2024年10月26日发(作者:钭梦竹)
元器件交易网
MX25L1005
1M-BIT [x 1] CMOS SERIAL FLASH
FEATURES
GENERAL
• Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3
• 1,048,576 x 1 bit structure
• 32 Equal Sectors with 4K byte each
- Any Sector can be erased individually
•2 Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
• Low Vcc write inhibit is from 1.5V to 2.5V
PERFORMANCE
• High Performance
- Fast access time: 85MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load)
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)
- Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/block (64K-byte per
block)
• Low Power Consumption
- Low active read current: 12mA(max.) at 85MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz
- Low active programming current: 15mA (max.)
- Low active erase current: 15mA (max.)
- Low standby current: 10uA (max.)
- Deep power-down mode 1uA (typical)
• Minimum 100,000 erase/program cycles
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
•Block Lock protection
- The BP0~BP1 status bit defines the size of the area to be software protected against Program and Erase instructions.
• Auto Erase and Auto Program Algorithm
-
Automatically erases and verifies data at selected sector
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first)
• Status Register Feature
• Electronic Identification
-
JEDEC 2-byte Device ID
- RES command, 1-byte Device ID
P/N: PM1238
1
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
HARDWARE FEATURES
• SCLK Input
-
Serial clock input
• SI Input
-
Serial Data Input
• SO Output
-
Serial Data Output
• WP# pin
-
Hardware write protection
• HOLD# pin
-
pause the chip without diselecting the chip
• PACKAGE
-
8-pin SOP (150mil)
- 8-land USON (2x3x0.6mm)
*
- All Pb-free devices are RoHS Compliant
GENERAL DESCRIPTION
MX25L1005 is a CMOS 1,048,576 bit serial Flash memory, which is configured as 131,072 x 8 MX25L1005
feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals
are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device is enabled by
CS# input.
The MX25L1005 provide sequential read operation on whole chip.
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified
page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase
command is executes on chip or sector(4K-bytes) or block(64K-bytes).
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 10uA DC current.
The MX25L1005 utilize MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000 program
and erase cycles.
*
Advanced Information
P/N: PM1238
2
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PIN CONFIGURATIONS
8-PIN SOP (150mil)
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
8-LAND USON (2x3mm)
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
PIN DESCRIPTION
SYMBOL
CS#
SI
SO
SCLK
HOLD#
VCC
GND
DESCRIPTION
Chip Select
Serial Data Input
Serial Data Output
Clock Input
Hold, to pause the device without
deselecting the device
+ 3.3V Power Supply
Ground
P/N: PM1238
3
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
BLOCK DIAGRAM
Address
Generator
X-Decoder
Memory Array
Page Buffer
SI
Data
Register
Y-Decoder
SRAM
Buffer
Sense
Amplifier
HV
Generator
CS#
Mode
Logic
State
Machine
Output
Buffer
SO
SCLKClock Generator
P/N: PM1238
4
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
DATA PROTECTION
The MX25L1005 is designed to offer protection against accidental erasure or programming caused by spurious system level
signals that may exist during power transition. During power up the device automatically resets the state machine in the
Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful
completion of specific command sequences. The device also incorporates several features to prevent inadvertent write
cycles resulting from VCC power-up and power-down transition or system noise.
•Power-on reset and tPUW: to avoid sudden power switch by system power supply transition, the power-on reset and
tPUW (internal timer) may protect the Flash.
• Valid command length checking: The command length will be checked whether it is at byte base and completed on byte
boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other
command to change data. The WEL bit will return to reset stage under following situation:
- Power-up
- Write Disable (WRDI) command completion
- Write Status Register (WRSR) command completion
- Page Program (PP) command completion
- Sector Erase (SE) command completion
- Block Erase (BE) command completion
- Chip Erase (CE) command completion
•
•
•
Software Protection Mode (SPM): by using BP0-BP1 bits to set the part of Flash protected from data change.
Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP1 bits and SRWD bit from data change.
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all
commands except Release from deep power down mode command (RDP) and Read Electronic Signature command
(RES).
P/N: PM1238
5
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 1. Protected Area Sizes
Status bit
BP1BP0
00
01
10
11
Protect level
0 (none)
1 (1 block)
2 (2 blocks)
3 (All)
1Mb
None
Block 1
All
All
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation
of write status register, programming, or erasing in progress.
The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial
Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock
signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is
being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1.
Figure 1. Hold Condition Operation
CS#
SCLK
HOLD#
Hold
Condition
(standard)
Hold
Condition
(non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during
the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of the device.
To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1238
6
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 2. COMMAND DEFINITION
COMMANDWREN
(byte)(write
Enable)
1st06 Hex
2nd
3rd
4th
5th
Actionsets the
(WEL)
write
enable
latch bit
COMMANDSE
(byte)(Sector
Erase)
1st
2nd
3rd
4th
5th
Action
20 Hex
AD1
AD2
AD3
WRDI
(write
disable)
04 Hex
RDID
(read ident-
ification)
9F Hex
RDSR
(read status
register)
05 Hex
WRSR
(write status
register)
01 Hex
READ
(read data)
03 Hex
AD1
AD2
AD3
Fast Read
(fast read
data)
0B Hex
AD1
AD2
AD3
x
reset the
(WEL)
write
enable
latch bit
BE
(Block
Erase)
D8 Hex
AD1
AD2
AD3
output theto read out
manufacturerthe status
ID and 2-byteregister
device ID
to write newn bytes
values to theread out
status registeruntil
CS# goes
high
RDP
(Release
from Deep
Power-down)
AB Hex
RES
(Read
Electronic
ID)
AB Hex
x
x
x
REMS (Read
Electronic
Manufacturer
& Device ID)
90 Hex
x
x
ADD(1)
Output the
manufacturer
ID and device
ID
CE
(Chip
Erase)
60 or
C7 Hex
PP
(Page
Program)
02 Hex
AD1
AD2
AD3
DP
(Deep
Power
Down)
B9 Hex
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) It is not allowed to adopt any other code which is not in the above command definition table.
P/N: PM1238
7
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 3. Memory Organization
Bolck
1
Sector
31
.
.
.
16
15
.
.
.
3
0
2
1
0
Address Range
01F000h
.
.
.
010000h
00F000h
.
.
.
003000h
002000h
001000h
000000h
01FFFFh
.
.
.
010FFFh
00FFFFh
.
.
.
003FFFh
002FFFh
001FFFh
000FFFh
P/N: PM1238
8
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
DEVICE OPERATION
a command is issued, status register should be checked to ensure device is ready for the intended operation.
incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until
next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.
correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next
CS# rising edge.
data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The
difference of SPI mode 0 and mode 3 is shown as Figure 2.
the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence
is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following
instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary;
otherwise, the instruction will be rejected and not executed.
the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and
not affect the current operation of Write Status Register, Program, Erase.
Figure 2.
SPI Modes Supported
CPOLCPHA
SCLK
shift inshift out
(SPI mode 0)00
(SPI mode 3)
11
SCLK
SIMSB
SO
MSB
Note:
CPOL indicates clock polarity of SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which SPI mode is
supported.
P/N: PM1238
9
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
COMMAND DESCRIPTION
(1) Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE,
CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction
setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see
Figure 11)
(2) Write Disable (WRDI)
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure
12)
The WEL bit is reset by following situations:
- Power-up
- Write Disable (WRDI) instruction completion
- Write Status Register (WRSR) instruction completion
- Page Program (PP) instruction completion
- Sector Erase (SE) instruction completion
- Block Erase (BE) instruction completion
- Chip Erase (CE) instruction completion
(3) Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of
second-byte ID is as followings: 11(hex) for MX25L1005.
The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code -> 24-bits ID data out on SO
-> to end RDID operation can use CS# to high at any time during data out. (see Figure. 13)
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of
program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1238
10
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(4) Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)
bit before sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out
on SO (see Figure. 14)
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status
register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress.
When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch.
When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/erase/write
status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept
program/erase/write status register instruction.
BP1, BP0 bits. The Block Protect (BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of
the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect
(BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected
area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions
(only if all Block Protect bits set to 0, the CE instruction can be executed)
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#)
pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal
is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for
execution and the SRWD bit and Block Protect bits (BP1, BP0) are read only.
bit 7
SRWD
Status
Register Write
Protect
1= status
register write
disable
bit 6
0
bit 5
0
bit 4
0
bit 3bit 2
BP1BP0
the level ofthe level of
protectedprotected
blockblock
(note 1)(note 1)
bit 1
WEL
(write enable
latch)
bit 0
WIP
(write in progress
bit)
1=write enable1=write operation
0=not write0=not in write
enableoperation
Note:1. See the table "Protected Area Sizes".
2. The endurance cycles of protect bits are 100,000 cycles; however, the tW time out spec of protect bits is relaxed
as tW = N x 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles on those bits.
P/N: PM1238
11
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(5) Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write
Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR
instruction can change the value of Block Protect (BP1, BP0) bits to define the protected area of memory (as shown in
table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection
(WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data
on SI-> CS# goes high. (see Figure 15)
The WRSR instruction has no effect on b6, b5, b4, b1, b0 of the status register.
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The self-
timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing,
and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.
Table 4. Protection Modes
Mode
Software protection
mode(SPM)
Status register condition
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP1
bits can be changed
WP# and SRWD bit status
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
Memory
The protected area cannot
be programmed or erased.
Hardware protection
mode (HPM)
The SRWD, BP0-BP1 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area cannot
be programmed or erased.
Note:
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 1.
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).
Software Protected Mode (SPM):
-When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values
of SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM).
-When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP1,
BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM)
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been
P/N: PM1238
12
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
-When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode
(HPM). The data of the protected area is protected by software protected mode by BP1, BP0 and hardware protected
mode by the WP# to against data modification.
Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the
WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software
protected mode via BP1, BP0.
(6) Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling
edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically
increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single
READ instruction. The address counter rolls over to 0 when the highest address has been reached.
The sequence of issuing READ instruction is: CS# goes low-> sending READ instruction code-> 3-byte address on SI
-> data out on SO-> to end READ operation can use CS# to high at any time during data out. (see Figure. 16)
(7) Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of
each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location.
The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory
can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has
been reached.
The sequence of issuing FAST_READ instruction is: CS# goes low-> sending FAST_READ instruction code-> 3-byte
address on SI-> 1-dummy byte address on SI->data out on SO-> to end FAST_READ operation can use CS# to high at
any time during data out. (see Figure. 17)
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
(8) Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector
(see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low -> sending SE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 19)
P/N: PM1238
13
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.
(9) Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block
(see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low -> sending BE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 20)
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.
(10) Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table
3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth
of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low-> sending CE instruction code-> CS# goes high. (see Figure
20)
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and
sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP1,
BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP1, BP0 all set to "0".
(11) Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant
address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed
from the start address if the same page (from the address whose 8 least significant address bits (A7-A0) are all 0). The
CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest
eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes
are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be
disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page
without effect on other address of the same page.
The sequence of issuing PP instruction is: CS# goes low-> sending PP instruction code-> 3-byte address on SI-> at least
1-byte on data on SI-> CS# goes high. (see Figure 18)
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
P/N: PM1238
14
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and
sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
(12) Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the
Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the
Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/
Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's
different from Standby mode.
The sequence of issuing DP instruction is: CS# goes low-> sending DP instruction code-> CS# goes high. (see Figure 22)
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and
Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power-down, the deep
power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP
instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in);
otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before
entering the Deep Power-down mode and reducing the current to ISB2.
(13) Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select
(CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-
down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down
mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High
for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so
that it can receive, decode and execute instructions.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID
Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please
use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except
the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in
progress.
The sequence is shown as Figure 23,24.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if
continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-
down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode,
there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby
mode, the device waits to be selected, so it can be receive, decode, and execute instruction.
The RDP instruction is for releasing from Deep Power Down Mode.
P/N: PM1238
15
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(14) Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC
assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated
by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0).
After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most
significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If
the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID.
The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed
by driving CS# high.
Table of ID Definitions:
RDID Command
RES Command
REMS Commandmanufacturer ID
C2
manufacturer ID
C2
memory type
20
electronic ID
10
device ID
10
memory density
11
P/N: PM1238
16
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
POWER-ON STATE
The device is at below states when power-up:
- Standby mode ( please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during
power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and the flash device
has no response to any command.
For further protection on the device, after VCC reaching the VWI level, a tPUW time delay is required before the device
is fully accessible for commands like write enable(WREN), page program (PP), sector erase(SE), chip erase(CE) and write
status register(WRSR). If the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The
write, erase, and program command should be sent after the below time delay:
- tPUW after VCC reached VWI level
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of tPUW
has not passed.
Please refer to the figure of "power-up timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is
recommended.(generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to any
command. The data corruption might occur during the stage while a write, program, erase cycle is in progress.
P/N: PM1238
17
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
RATINGVALUE
Industrial grade
0°C to 70°C for
Commercial grade
Storage Temperature
Applied Input Voltage
Applied Output Voltage
VCC to Ground Potential
-55°C to 125°C
-0.5V to 4.6V
-0.5V to 4.6V
-0.5V to 4.6V
Ambient Operating Temperature-40°C to 85°C for
NOTICE:
es greater than those listed under ABSOLUTE
MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional
operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended period may affect reliability.
ications contained within the following tables are
subject to change.
voltage transitions, all pins may overshoot to
4.6V or -0.5V for period up to 20ns.
input and output pins may overshoot to VCC+0.5V
while VCC+0.5V is smaller than or equal to 4.6V.
Figure m Negative Overshoot Waveform
20ns
Figure 4. Maximum Positive Overshoot Waveform
0V
-0.5V
4.6V
3.6V
20ns
CAPACITANCE TA = 25
°
C, f = 1.0 MHz
SYMBOL
CIN
COUT
PARAMETER
Input Capacitance
Output Capacitance
.
6
8
UNIT
pF
pF
CONDITIONS
VIN = 0V
VOUT = 0V
P/N: PM1238
18
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing referance level
0.8VCC
0.7VCC
0.3VCC
AC
Measurement
Level
Output timing referance level
0.5VCC
0.2VCC
Note: Input pulse rise and fall time are <5ns
Figure 6. OUTPUT LOADING
DEVICE UNDER
TEST
2.7K ohm
+3.3V
CL
6.2K ohmDIODES=IN3064
OR EQUIVALENT
CL=30pF Including jig capacitance
(CL=15pF Including jig capacitance for 85MHz)
P/N: PM1238
19
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 5. DC CHARACTERISTICS (Temperature = -40
°
C to 85
°
C for Industrial grade, Temperature =
0
°
C to 70
°
C for Commercial grade, VCC = 2.7V ~ 3.6V)
SYMBOLPARAMETER
ILI
ILO
ISB1
ISB2
ICC1
Input Load
Current
Output Leakage
Current
VCC Standby
Current
Deep Power-down
Current
VCC Read112
8
4
ICC2
ICC3
VCC Program
Current (PP)
VCC Write Status
Register (WRSR)
Current
ICC4
ICC5
VIL
VIH
VOL
VOH
VCC Sector Erase
Current (SE)
VCC Chip Erase
Current (CE)
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High VoltageVCC-0.2
-0.5
0.7VCC
0.3VCC
VCC+0.4
0.4
V
V
V
V
IOL = 1.6mA
IOH = -100uA
115mA
115mAErase in Progress
CS#=VCC
Erase in Progress
CS#=VCC
15mA
115
mA
mA
mA
mA
15uA
110uA
1± 2uA
NOTES
1
± 2uA
TEST CONDITIONS
VCC = VCC Max
VIN = VCC or GND
VCC = VCC Max
VIN = VCC or GND
VIN = VCC or GND
CS# = VCC
VIN = VCC or GND
CS# = VCC
f=85MHz
SCLK=0.1VCC/0.9VCC, SO=Open
f=66MHz
SCLK=0.1VCC/0.9VCC, SO=Open
f=33MHz
SCLK=0.1VCC/0.9VCC, SO=Open
Program in Progress
CS# = VCC
Program status register in progress
CS#=VCC
Notes :
l values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).
l value is calculated by simulation.
P/N: PM1238
20
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 6. AC CHARACTERISTICS (Temperature = -40
°
C to 85
°
C for Industrial grade, Temperature =
0
°
C to 70
°
C for Commercial grade, VCC = 2.7V ~ 3.6V)
Symbol
fSCLK
Alt.
fC
Parameter
Clock Frequency for the following instructions:
FAST_READ, PP, SE, BE, CE, DP, RES,RDP
WREN, WRDI, RDID, RDSR, WRSR
Min.
1KHz
85MHz
(Condition:15pF)
66MHz
(Condition:30pF)
33MHz
ns
ns
V/ns
V/ns
ns
ns
ns
ns
ns
ns
ns
6ns
8ns
6ns
ns
ns
ns
ns
ns
6ns
6ns
ns
ns
3us
3us
1.8us
515ms
1.45ms
60120ms
12s
12s
fRSCLK
tCH(1)
tCL(1)
tCLCH(2)
tCHCL(2)
tSLCH
tCHSL
tDVCH
tCHDX
tCHSH
tSHCH
tSHSL
tSHQZ(2)
tCLQV
tCLQX
tHLCH
tCHHH
tHHCH
tCHHL
tHHQX(2)
tHLQZ(2)
tWHSL(4)
tSHWL(4)
tDP(2)
tRES1(2)
tRES2(2)
tW
tPP
tSE
tBE
tCE
fRClock Frequency for READ instructions
tCLHClock High Time
tCLLClock Low Time
Clock Rise Time (3) (peak to peak)
Clock Fall Time (3) (peak to peak)
tCSSCS# Active Setup Time (relative to SCLK)
CS# Not Active Hold Time (relative to SCLK)
tDSUData In Setup Time
tDHData In Hold Time
CS# Active Hold Time (relative to SCLK)
CS# Not Active Setup Time (relative to SCLK)
tCSHCS# Deselect Time
tDISOutput Disable Time
tVClock Low to Output Valid 30pF
15pF
tHOOutput Hold Time
HOLD# Setup Time (relative to SCLK)
HOLD# Hold Time (relative to SCLK)
HOLD Setup Time (relative to SCLK)
HOLD Hold Time (relative to SCLK)
tLZHOLD to Output Low-Z
tHZHOLD# to Output High-Z
Write Protect Setup Time
Write Protect Hold Time
CS# High to Deep Power-down Mode
CS# High to Standby Mode without Electronic Signature Read
CS# High to Standby Mode with Electronic Signature Read
Write Status Register Cycle Time
Page Program Cycle Time
Sector Erase Cycle Time
Block Erase Cycle Time
Chip Erase Cycle Time
1KHz
7
7
0.1
0.1
5
5
2
5
5
5
100
0
5
5
5
5
20
100
Note:
1. tCH + tCL must be greater than or equal to 1/ fC
2. Value guaranteed by characterization, not 100% tested in production.
3. Expressed as a slew-rate.
4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
5. Test condition is shown as Figure 3.
P/N: PM1238
21
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 7. Power-Up Timing and VWI Threshold
Symbol
tVSL(1)
tPUW(1)
VWI(1)
Parameter
VCC(min) to CS# low
Time delay to Write instruction
Write Inhibit Voltage
Min.
10
1
1.5
Max.
10
2.5
Unit
us
ms
V
Note: 1. These parameters are characterized only.
INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register
contains 00h (all Status Register bits are 0).
P/N: PM1238
22
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 7. Serial Input Timing
tSHSL
CS#
tCHSL
SCLK
tDVCH
tCHDX
SI
MSB
tCLCH
LSB
tCHCL
tSLCHtCHSHtSHCH
SO
High-Z
Figure 8. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
SO
tQLQH
tQHQL
SI
IN
tCLQV
tCLQX
tCLtSHQZ
LSB
P/N: PM1238
23
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 9. Hold Timing
CS#
tHLCH
tCHHL
SCLK
tCHHH
tHLQZ
SO
tHHQX
tHHCH
HOLD#
* SI is "don't care" during HOLD operation.
Figure 10. WP# Disable Setup and Hold Timing during WRSR when SRWD=1
WP#
tWHSL
CS#
0
SCLK
11121314
tSHWL
15
SI
01
SO
High-Z
P/N: PM1238
24
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 11. Write Enable (WREN) Sequence (Command 06)
CS#
0
SCLK
Command
SI
06
High-Z
1234567
SO
Figure 12. Write Disable (WRDI) Sequence (Command 04)
CS#
0
SCLK
Command
SI
04
High-Z
1234567
SO
Figure 13. Read Identification (RDID) Sequence (Command 9F)
CS#
0
SCLK
Command
SI
9F
Manufacturer Identification
SO
High-Z
7
MSB
65321
Device Identification
3210
1234567891
1617 1828293031
0151413
MSB
P/N: PM1238
25
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 14. Read Status Register (RDSR) Sequence (Command 05)
CS#
0
SCLK
command
SI
High-Z
SO
7
MSB
6543210
7
MSB
6543210
7
05
Status Register Out
Status Register Out
1234567891
Figure 15. Write Status Register (WRSR) Sequence (Command 01)
CS#
0
SCLK
command
Status
Register In
7
MSB
65432
1
0
1234567891
SI
01
SO
High-Z
Figure 16. Read Data Bytes (READ) Sequence (Command 03)
CS#
0
SCLK
command
24-Bit Address
3435
363738
39
SI
03
232221
MSB
3210
Data Out 1
76543
2
1
0
Data Out 2
7
High-Z
SO
MSB
P/N: PM1238
26
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B)
CS#
0
SCLK
Command
24 BIT ADDRESS
28293031
SI
0B
High-Z
2322213210
SO
CS#
323334
35
3637383946
47
SCLK
Dummy Byte
SI
765432
1
0
DATA OUT 1
DATA OUT 2
1
0
7
MSB
6543210
7
MSB
SO
7
MSB
65432
P/N: PM1238
27
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 18. Page Program (PP) Sequence (Command 02)
CS#
0
SCLK
Command
24-Bit AddressData Byte 1
3435
363738
39
SI
02
232221
MSB
3210
765432
1
0
MSB
CS#
2
0
7
2
2
0
7
3
2
0
7
4
2
0
7
5
2
0
7
6
2
0
7
7
2
0
7
8
464748495
SCLK
Data Byte 2Data Byte 3Data Byte 256
SI
765432
1
07
MSB
65432
1
0
765432
1
0
MSBMSB
P/N: PM1238
2
0
7
9
REV. 1.9, AUG. 14, 2008
28
元器件交易网
MX25L1005
Figure 19. Sector Erase (SE) Sequence (Command 20)
CS#
0
SCLK
Command
24 Bit Address
3031
SI
20
7
MSB
6210
Note: SE command is 20(hex).
Figure 20. Block Erase (BE) Sequence (Command 52 or D8)
CS#
0
SCLK
Command
24 Bit Address
3031
SI
52 or D8
2322
MSB
2
1
0
Note: BE command is 52 or D8(hex).
P/N: PM1238
29
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 21. Chip Erase (CE) Sequence (Command 60 or C7)
CS#
0
SCLK
Command
SI
60 or C7
1234567
Note: CE command is 60(hex) or C7(hex).
Figure 22. Deep Power-down (DP) Sequence (Command B9)
CS#
0
SCLK
Command
SI
B9
1234567
t
DP
Stand-by Mode
Deep Power-down Mode
Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Sequence
(Command AB)
CS#
0
SCLK
Command
3 Dummy Bytes
t
RES2
3435
363738
SI
AB
High-Z
232221
MSB
3210
Electronic Signature Out
7
MSB
Deep Power-down Mode
Stand-by Mode
65432
1
0
SO
P/N: PM1238
30
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 24. Release from Deep Power-down (RDP) Sequence (Command AB)
CS#
0
SCLK
Command
SI
AB
High-Z
SO
1234567
t
RES1
Deep Power-down Mode
Stand-by Mode
Figure 25. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)
CS#
0
SCLK
Command
2 Dummy Bytes
SI
90
High-Z
1514133210
SO
CS#
28293031
323334
35
3637383946
47
SCLK
ADD (1)
SI
765432
1
0
Manufacturer ID
Device ID
0
7
MSB
6543210
7
MSB
SO
X
7
MSB
65432
1
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1238
31
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 26. Power-up Timing
V
CC
V
CC
(max)
Program, Erase and Write Commands are Ignored
Chip Selection is Not Allowed
V
CC
(min)
Reset State
of the
Flash
V
WI
tPUW
tVSL
Read Command is
allowed
Device is fully
accessible
time
P/N: PM1238
32
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
RECOMMENDED OPERATING CONDITIONS
At Device Power-Up
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If
the timing in the figure is ignored, the device may not operate correctly.
VCC(min)
VCC
GND
tVR
tSHSL
CS#
tCHSLtSLCHtCHSHtSHCH
SCLK
tDVCH
tCHDXtCLCH
LSB IN
tCHCL
SI
MSB IN
SO
High Impedance
Figure A. AC Timing at Device Power-Up
Symbol
tVR
Parameter
VCC Rise Time
Notes
1
Min.
0.5
Max.
500000
Unit
us/V
Notes :
d, not 100% tested.
AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC
CHARACTERISTICS" table.
P/N: PM1238
33
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ERASE AND PROGRAMMING PERFORMANCE
PARAMETER
Write Status Register Cycle Time
Sector erase Time
Block erase Time
Chip Erase Time
Page Program Time
Erase/Program Cycle100,000
. (1)
5
60
1
1
1.4
Max. (2)
15
120
2
2
5
UNIT
ms
ms
s
s
ms
cycles
Note:
l program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.
worst conditions of 70°C and 3.0V.
-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with
90% confidence level.
LATCH-UP CHARACTERISTICS
MIN.
Input Voltage with respect to GND on ACC
Input Voltage with respect to GND on all power pins, SI, CS#
Input Voltage with respect to GND on SO
Current
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.
-1.0V
-1.0V
-1.0V
-100mA
MAX.
12.5V
2 VCCmax
VCC + 1.0V
+100mA
P/N: PM1238
34
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ORDERING INFORMATION
PART
(MHz)
MX25L1005MC-12G
MX25L1005MI-12G
MX25L1005ZUI-12G
85
85
85
OPERATING
(mA)
12
12
12
STANDBY
(uA)
10
10
10
0~70°C
-40~85°C
-40~85°C
8-SOP
(150mil)
8-SOP
(150mil)
8-USON
(2x3x0.6mm)
Pb-free
Pb-free
Pb-free
TemperaturePACKAGERemark
CURRENT T MAX.
P/N: PM1238
35
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PART NAME DESCRIPTION
MX25L1005MC12G
OPTION:
G: Pb-free
SPEED:
12: 85MHz
TEMPERATURE RANGE:
C: Commercial (0˚C to 70˚C)
I: Industrial (-40˚C to 85˚C)
PACKAGE:
M: 150mil 8-SOP
ZU: 8-USON (2x3x0.6mm)
DENSITY & MODE:
1005: 1Mb
TYPE:
L: 3V
DEVICE:
25: Serial Flash
P/N: PM1238
36
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PACKAGE INFORMATION
P/N: PM1238
37
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
P/N: PM1238
38
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
REVISION HISTORY
Revision ption
1.01. Modified read current:6mA@85MHz/4mA@66MHz/2mA@33MHz
--> 12mA@85MHz/8mA@66MHz/4mA@33MHz
2. Modified tSE:90ms(typ)/270ms(max)-->60ms(typ)/120ms(max) ;
tBE:3s(max)-->2s(max); tCE:2.5s(typ)/6s(max)-->1s(typ)/2s(max)
3. Added description about Pb-free device is RoHS compliant
4. Removed "Advanced Information" title
1.11. Format change
2. Supplemented the footnote for tW of protect/unprotect bits
1.21. Added statement
1.31. Defined min. clock frequency of fSCLK & fRSCLK as 1KHz
1.41. Added 8-land USON package
1.51. Removed 8-land SON package and order information
1.61. Removed 8-USON(4x4mm) package and order information
1.71. Added 8-land USON(2x3mm) package and order information
1.81. Added 8-land USON (2x3mm) package as "advanced information"
2. Removed tCLQV frequency condition
1.91. Removed wrong Block Protect Bit, BP2
Page
P1,19,34
P1,20,33
P1
P1
All
P10
P39
P21
P2,3,35,36,39
P2,3,35,36
P2,3,35,36
P2,3,35,36,38
P2,3,35,36
P21
P5,11
Date
SEP/28/2005
JUN/08/2006
NOV/06/2006
NOV/30/2006
JAN/22/2008
MAR/24/2008
APR/07/2008
MAY/27/2008
JUL/04/2008
AUG/14/2008
P/N: PM1238
39
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which the failure
of a single component could cause death, personal injury, severe physical damage, or other substantial harm to persons
or property, such as life-support systems, high temperature automotive, medical, aircraft and military application. Macronix
and its suppliers will not be liable to you and/or any third party for any claims, injuries or damages that may be incurred due
to use of Macronix's products in the prohibited applications.
M
ACRONIX
I
NTERNATIONAL
C
O.,
L
TD.
Headquarters
Macronix, Int'l Co., Ltd.
16, Li-Hsin Road, Science Park,
Hsinchu, Taiwan, R.O.C.
Tel: +886-3-5786688
Fax: +886-3-5632888
Taipei Office
Macronix, Int'l Co., Ltd.
19F, 4, Min-Chuan E. Road, Sec. 3,
Taipei, Taiwan, R.O.C.
Tel: +886-2-2509-3300
Fax: +886-2-2509-2200
Macronix America, Inc.
680 North McCarthy Blvd.
Milpitas, CA 95035, U.S.A.
Tel: +1-408-262-8887
Fax: +1-408-262-8810
Email: merica@
Macronix Europe N.V.
Koningin Astridlaan 59, Bus 1
1780 Wemmel Belgium
Tel: +32-2-456-8020
Fax: +32-2-456-8021
Macronix Japan Cayman Islands Ltd.
NKF Bldg. 5F, 1-2 Higashida-cho,
Kawasaki-ku Kawasaki-shi,
Kanagawa Pref. 210-0005, Japan
Tel: +81-44-246-9100
Fax: +81-44-246-9105
Singapore Office
Macronix Pte. Ltd.
1 Marine Parade Central
#11-03 Parkway Centre
Singapore 449408
Tel: +65-6346-5505
Fax: +65-6348-8096
Macronix (Hong Kong) Co., Limited.
702-703, 7/F, Building 9,
Hong Kong Science Park,
5 Science Park West Avenue, Sha Tin, N.T.
Tel: +86-852-2607-4289
Fax: +86-852-2607-4229
http : //
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
40
2024年10月26日发(作者:钭梦竹)
元器件交易网
MX25L1005
1M-BIT [x 1] CMOS SERIAL FLASH
FEATURES
GENERAL
• Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3
• 1,048,576 x 1 bit structure
• 32 Equal Sectors with 4K byte each
- Any Sector can be erased individually
•2 Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
• Low Vcc write inhibit is from 1.5V to 2.5V
PERFORMANCE
• High Performance
- Fast access time: 85MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load)
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)
- Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/block (64K-byte per
block)
• Low Power Consumption
- Low active read current: 12mA(max.) at 85MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz
- Low active programming current: 15mA (max.)
- Low active erase current: 15mA (max.)
- Low standby current: 10uA (max.)
- Deep power-down mode 1uA (typical)
• Minimum 100,000 erase/program cycles
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
•Block Lock protection
- The BP0~BP1 status bit defines the size of the area to be software protected against Program and Erase instructions.
• Auto Erase and Auto Program Algorithm
-
Automatically erases and verifies data at selected sector
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first)
• Status Register Feature
• Electronic Identification
-
JEDEC 2-byte Device ID
- RES command, 1-byte Device ID
P/N: PM1238
1
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
HARDWARE FEATURES
• SCLK Input
-
Serial clock input
• SI Input
-
Serial Data Input
• SO Output
-
Serial Data Output
• WP# pin
-
Hardware write protection
• HOLD# pin
-
pause the chip without diselecting the chip
• PACKAGE
-
8-pin SOP (150mil)
- 8-land USON (2x3x0.6mm)
*
- All Pb-free devices are RoHS Compliant
GENERAL DESCRIPTION
MX25L1005 is a CMOS 1,048,576 bit serial Flash memory, which is configured as 131,072 x 8 MX25L1005
feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals
are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device is enabled by
CS# input.
The MX25L1005 provide sequential read operation on whole chip.
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified
page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase
command is executes on chip or sector(4K-bytes) or block(64K-bytes).
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 10uA DC current.
The MX25L1005 utilize MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000 program
and erase cycles.
*
Advanced Information
P/N: PM1238
2
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PIN CONFIGURATIONS
8-PIN SOP (150mil)
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
8-LAND USON (2x3mm)
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
PIN DESCRIPTION
SYMBOL
CS#
SI
SO
SCLK
HOLD#
VCC
GND
DESCRIPTION
Chip Select
Serial Data Input
Serial Data Output
Clock Input
Hold, to pause the device without
deselecting the device
+ 3.3V Power Supply
Ground
P/N: PM1238
3
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
BLOCK DIAGRAM
Address
Generator
X-Decoder
Memory Array
Page Buffer
SI
Data
Register
Y-Decoder
SRAM
Buffer
Sense
Amplifier
HV
Generator
CS#
Mode
Logic
State
Machine
Output
Buffer
SO
SCLKClock Generator
P/N: PM1238
4
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
DATA PROTECTION
The MX25L1005 is designed to offer protection against accidental erasure or programming caused by spurious system level
signals that may exist during power transition. During power up the device automatically resets the state machine in the
Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful
completion of specific command sequences. The device also incorporates several features to prevent inadvertent write
cycles resulting from VCC power-up and power-down transition or system noise.
•Power-on reset and tPUW: to avoid sudden power switch by system power supply transition, the power-on reset and
tPUW (internal timer) may protect the Flash.
• Valid command length checking: The command length will be checked whether it is at byte base and completed on byte
boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other
command to change data. The WEL bit will return to reset stage under following situation:
- Power-up
- Write Disable (WRDI) command completion
- Write Status Register (WRSR) command completion
- Page Program (PP) command completion
- Sector Erase (SE) command completion
- Block Erase (BE) command completion
- Chip Erase (CE) command completion
•
•
•
Software Protection Mode (SPM): by using BP0-BP1 bits to set the part of Flash protected from data change.
Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP1 bits and SRWD bit from data change.
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all
commands except Release from deep power down mode command (RDP) and Read Electronic Signature command
(RES).
P/N: PM1238
5
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 1. Protected Area Sizes
Status bit
BP1BP0
00
01
10
11
Protect level
0 (none)
1 (1 block)
2 (2 blocks)
3 (All)
1Mb
None
Block 1
All
All
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation
of write status register, programming, or erasing in progress.
The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial
Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock
signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is
being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1.
Figure 1. Hold Condition Operation
CS#
SCLK
HOLD#
Hold
Condition
(standard)
Hold
Condition
(non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during
the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of the device.
To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1238
6
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 2. COMMAND DEFINITION
COMMANDWREN
(byte)(write
Enable)
1st06 Hex
2nd
3rd
4th
5th
Actionsets the
(WEL)
write
enable
latch bit
COMMANDSE
(byte)(Sector
Erase)
1st
2nd
3rd
4th
5th
Action
20 Hex
AD1
AD2
AD3
WRDI
(write
disable)
04 Hex
RDID
(read ident-
ification)
9F Hex
RDSR
(read status
register)
05 Hex
WRSR
(write status
register)
01 Hex
READ
(read data)
03 Hex
AD1
AD2
AD3
Fast Read
(fast read
data)
0B Hex
AD1
AD2
AD3
x
reset the
(WEL)
write
enable
latch bit
BE
(Block
Erase)
D8 Hex
AD1
AD2
AD3
output theto read out
manufacturerthe status
ID and 2-byteregister
device ID
to write newn bytes
values to theread out
status registeruntil
CS# goes
high
RDP
(Release
from Deep
Power-down)
AB Hex
RES
(Read
Electronic
ID)
AB Hex
x
x
x
REMS (Read
Electronic
Manufacturer
& Device ID)
90 Hex
x
x
ADD(1)
Output the
manufacturer
ID and device
ID
CE
(Chip
Erase)
60 or
C7 Hex
PP
(Page
Program)
02 Hex
AD1
AD2
AD3
DP
(Deep
Power
Down)
B9 Hex
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) It is not allowed to adopt any other code which is not in the above command definition table.
P/N: PM1238
7
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 3. Memory Organization
Bolck
1
Sector
31
.
.
.
16
15
.
.
.
3
0
2
1
0
Address Range
01F000h
.
.
.
010000h
00F000h
.
.
.
003000h
002000h
001000h
000000h
01FFFFh
.
.
.
010FFFh
00FFFFh
.
.
.
003FFFh
002FFFh
001FFFh
000FFFh
P/N: PM1238
8
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
DEVICE OPERATION
a command is issued, status register should be checked to ensure device is ready for the intended operation.
incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until
next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.
correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next
CS# rising edge.
data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The
difference of SPI mode 0 and mode 3 is shown as Figure 2.
the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence
is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following
instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary;
otherwise, the instruction will be rejected and not executed.
the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and
not affect the current operation of Write Status Register, Program, Erase.
Figure 2.
SPI Modes Supported
CPOLCPHA
SCLK
shift inshift out
(SPI mode 0)00
(SPI mode 3)
11
SCLK
SIMSB
SO
MSB
Note:
CPOL indicates clock polarity of SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which SPI mode is
supported.
P/N: PM1238
9
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
COMMAND DESCRIPTION
(1) Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE,
CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction
setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see
Figure 11)
(2) Write Disable (WRDI)
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure
12)
The WEL bit is reset by following situations:
- Power-up
- Write Disable (WRDI) instruction completion
- Write Status Register (WRSR) instruction completion
- Page Program (PP) instruction completion
- Sector Erase (SE) instruction completion
- Block Erase (BE) instruction completion
- Chip Erase (CE) instruction completion
(3) Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of
second-byte ID is as followings: 11(hex) for MX25L1005.
The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code -> 24-bits ID data out on SO
-> to end RDID operation can use CS# to high at any time during data out. (see Figure. 13)
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of
program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1238
10
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(4) Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)
bit before sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out
on SO (see Figure. 14)
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status
register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress.
When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch.
When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/erase/write
status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept
program/erase/write status register instruction.
BP1, BP0 bits. The Block Protect (BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of
the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect
(BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected
area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions
(only if all Block Protect bits set to 0, the CE instruction can be executed)
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#)
pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal
is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for
execution and the SRWD bit and Block Protect bits (BP1, BP0) are read only.
bit 7
SRWD
Status
Register Write
Protect
1= status
register write
disable
bit 6
0
bit 5
0
bit 4
0
bit 3bit 2
BP1BP0
the level ofthe level of
protectedprotected
blockblock
(note 1)(note 1)
bit 1
WEL
(write enable
latch)
bit 0
WIP
(write in progress
bit)
1=write enable1=write operation
0=not write0=not in write
enableoperation
Note:1. See the table "Protected Area Sizes".
2. The endurance cycles of protect bits are 100,000 cycles; however, the tW time out spec of protect bits is relaxed
as tW = N x 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles on those bits.
P/N: PM1238
11
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(5) Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write
Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR
instruction can change the value of Block Protect (BP1, BP0) bits to define the protected area of memory (as shown in
table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection
(WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data
on SI-> CS# goes high. (see Figure 15)
The WRSR instruction has no effect on b6, b5, b4, b1, b0 of the status register.
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The self-
timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing,
and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.
Table 4. Protection Modes
Mode
Software protection
mode(SPM)
Status register condition
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP1
bits can be changed
WP# and SRWD bit status
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
Memory
The protected area cannot
be programmed or erased.
Hardware protection
mode (HPM)
The SRWD, BP0-BP1 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area cannot
be programmed or erased.
Note:
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 1.
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).
Software Protected Mode (SPM):
-When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values
of SRWD, BP1, BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM).
-When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP1,
BP0. The protected area, which is defined by BP1, BP0, is at software protected mode (SPM)
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been
P/N: PM1238
12
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
-When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode
(HPM). The data of the protected area is protected by software protected mode by BP1, BP0 and hardware protected
mode by the WP# to against data modification.
Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the
WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software
protected mode via BP1, BP0.
(6) Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling
edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically
increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single
READ instruction. The address counter rolls over to 0 when the highest address has been reached.
The sequence of issuing READ instruction is: CS# goes low-> sending READ instruction code-> 3-byte address on SI
-> data out on SO-> to end READ operation can use CS# to high at any time during data out. (see Figure. 16)
(7) Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of
each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location.
The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory
can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has
been reached.
The sequence of issuing FAST_READ instruction is: CS# goes low-> sending FAST_READ instruction code-> 3-byte
address on SI-> 1-dummy byte address on SI->data out on SO-> to end FAST_READ operation can use CS# to high at
any time during data out. (see Figure. 17)
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
(8) Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector
(see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low -> sending SE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 19)
P/N: PM1238
13
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.
(9) Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block
(see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low -> sending BE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 20)
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.
(10) Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table
3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth
of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low-> sending CE instruction code-> CS# goes high. (see Figure
20)
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and
sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP1,
BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP1, BP0 all set to "0".
(11) Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant
address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed
from the start address if the same page (from the address whose 8 least significant address bits (A7-A0) are all 0). The
CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest
eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes
are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be
disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page
without effect on other address of the same page.
The sequence of issuing PP instruction is: CS# goes low-> sending PP instruction code-> 3-byte address on SI-> at least
1-byte on data on SI-> CS# goes high. (see Figure 18)
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
P/N: PM1238
14
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and
sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
(12) Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the
Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the
Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/
Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's
different from Standby mode.
The sequence of issuing DP instruction is: CS# goes low-> sending DP instruction code-> CS# goes high. (see Figure 22)
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and
Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power-down, the deep
power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP
instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in);
otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before
entering the Deep Power-down mode and reducing the current to ISB2.
(13) Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select
(CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-
down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down
mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High
for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so
that it can receive, decode and execute instructions.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID
Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please
use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except
the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in
progress.
The sequence is shown as Figure 23,24.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if
continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-
down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode,
there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby
mode, the device waits to be selected, so it can be receive, decode, and execute instruction.
The RDP instruction is for releasing from Deep Power Down Mode.
P/N: PM1238
15
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
(14) Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC
assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated
by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0).
After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most
significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If
the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID.
The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed
by driving CS# high.
Table of ID Definitions:
RDID Command
RES Command
REMS Commandmanufacturer ID
C2
manufacturer ID
C2
memory type
20
electronic ID
10
device ID
10
memory density
11
P/N: PM1238
16
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
POWER-ON STATE
The device is at below states when power-up:
- Standby mode ( please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during
power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and the flash device
has no response to any command.
For further protection on the device, after VCC reaching the VWI level, a tPUW time delay is required before the device
is fully accessible for commands like write enable(WREN), page program (PP), sector erase(SE), chip erase(CE) and write
status register(WRSR). If the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The
write, erase, and program command should be sent after the below time delay:
- tPUW after VCC reached VWI level
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of tPUW
has not passed.
Please refer to the figure of "power-up timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is
recommended.(generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to any
command. The data corruption might occur during the stage while a write, program, erase cycle is in progress.
P/N: PM1238
17
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
RATINGVALUE
Industrial grade
0°C to 70°C for
Commercial grade
Storage Temperature
Applied Input Voltage
Applied Output Voltage
VCC to Ground Potential
-55°C to 125°C
-0.5V to 4.6V
-0.5V to 4.6V
-0.5V to 4.6V
Ambient Operating Temperature-40°C to 85°C for
NOTICE:
es greater than those listed under ABSOLUTE
MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional
operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended period may affect reliability.
ications contained within the following tables are
subject to change.
voltage transitions, all pins may overshoot to
4.6V or -0.5V for period up to 20ns.
input and output pins may overshoot to VCC+0.5V
while VCC+0.5V is smaller than or equal to 4.6V.
Figure m Negative Overshoot Waveform
20ns
Figure 4. Maximum Positive Overshoot Waveform
0V
-0.5V
4.6V
3.6V
20ns
CAPACITANCE TA = 25
°
C, f = 1.0 MHz
SYMBOL
CIN
COUT
PARAMETER
Input Capacitance
Output Capacitance
.
6
8
UNIT
pF
pF
CONDITIONS
VIN = 0V
VOUT = 0V
P/N: PM1238
18
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing referance level
0.8VCC
0.7VCC
0.3VCC
AC
Measurement
Level
Output timing referance level
0.5VCC
0.2VCC
Note: Input pulse rise and fall time are <5ns
Figure 6. OUTPUT LOADING
DEVICE UNDER
TEST
2.7K ohm
+3.3V
CL
6.2K ohmDIODES=IN3064
OR EQUIVALENT
CL=30pF Including jig capacitance
(CL=15pF Including jig capacitance for 85MHz)
P/N: PM1238
19
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 5. DC CHARACTERISTICS (Temperature = -40
°
C to 85
°
C for Industrial grade, Temperature =
0
°
C to 70
°
C for Commercial grade, VCC = 2.7V ~ 3.6V)
SYMBOLPARAMETER
ILI
ILO
ISB1
ISB2
ICC1
Input Load
Current
Output Leakage
Current
VCC Standby
Current
Deep Power-down
Current
VCC Read112
8
4
ICC2
ICC3
VCC Program
Current (PP)
VCC Write Status
Register (WRSR)
Current
ICC4
ICC5
VIL
VIH
VOL
VOH
VCC Sector Erase
Current (SE)
VCC Chip Erase
Current (CE)
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High VoltageVCC-0.2
-0.5
0.7VCC
0.3VCC
VCC+0.4
0.4
V
V
V
V
IOL = 1.6mA
IOH = -100uA
115mA
115mAErase in Progress
CS#=VCC
Erase in Progress
CS#=VCC
15mA
115
mA
mA
mA
mA
15uA
110uA
1± 2uA
NOTES
1
± 2uA
TEST CONDITIONS
VCC = VCC Max
VIN = VCC or GND
VCC = VCC Max
VIN = VCC or GND
VIN = VCC or GND
CS# = VCC
VIN = VCC or GND
CS# = VCC
f=85MHz
SCLK=0.1VCC/0.9VCC, SO=Open
f=66MHz
SCLK=0.1VCC/0.9VCC, SO=Open
f=33MHz
SCLK=0.1VCC/0.9VCC, SO=Open
Program in Progress
CS# = VCC
Program status register in progress
CS#=VCC
Notes :
l values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).
l value is calculated by simulation.
P/N: PM1238
20
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 6. AC CHARACTERISTICS (Temperature = -40
°
C to 85
°
C for Industrial grade, Temperature =
0
°
C to 70
°
C for Commercial grade, VCC = 2.7V ~ 3.6V)
Symbol
fSCLK
Alt.
fC
Parameter
Clock Frequency for the following instructions:
FAST_READ, PP, SE, BE, CE, DP, RES,RDP
WREN, WRDI, RDID, RDSR, WRSR
Min.
1KHz
85MHz
(Condition:15pF)
66MHz
(Condition:30pF)
33MHz
ns
ns
V/ns
V/ns
ns
ns
ns
ns
ns
ns
ns
6ns
8ns
6ns
ns
ns
ns
ns
ns
6ns
6ns
ns
ns
3us
3us
1.8us
515ms
1.45ms
60120ms
12s
12s
fRSCLK
tCH(1)
tCL(1)
tCLCH(2)
tCHCL(2)
tSLCH
tCHSL
tDVCH
tCHDX
tCHSH
tSHCH
tSHSL
tSHQZ(2)
tCLQV
tCLQX
tHLCH
tCHHH
tHHCH
tCHHL
tHHQX(2)
tHLQZ(2)
tWHSL(4)
tSHWL(4)
tDP(2)
tRES1(2)
tRES2(2)
tW
tPP
tSE
tBE
tCE
fRClock Frequency for READ instructions
tCLHClock High Time
tCLLClock Low Time
Clock Rise Time (3) (peak to peak)
Clock Fall Time (3) (peak to peak)
tCSSCS# Active Setup Time (relative to SCLK)
CS# Not Active Hold Time (relative to SCLK)
tDSUData In Setup Time
tDHData In Hold Time
CS# Active Hold Time (relative to SCLK)
CS# Not Active Setup Time (relative to SCLK)
tCSHCS# Deselect Time
tDISOutput Disable Time
tVClock Low to Output Valid 30pF
15pF
tHOOutput Hold Time
HOLD# Setup Time (relative to SCLK)
HOLD# Hold Time (relative to SCLK)
HOLD Setup Time (relative to SCLK)
HOLD Hold Time (relative to SCLK)
tLZHOLD to Output Low-Z
tHZHOLD# to Output High-Z
Write Protect Setup Time
Write Protect Hold Time
CS# High to Deep Power-down Mode
CS# High to Standby Mode without Electronic Signature Read
CS# High to Standby Mode with Electronic Signature Read
Write Status Register Cycle Time
Page Program Cycle Time
Sector Erase Cycle Time
Block Erase Cycle Time
Chip Erase Cycle Time
1KHz
7
7
0.1
0.1
5
5
2
5
5
5
100
0
5
5
5
5
20
100
Note:
1. tCH + tCL must be greater than or equal to 1/ fC
2. Value guaranteed by characterization, not 100% tested in production.
3. Expressed as a slew-rate.
4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
5. Test condition is shown as Figure 3.
P/N: PM1238
21
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Table 7. Power-Up Timing and VWI Threshold
Symbol
tVSL(1)
tPUW(1)
VWI(1)
Parameter
VCC(min) to CS# low
Time delay to Write instruction
Write Inhibit Voltage
Min.
10
1
1.5
Max.
10
2.5
Unit
us
ms
V
Note: 1. These parameters are characterized only.
INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register
contains 00h (all Status Register bits are 0).
P/N: PM1238
22
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 7. Serial Input Timing
tSHSL
CS#
tCHSL
SCLK
tDVCH
tCHDX
SI
MSB
tCLCH
LSB
tCHCL
tSLCHtCHSHtSHCH
SO
High-Z
Figure 8. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
SO
tQLQH
tQHQL
SI
IN
tCLQV
tCLQX
tCLtSHQZ
LSB
P/N: PM1238
23
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 9. Hold Timing
CS#
tHLCH
tCHHL
SCLK
tCHHH
tHLQZ
SO
tHHQX
tHHCH
HOLD#
* SI is "don't care" during HOLD operation.
Figure 10. WP# Disable Setup and Hold Timing during WRSR when SRWD=1
WP#
tWHSL
CS#
0
SCLK
11121314
tSHWL
15
SI
01
SO
High-Z
P/N: PM1238
24
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 11. Write Enable (WREN) Sequence (Command 06)
CS#
0
SCLK
Command
SI
06
High-Z
1234567
SO
Figure 12. Write Disable (WRDI) Sequence (Command 04)
CS#
0
SCLK
Command
SI
04
High-Z
1234567
SO
Figure 13. Read Identification (RDID) Sequence (Command 9F)
CS#
0
SCLK
Command
SI
9F
Manufacturer Identification
SO
High-Z
7
MSB
65321
Device Identification
3210
1234567891
1617 1828293031
0151413
MSB
P/N: PM1238
25
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 14. Read Status Register (RDSR) Sequence (Command 05)
CS#
0
SCLK
command
SI
High-Z
SO
7
MSB
6543210
7
MSB
6543210
7
05
Status Register Out
Status Register Out
1234567891
Figure 15. Write Status Register (WRSR) Sequence (Command 01)
CS#
0
SCLK
command
Status
Register In
7
MSB
65432
1
0
1234567891
SI
01
SO
High-Z
Figure 16. Read Data Bytes (READ) Sequence (Command 03)
CS#
0
SCLK
command
24-Bit Address
3435
363738
39
SI
03
232221
MSB
3210
Data Out 1
76543
2
1
0
Data Out 2
7
High-Z
SO
MSB
P/N: PM1238
26
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B)
CS#
0
SCLK
Command
24 BIT ADDRESS
28293031
SI
0B
High-Z
2322213210
SO
CS#
323334
35
3637383946
47
SCLK
Dummy Byte
SI
765432
1
0
DATA OUT 1
DATA OUT 2
1
0
7
MSB
6543210
7
MSB
SO
7
MSB
65432
P/N: PM1238
27
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 18. Page Program (PP) Sequence (Command 02)
CS#
0
SCLK
Command
24-Bit AddressData Byte 1
3435
363738
39
SI
02
232221
MSB
3210
765432
1
0
MSB
CS#
2
0
7
2
2
0
7
3
2
0
7
4
2
0
7
5
2
0
7
6
2
0
7
7
2
0
7
8
464748495
SCLK
Data Byte 2Data Byte 3Data Byte 256
SI
765432
1
07
MSB
65432
1
0
765432
1
0
MSBMSB
P/N: PM1238
2
0
7
9
REV. 1.9, AUG. 14, 2008
28
元器件交易网
MX25L1005
Figure 19. Sector Erase (SE) Sequence (Command 20)
CS#
0
SCLK
Command
24 Bit Address
3031
SI
20
7
MSB
6210
Note: SE command is 20(hex).
Figure 20. Block Erase (BE) Sequence (Command 52 or D8)
CS#
0
SCLK
Command
24 Bit Address
3031
SI
52 or D8
2322
MSB
2
1
0
Note: BE command is 52 or D8(hex).
P/N: PM1238
29
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 21. Chip Erase (CE) Sequence (Command 60 or C7)
CS#
0
SCLK
Command
SI
60 or C7
1234567
Note: CE command is 60(hex) or C7(hex).
Figure 22. Deep Power-down (DP) Sequence (Command B9)
CS#
0
SCLK
Command
SI
B9
1234567
t
DP
Stand-by Mode
Deep Power-down Mode
Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Sequence
(Command AB)
CS#
0
SCLK
Command
3 Dummy Bytes
t
RES2
3435
363738
SI
AB
High-Z
232221
MSB
3210
Electronic Signature Out
7
MSB
Deep Power-down Mode
Stand-by Mode
65432
1
0
SO
P/N: PM1238
30
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 24. Release from Deep Power-down (RDP) Sequence (Command AB)
CS#
0
SCLK
Command
SI
AB
High-Z
SO
1234567
t
RES1
Deep Power-down Mode
Stand-by Mode
Figure 25. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)
CS#
0
SCLK
Command
2 Dummy Bytes
SI
90
High-Z
1514133210
SO
CS#
28293031
323334
35
3637383946
47
SCLK
ADD (1)
SI
765432
1
0
Manufacturer ID
Device ID
0
7
MSB
6543210
7
MSB
SO
X
7
MSB
65432
1
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1238
31
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Figure 26. Power-up Timing
V
CC
V
CC
(max)
Program, Erase and Write Commands are Ignored
Chip Selection is Not Allowed
V
CC
(min)
Reset State
of the
Flash
V
WI
tPUW
tVSL
Read Command is
allowed
Device is fully
accessible
time
P/N: PM1238
32
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
RECOMMENDED OPERATING CONDITIONS
At Device Power-Up
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If
the timing in the figure is ignored, the device may not operate correctly.
VCC(min)
VCC
GND
tVR
tSHSL
CS#
tCHSLtSLCHtCHSHtSHCH
SCLK
tDVCH
tCHDXtCLCH
LSB IN
tCHCL
SI
MSB IN
SO
High Impedance
Figure A. AC Timing at Device Power-Up
Symbol
tVR
Parameter
VCC Rise Time
Notes
1
Min.
0.5
Max.
500000
Unit
us/V
Notes :
d, not 100% tested.
AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC
CHARACTERISTICS" table.
P/N: PM1238
33
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ERASE AND PROGRAMMING PERFORMANCE
PARAMETER
Write Status Register Cycle Time
Sector erase Time
Block erase Time
Chip Erase Time
Page Program Time
Erase/Program Cycle100,000
. (1)
5
60
1
1
1.4
Max. (2)
15
120
2
2
5
UNIT
ms
ms
s
s
ms
cycles
Note:
l program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.
worst conditions of 70°C and 3.0V.
-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with
90% confidence level.
LATCH-UP CHARACTERISTICS
MIN.
Input Voltage with respect to GND on ACC
Input Voltage with respect to GND on all power pins, SI, CS#
Input Voltage with respect to GND on SO
Current
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.
-1.0V
-1.0V
-1.0V
-100mA
MAX.
12.5V
2 VCCmax
VCC + 1.0V
+100mA
P/N: PM1238
34
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
ORDERING INFORMATION
PART
(MHz)
MX25L1005MC-12G
MX25L1005MI-12G
MX25L1005ZUI-12G
85
85
85
OPERATING
(mA)
12
12
12
STANDBY
(uA)
10
10
10
0~70°C
-40~85°C
-40~85°C
8-SOP
(150mil)
8-SOP
(150mil)
8-USON
(2x3x0.6mm)
Pb-free
Pb-free
Pb-free
TemperaturePACKAGERemark
CURRENT T MAX.
P/N: PM1238
35
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PART NAME DESCRIPTION
MX25L1005MC12G
OPTION:
G: Pb-free
SPEED:
12: 85MHz
TEMPERATURE RANGE:
C: Commercial (0˚C to 70˚C)
I: Industrial (-40˚C to 85˚C)
PACKAGE:
M: 150mil 8-SOP
ZU: 8-USON (2x3x0.6mm)
DENSITY & MODE:
1005: 1Mb
TYPE:
L: 3V
DEVICE:
25: Serial Flash
P/N: PM1238
36
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
PACKAGE INFORMATION
P/N: PM1238
37
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
P/N: PM1238
38
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
REVISION HISTORY
Revision ption
1.01. Modified read current:6mA@85MHz/4mA@66MHz/2mA@33MHz
--> 12mA@85MHz/8mA@66MHz/4mA@33MHz
2. Modified tSE:90ms(typ)/270ms(max)-->60ms(typ)/120ms(max) ;
tBE:3s(max)-->2s(max); tCE:2.5s(typ)/6s(max)-->1s(typ)/2s(max)
3. Added description about Pb-free device is RoHS compliant
4. Removed "Advanced Information" title
1.11. Format change
2. Supplemented the footnote for tW of protect/unprotect bits
1.21. Added statement
1.31. Defined min. clock frequency of fSCLK & fRSCLK as 1KHz
1.41. Added 8-land USON package
1.51. Removed 8-land SON package and order information
1.61. Removed 8-USON(4x4mm) package and order information
1.71. Added 8-land USON(2x3mm) package and order information
1.81. Added 8-land USON (2x3mm) package as "advanced information"
2. Removed tCLQV frequency condition
1.91. Removed wrong Block Protect Bit, BP2
Page
P1,19,34
P1,20,33
P1
P1
All
P10
P39
P21
P2,3,35,36,39
P2,3,35,36
P2,3,35,36
P2,3,35,36,38
P2,3,35,36
P21
P5,11
Date
SEP/28/2005
JUN/08/2006
NOV/06/2006
NOV/30/2006
JAN/22/2008
MAR/24/2008
APR/07/2008
MAY/27/2008
JUL/04/2008
AUG/14/2008
P/N: PM1238
39
REV. 1.9, AUG. 14, 2008
元器件交易网
MX25L1005
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which the failure
of a single component could cause death, personal injury, severe physical damage, or other substantial harm to persons
or property, such as life-support systems, high temperature automotive, medical, aircraft and military application. Macronix
and its suppliers will not be liable to you and/or any third party for any claims, injuries or damages that may be incurred due
to use of Macronix's products in the prohibited applications.
M
ACRONIX
I
NTERNATIONAL
C
O.,
L
TD.
Headquarters
Macronix, Int'l Co., Ltd.
16, Li-Hsin Road, Science Park,
Hsinchu, Taiwan, R.O.C.
Tel: +886-3-5786688
Fax: +886-3-5632888
Taipei Office
Macronix, Int'l Co., Ltd.
19F, 4, Min-Chuan E. Road, Sec. 3,
Taipei, Taiwan, R.O.C.
Tel: +886-2-2509-3300
Fax: +886-2-2509-2200
Macronix America, Inc.
680 North McCarthy Blvd.
Milpitas, CA 95035, U.S.A.
Tel: +1-408-262-8887
Fax: +1-408-262-8810
Email: merica@
Macronix Europe N.V.
Koningin Astridlaan 59, Bus 1
1780 Wemmel Belgium
Tel: +32-2-456-8020
Fax: +32-2-456-8021
Macronix Japan Cayman Islands Ltd.
NKF Bldg. 5F, 1-2 Higashida-cho,
Kawasaki-ku Kawasaki-shi,
Kanagawa Pref. 210-0005, Japan
Tel: +81-44-246-9100
Fax: +81-44-246-9105
Singapore Office
Macronix Pte. Ltd.
1 Marine Parade Central
#11-03 Parkway Centre
Singapore 449408
Tel: +65-6346-5505
Fax: +65-6348-8096
Macronix (Hong Kong) Co., Limited.
702-703, 7/F, Building 9,
Hong Kong Science Park,
5 Science Park West Avenue, Sha Tin, N.T.
Tel: +86-852-2607-4289
Fax: +86-852-2607-4229
http : //
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
40