最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

(热能工程专业论文)电子元器件液体自循环冷却系统的传热特性与实验研究

IT圈 admin 28浏览 0评论

2024年6月13日发(作者:卫秀曼)

摘要

摘要

电子元器件的冷却技术是未来电子技术发展需要解决的一项关键技术。随着

电子芯片频率的提高,芯片集成和封装技术的发展,电子元器件的发热量迅速提

高,如今其热流密度已经达到104W/m2~105w/m2,并且持续增大。因而,开发有

效的散热装置用于电子元器件的散热,是当今传热研究的重要课题。本文就是将

这一课题作为研究的对象,开发一种高效、节能的电子元器件无泵液体自循环散

热装置。

本文结合电子元器件的发热特点和工作环境,设计出无泵液体自循环散热装

置,并制作出这种散热装置。然后把这种装置用予电子元器件散热,并在实验中

检验这种装置的换热效果和工作性能,并建立该装置的数学模型,根据数学模型

的计算结果和实验结果对散热装置进行改造,使之更加有效。结果表明:随着输

入功率的增加,散热装置的温度、压力和流量都在增加,当输入最大功率115W

时,该散热装置的最小换热热阻为0.55℃月,最大工作压力达4.15bar,电子元

器件最大表面温度74.5。C,最佳充液率为80%~i00%,此时最大工质流量为129,

最小充液率60%。在R123、Rll、RIl3这三种载热介质中,R123的散热性能最

好。解决该散热装置的关键之一在于使载热介质迅速完全地循环,关键之二在于

减小蒸发段的传热热阻。经过实验验证,本文建立的数学模型比较适用于设计的

试验装置,所设计的无泵液体散热装置散热效果良好。通过本文的研究,可以为

以后的液体散热研究提供思路和借鉴。

关键词:电子元器件、液体自循环、散热装置、散热性能

皇—■—置■■■■_I

Abstr∞t

⸕䇶≤ඍ#GDPG

I—●—■■—●●■■■—●——●■●——■■■■■■■■■■—量——一

Abstract

The

cooling

shouldbe

technique

for

ofelectronic

component

is

one

of

keytechniques

which

inthesettled

of

development

ofelectronic

and

technique

future.With

slug。S

increasing

electrorfic

slug’S

frequency

development

of

electronic

integration

and

capsulation,the

heat

productivity

of

electronic

component

rapidly

increases.Now

the

heatflow

density

ofelectronic

component

is

up

to

10'hW/m2—105

W/m2,and

designed

to

thatitis

increasingcontinuaUy.So

effective

heatradiatorshouldbe

meet

to

cooling

requirement,which

hasbecome

as

one

of

importantsubjects

and

develops

inheat-transferfield.This

paper

thinksofthis

subject

study

object

an

effective,energy-savingliquidself-circulating

radiator

without

pump

forelectronic

component.

In

this

paper,associating

heatfeatureofelectronic

liquidself-circulating

component

Was

with

running

environment,a

radiator

without

pump

designed

and

produced.Then

this

effect

radiatorWasusedforelectronic

wefc

components.In

the

experiment,

and

performance

checked

up.Based

on

the

radiator,mathematic

model

Was

set

up.Combing

the

calculating

resultwith

experimental

result,the

radiator

was

improved

013.to

make

the

iteffective.The

result

WaS

shown:With

input

powerincreasing,

temperature,the

is

pressure

and

the

flow

are

increasing.As

the

highestinput

power

is

15W

charged,the

smallestthermoresistance

O.550C/W,the

highest

pressure

is

4,1

5bar,the

highest

temperature

on

thesurface

ofradiatoris

78.50C,the

optimal

charge

ratiois

80%~100%,under

thisstation

the

biggest

flowis

129,the

smallest

charge

ratiois

60%.Among

R123,R1

and

R1

13,the

performance

lies

one

ofRl23

is

thebest.

The

one

key

to

resolve

the

and

heat-transfer

effect

other

in

making

the

in

refrigerant

the

circulatingrapidly

completely,the

lies

decreasing

thcrmoresistance

of

evaporating

section.The

experiment

showsthatthe

mathematic

model

closely

fits

to

the

radiator.Moreover,the

liquidself-circulating

radiator

without

can

pump

is

applicable

to

electronic

componenL

This

studyprovide

directions

and

experience

inthefuture

research.

GDPGRFѪᛘٮᗳᮤ⨶

2024年6月13日发(作者:卫秀曼)

摘要

摘要

电子元器件的冷却技术是未来电子技术发展需要解决的一项关键技术。随着

电子芯片频率的提高,芯片集成和封装技术的发展,电子元器件的发热量迅速提

高,如今其热流密度已经达到104W/m2~105w/m2,并且持续增大。因而,开发有

效的散热装置用于电子元器件的散热,是当今传热研究的重要课题。本文就是将

这一课题作为研究的对象,开发一种高效、节能的电子元器件无泵液体自循环散

热装置。

本文结合电子元器件的发热特点和工作环境,设计出无泵液体自循环散热装

置,并制作出这种散热装置。然后把这种装置用予电子元器件散热,并在实验中

检验这种装置的换热效果和工作性能,并建立该装置的数学模型,根据数学模型

的计算结果和实验结果对散热装置进行改造,使之更加有效。结果表明:随着输

入功率的增加,散热装置的温度、压力和流量都在增加,当输入最大功率115W

时,该散热装置的最小换热热阻为0.55℃月,最大工作压力达4.15bar,电子元

器件最大表面温度74.5。C,最佳充液率为80%~i00%,此时最大工质流量为129,

最小充液率60%。在R123、Rll、RIl3这三种载热介质中,R123的散热性能最

好。解决该散热装置的关键之一在于使载热介质迅速完全地循环,关键之二在于

减小蒸发段的传热热阻。经过实验验证,本文建立的数学模型比较适用于设计的

试验装置,所设计的无泵液体散热装置散热效果良好。通过本文的研究,可以为

以后的液体散热研究提供思路和借鉴。

关键词:电子元器件、液体自循环、散热装置、散热性能

皇—■—置■■■■_I

Abstr∞t

⸕䇶≤ඍ#GDPG

I—●—■■—●●■■■—●——●■●——■■■■■■■■■■—量——一

Abstract

The

cooling

shouldbe

technique

for

ofelectronic

component

is

one

of

keytechniques

which

inthesettled

of

development

ofelectronic

and

technique

future.With

slug。S

increasing

electrorfic

slug’S

frequency

development

of

electronic

integration

and

capsulation,the

heat

productivity

of

electronic

component

rapidly

increases.Now

the

heatflow

density

ofelectronic

component

is

up

to

10'hW/m2—105

W/m2,and

designed

to

thatitis

increasingcontinuaUy.So

effective

heatradiatorshouldbe

meet

to

cooling

requirement,which

hasbecome

as

one

of

importantsubjects

and

develops

inheat-transferfield.This

paper

thinksofthis

subject

study

object

an

effective,energy-savingliquidself-circulating

radiator

without

pump

forelectronic

component.

In

this

paper,associating

heatfeatureofelectronic

liquidself-circulating

component

Was

with

running

environment,a

radiator

without

pump

designed

and

produced.Then

this

effect

radiatorWasusedforelectronic

wefc

components.In

the

experiment,

and

performance

checked

up.Based

on

the

radiator,mathematic

model

Was

set

up.Combing

the

calculating

resultwith

experimental

result,the

radiator

was

improved

013.to

make

the

iteffective.The

result

WaS

shown:With

input

powerincreasing,

temperature,the

is

pressure

and

the

flow

are

increasing.As

the

highestinput

power

is

15W

charged,the

smallestthermoresistance

O.550C/W,the

highest

pressure

is

4,1

5bar,the

highest

temperature

on

thesurface

ofradiatoris

78.50C,the

optimal

charge

ratiois

80%~100%,under

thisstation

the

biggest

flowis

129,the

smallest

charge

ratiois

60%.Among

R123,R1

and

R1

13,the

performance

lies

one

ofRl23

is

thebest.

The

one

key

to

resolve

the

and

heat-transfer

effect

other

in

making

the

in

refrigerant

the

circulatingrapidly

completely,the

lies

decreasing

thcrmoresistance

of

evaporating

section.The

experiment

showsthatthe

mathematic

model

closely

fits

to

the

radiator.Moreover,the

liquidself-circulating

radiator

without

can

pump

is

applicable

to

electronic

componenL

This

studyprovide

directions

and

experience

inthefuture

research.

GDPGRFѪᛘٮᗳᮤ⨶

发布评论

评论列表 (0)

  1. 暂无评论