2024年6月13日发(作者:卫秀曼)
摘要
摘要
电子元器件的冷却技术是未来电子技术发展需要解决的一项关键技术。随着
电子芯片频率的提高,芯片集成和封装技术的发展,电子元器件的发热量迅速提
高,如今其热流密度已经达到104W/m2~105w/m2,并且持续增大。因而,开发有
效的散热装置用于电子元器件的散热,是当今传热研究的重要课题。本文就是将
这一课题作为研究的对象,开发一种高效、节能的电子元器件无泵液体自循环散
热装置。
本文结合电子元器件的发热特点和工作环境,设计出无泵液体自循环散热装
置,并制作出这种散热装置。然后把这种装置用予电子元器件散热,并在实验中
检验这种装置的换热效果和工作性能,并建立该装置的数学模型,根据数学模型
的计算结果和实验结果对散热装置进行改造,使之更加有效。结果表明:随着输
入功率的增加,散热装置的温度、压力和流量都在增加,当输入最大功率115W
时,该散热装置的最小换热热阻为0.55℃月,最大工作压力达4.15bar,电子元
器件最大表面温度74.5。C,最佳充液率为80%~i00%,此时最大工质流量为129,
最小充液率60%。在R123、Rll、RIl3这三种载热介质中,R123的散热性能最
好。解决该散热装置的关键之一在于使载热介质迅速完全地循环,关键之二在于
减小蒸发段的传热热阻。经过实验验证,本文建立的数学模型比较适用于设计的
试验装置,所设计的无泵液体散热装置散热效果良好。通过本文的研究,可以为
以后的液体散热研究提供思路和借鉴。
关键词:电子元器件、液体自循环、散热装置、散热性能
皇—■—置■■■■_I
Abstr∞t
⸕䇶≤ඍ#GDPG
I—●—■■—●●■■■—●——●■●——■■■■■■■■■■—量——一
Abstract
The
cooling
shouldbe
technique
for
ofelectronic
component
is
one
of
keytechniques
which
inthesettled
of
development
ofelectronic
and
technique
future.With
slug。S
increasing
electrorfic
slug’S
frequency
development
of
electronic
integration
and
capsulation,the
heat
productivity
of
electronic
component
rapidly
increases.Now
the
heatflow
density
ofelectronic
component
is
up
to
10'hW/m2—105
W/m2,and
designed
to
thatitis
increasingcontinuaUy.So
effective
heatradiatorshouldbe
meet
to
cooling
requirement,which
hasbecome
as
one
of
importantsubjects
and
develops
inheat-transferfield.This
paper
thinksofthis
subject
study
object
an
effective,energy-savingliquidself-circulating
radiator
without
pump
forelectronic
component.
In
this
paper,associating
heatfeatureofelectronic
liquidself-circulating
component
Was
with
running
environment,a
radiator
without
pump
designed
and
produced.Then
this
effect
radiatorWasusedforelectronic
wefc
components.In
the
experiment,
and
performance
checked
up.Based
on
the
radiator,mathematic
model
Was
set
up.Combing
the
calculating
resultwith
experimental
result,the
radiator
was
improved
013.to
make
the
1
iteffective.The
result
WaS
shown:With
input
powerincreasing,
temperature,the
is
pressure
and
the
flow
are
increasing.As
the
highestinput
power
is
15W
charged,the
smallestthermoresistance
O.550C/W,the
highest
pressure
is
4,1
5bar,the
highest
temperature
on
thesurface
ofradiatoris
78.50C,the
optimal
charge
ratiois
80%~100%,under
thisstation
the
biggest
flowis
129,the
smallest
charge
ratiois
60%.Among
R123,R1
1
and
R1
13,the
performance
lies
one
ofRl23
is
thebest.
The
one
key
to
resolve
the
and
heat-transfer
effect
other
in
making
the
in
refrigerant
the
circulatingrapidly
completely,the
lies
decreasing
thcrmoresistance
of
evaporating
section.The
experiment
showsthatthe
mathematic
model
closely
fits
to
the
radiator.Moreover,the
liquidself-circulating
radiator
without
can
pump
is
applicable
to
electronic
componenL
This
studyprovide
directions
and
experience
inthefuture
research.
Ⅱ
GDPGRFѪᛘٮᗳᮤ⨶
2024年6月13日发(作者:卫秀曼)
摘要
摘要
电子元器件的冷却技术是未来电子技术发展需要解决的一项关键技术。随着
电子芯片频率的提高,芯片集成和封装技术的发展,电子元器件的发热量迅速提
高,如今其热流密度已经达到104W/m2~105w/m2,并且持续增大。因而,开发有
效的散热装置用于电子元器件的散热,是当今传热研究的重要课题。本文就是将
这一课题作为研究的对象,开发一种高效、节能的电子元器件无泵液体自循环散
热装置。
本文结合电子元器件的发热特点和工作环境,设计出无泵液体自循环散热装
置,并制作出这种散热装置。然后把这种装置用予电子元器件散热,并在实验中
检验这种装置的换热效果和工作性能,并建立该装置的数学模型,根据数学模型
的计算结果和实验结果对散热装置进行改造,使之更加有效。结果表明:随着输
入功率的增加,散热装置的温度、压力和流量都在增加,当输入最大功率115W
时,该散热装置的最小换热热阻为0.55℃月,最大工作压力达4.15bar,电子元
器件最大表面温度74.5。C,最佳充液率为80%~i00%,此时最大工质流量为129,
最小充液率60%。在R123、Rll、RIl3这三种载热介质中,R123的散热性能最
好。解决该散热装置的关键之一在于使载热介质迅速完全地循环,关键之二在于
减小蒸发段的传热热阻。经过实验验证,本文建立的数学模型比较适用于设计的
试验装置,所设计的无泵液体散热装置散热效果良好。通过本文的研究,可以为
以后的液体散热研究提供思路和借鉴。
关键词:电子元器件、液体自循环、散热装置、散热性能
皇—■—置■■■■_I
Abstr∞t
⸕䇶≤ඍ#GDPG
I—●—■■—●●■■■—●——●■●——■■■■■■■■■■—量——一
Abstract
The
cooling
shouldbe
technique
for
ofelectronic
component
is
one
of
keytechniques
which
inthesettled
of
development
ofelectronic
and
technique
future.With
slug。S
increasing
electrorfic
slug’S
frequency
development
of
electronic
integration
and
capsulation,the
heat
productivity
of
electronic
component
rapidly
increases.Now
the
heatflow
density
ofelectronic
component
is
up
to
10'hW/m2—105
W/m2,and
designed
to
thatitis
increasingcontinuaUy.So
effective
heatradiatorshouldbe
meet
to
cooling
requirement,which
hasbecome
as
one
of
importantsubjects
and
develops
inheat-transferfield.This
paper
thinksofthis
subject
study
object
an
effective,energy-savingliquidself-circulating
radiator
without
pump
forelectronic
component.
In
this
paper,associating
heatfeatureofelectronic
liquidself-circulating
component
Was
with
running
environment,a
radiator
without
pump
designed
and
produced.Then
this
effect
radiatorWasusedforelectronic
wefc
components.In
the
experiment,
and
performance
checked
up.Based
on
the
radiator,mathematic
model
Was
set
up.Combing
the
calculating
resultwith
experimental
result,the
radiator
was
improved
013.to
make
the
1
iteffective.The
result
WaS
shown:With
input
powerincreasing,
temperature,the
is
pressure
and
the
flow
are
increasing.As
the
highestinput
power
is
15W
charged,the
smallestthermoresistance
O.550C/W,the
highest
pressure
is
4,1
5bar,the
highest
temperature
on
thesurface
ofradiatoris
78.50C,the
optimal
charge
ratiois
80%~100%,under
thisstation
the
biggest
flowis
129,the
smallest
charge
ratiois
60%.Among
R123,R1
1
and
R1
13,the
performance
lies
one
ofRl23
is
thebest.
The
one
key
to
resolve
the
and
heat-transfer
effect
other
in
making
the
in
refrigerant
the
circulatingrapidly
completely,the
lies
decreasing
thcrmoresistance
of
evaporating
section.The
experiment
showsthatthe
mathematic
model
closely
fits
to
the
radiator.Moreover,the
liquidself-circulating
radiator
without
can
pump
is
applicable
to
electronic
componenL
This
studyprovide
directions
and
experience
inthefuture
research.
Ⅱ
GDPGRFѪᛘٮᗳᮤ⨶