV
v
VdT0.00058500.2m
3
v
解:膨胀系数为
v
3
V80.28.2m
:
min
1—11 钢贮罐内装满10℃的水,密封加热到75℃,在加热增压的温度和压强范围
9
4
-1
210Pa
,罐体坚固,假设容积不变,试估
4.110/
内,水的热胀系数为℃,体积模量为
算加热后管壁所承受的压强。
dVdP
Vk
dP
v
dTk4.110
4
(7510)210
9
=53310
2
kp
a
v
dT
解:
1—12 汽车上路时,轮胎内空气的温度为20℃,绝对压强为395kPa,行驶轮胎内
空气的温度上升到50℃,试求此时的压强。
p
RT
p
0
p
T
P
1
p
1
011
0
T
0
1
T
1
0
T
0
解:
p
1
3951.05(50273)
381.01kp
a
1.2(20273)
2024年6月3日发(作者:欧阳孤晴)
第一章
水的密度为1000kg/m
3
,2L水的质量和重量是多少?
m
v1000210
3
2kg
解:
Gmg29.819.6N
1—2 体积为0.5 m
3
的油料,重量为4410N,试求该油料的密度是多少?
mG4410
900kg/m
3
vgv9.80.5
解;
1—3 当空气的温度从0℃增加到20℃时,运动黏滞系数
值增加15%,密度减少
10%,问此时动力黏滞系数
值增加多少?
0
v
0
•
0
(1.0351)v
0
0
0.035v
0
0
解:
1
(115%)v
0
(110%)
0
1.035v
0
0
因此增加了3.5%
1—4 为了进行绝缘处理,将导线从充满绝缘涂料的模具中间拉过。已知导线直径为
0.8mm,涂料的动力黏滞系数
0.02Pa•s
,模具的直径为0.9mm,长度为20mm,导线
的牵 拉速度为50m/s。试求所需牵拉力?
du0.950
6
T
A0.02(2
)210
1
dy2
0.1
2
3
1.004810N
解:
1—5 某底面积为
60cm40cm
的木块,质量5kg,沿着一与水平面成20°的涂有润滑
油的斜面下滑。油层厚度为0.6mm,如以等速度U=0.84m/s下滑时,求油的动力黏滞系
数
?
duU
A
A
dyh
Gsin20
A
mgsin20h/(UA)
=59.8sin200.610
3
/(0.840.60.4)
解:
=0.05Pas
1—6 温度为20℃的空气,在直径为2.5cm的管中流动,距管壁上1mm处的空气
速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少?
5
1.8310Pas
解:因为T=20
0
,故查表得
2
du310
T
A1.8310
5
(
2.510
2
)
dy110
3
T43.1010
6
0.04310
3
N
1—7 一圆锥体绕其铅直中心轴等速旋转,锥体与固定壁面间的距离
1mm
,用
0.1pa•s
的润滑油充满间隙。当旋转角速度
16s
1
,锥体底部半径R=0.3m、高
H=0.5m时,求作用于圆锥的阻力矩。
duwr
dy
dM
2
rdsr
w2
3
R
2
H
2
=rdh
H
w2
R
2
H
2
R
3
3
=hdh
3
HH
H
w2
R
2
H
2
R
3
3
Mhdh
3
0
HH
w
=R
3
R
2
H
2
2
0.116
322
解:
=
20.001
0.30.30.539.5Nm
1—8 水在常温下,压强由5at增加到10at时,密度改变多少?
P
RT
P
5at10at
0
1
RTRTRT
/
0
2
0
解:
1
故变为原来的2倍。
1—9 体积为5m
3
的水,在温度不变的情况下,当压强从1at增加到5at时,体积减
少1L,求水的压缩系数和弹性模量。
解:压缩系数为k
dv/v110
3
/5110
3
k
dP(51)at5498000
=0.510
9
m
2
/N
体积摸量为K
11
92
K210N/m
k0.510
8
1—10 如图所示的采暖系统,由于水温升高引起的水的体积膨胀,为了防止管道及
暖气片胀裂,特在系统顶部设置一膨胀水箱,使水的体积有自由膨胀的余地。若系统内水
的总体积V=8m
3
,加热后温差50℃,水的热胀系数为0.0005/℃
-1
,求膨胀水箱的最小容
积。
1dV
vdT
dV
v
VdT0.00058500.2m
3
v
解:膨胀系数为
v
3
V80.28.2m
:
min
1—11 钢贮罐内装满10℃的水,密封加热到75℃,在加热增压的温度和压强范围
9
4
-1
210Pa
,罐体坚固,假设容积不变,试估
4.110/
内,水的热胀系数为℃,体积模量为
算加热后管壁所承受的压强。
dVdP
Vk
dP
v
dTk4.110
4
(7510)210
9
=53310
2
kp
a
v
dT
解:
1—12 汽车上路时,轮胎内空气的温度为20℃,绝对压强为395kPa,行驶轮胎内
空气的温度上升到50℃,试求此时的压强。
p
RT
p
0
p
T
P
1
p
1
011
0
T
0
1
T
1
0
T
0
解:
p
1
3951.05(50273)
381.01kp
a
1.2(20273)