2024年8月28日发(作者:丑水蕊)
INTRODUCTION1-1
1INTRODUCTION
1.1Overview
FLAC
3D
isathree-dimensionalexplicitfinite-differenceprogramforengineeringmechanicscom-
isforthisprogramisthewell-establishednumericalformulationusedbyour
two-dimensionalprogram,FLAC.*FLAC
3D
extendstheanalysiscapabilityofFLACintothree
dimensions,simulatingthebehaviorofthree-dimensionalstructuresbuiltofsoil,rockorother
materialsthatundergoplasticflalsarerepresented
bypolyhedralelementswithinathree-dimensionalgridthatisadjustedbytheusertofittheshape
ementbehavesaccordingtoaprescribedlinearornonlinear
stress/erialcanyieldand
flow,andthegridcandeform(inlarge-strainmode)andmovewiththematerialthatisrepresented.
Theexplicit,Lagrangiancalculationschemeandthemixed-discretizationzoningtechniqueused
inFLAC
3D
ensurethatplasticcollapseandflenomatrices
areformed,largethree-dimensionalcalculationscanbemadewithoutexcessivememoryrequire-
,smalltimesteplimitationandthequestionof
requireddamping)areovercomebyautomaticinertiascalingandautomaticdampingthatdoesnot
infl
3D
offersanidealanalysistoolforsolutionofthree-dimensional
problemsingeotechnicalengineering.
FLAC
3D
isdesignedspecificallytooperateonMicrosoftWindowssystems,andiscurrentlysup-
portedonWindowsXP(includingXP64)andWindowsVista(includingVista64).Itanium-based
ationsonrealisticallysizedthree-dimensionalmodelsingeo-
mple,amodelcontaining125,000
timetoperform
5000calculationstepsfora10,000zonemodelofMohr-Coulombmaterialisroughly2minuteson
a2.7GHzIntelCorei7CPU.†Thenumberofcalculationstepsrequiredtoreachasolutionstate
withtheexplicit-calculationschemecanvary,butasolutiontypicallycanbereachedwithin3000to
5000stepsformodelscontainingupto10,000elements,regardlessofmaterialtype.(Theexplicit-
solutionschemeisexplainedinSection1inTheoryandBackground.)Withtheadvancements
infloating-pointoperationspeed,andtheabilitytoinstalladditionalRAMatlowcost,itshouldbe
possibletosolveincreasinglylargerthree-dimensionalproblemswithFLAC
3D
.
FLAC
3D
canbe
defaultcommand-
willfindthatmostofthecommandsarethesameas,orthree-dimensionalextensionsof,thosein
-driven,graphicaluserinterfaceisalsoavailableinFLAC
3D
forperformingplotting,
printingandfileaccess.
*ItascaConsultingGroup,(FastLagrangianAnalysisofContinua.),Version6.0,2008.
†SeeSection5foracomparisonofFLAC
3D
runtimesonvariouscomputersystems.
FLAC
3D
Version4.0
1-2User’sGuide
WiththegraphicsfacilitiesbuiltintoFLAC
3D
,high-resolution,color-renderedplotsaregenerated
developedagraphicsscreen-plottingfacilitythatallowsyoutoinstantly
viewel
canbetranslated,rotatedandmagnifi-renderedplots
ofsurfacesshowingvectorsorcontourscanbemadein3D,andatwo-dimensionalplanecanbe
locatedatanyorientationandlocationinthemodelforthepurposeofviewingvectororcontour
putcanbedirectedtoablack-and-whiteorcolorhardcopydevice,or
toafile.
YouwillfindthatFLAC
3D
offersafacilityforproblemsolvingsimilartotheoneinFLAC.A
comparisonofFLAC
3D
toothernumericalmethods,adescriptionofgeneralfeaturesandupdatesin
FLAC
3D
Version3.1,andadiscussionoffieldsofapplicationareprovidedinthefollowingsections.
IfyouwishtotryFLAC
3D
rightaway,theprograminstallationinstructionsandasimpletutorial
areprovidedinSection2.
FLAC
3D
Version4.0
INTRODUCTION1-3
1.2ComparisonwithOtherMethods
HowdoesFLAC
3D
comparetothemorecommonmethodofusingfiniteelementsfornumerical
modeling?Bothmethodstranslateasetofdifferentialequationsintomatrixequationsforeach
element,ghFLAC
3D
’sequationsare
derivedbythefinitedifferencemethod,theresultingelementmatricesforanelasticmaterialare
identicaltothoseofthefiniteelementmethod(forconstant-straintetrahedra).However,FLAC
3D
differsinthefollowingrespects:
“mixeddiscretization”scheme(MartiandCundall1982)isusedforac-
curatemodelingofplasticcollapseloadsandplasticflhemeisbe-
lievedtobephysicallymorejustifiablethanthe“reducedintegration”scheme
commonlyusedwithfiniteelements.
ldynamicequationsofmotionareused,evenwhenmodelingsystems
ablesFLAC
3D
tofollowphysicallyunstable
roachtoprovideatime-static
solutionisdiscussedinthedefinitionfor“StaticSolution”giveninSection2.3.
“explicit”solutionschemeisused(incontrasttothemoreusualimplicit
methods).Explicitschemescanfollowarbitrarynonlinearityinstress/strain
lawsinalmostthesamecomputertimeaslinearlaws,whereasimplicitsolu-
tionscantakesignifirmore,
itisnotnecessarytostoreanymatrices,whichmeans:(a)alargenumber
ofelementsmaybemodeledwithamodestmemoryrequirement;and(b)a
large-strainsimulationishardlymoretime-consumingthanasmall-strainrun,
becausethereisnostiffnessmatrixtobeupdated.
3D
isrobustinthesensethatitcanhandleanyconstitutivemodelwithno
adjustmenttothesolutionalgorithm;manyfiniteelementcodesneeddifferent
solutiontechniquesfordifferentconstitutivemodels.
ThesedifferencesaremainlyinFLAC
3D
’sfavor,buttherearetwodisadvantages:
simulationsrunmoreslowlywithFLAC
3D
thanwithequivalentfinite
3D
ismosteffectivewhenappliedtononlinearor
large-strainproblems,ortosituationsinwhichphysicalinstabilitymayoccur.
utiontimewithFLAC
3D
isdeterminedbytheratioofthelongestnatural
int
isdiscussedinmoredetailinSection1inTheoryandBackground,but
certainproblemsareveryineffi,beams,representedby
solidelementsratherthanstructuralelements,orproblemsthatcontainlarge
disparitiesinelasticmoduliorelementsizes).
FLAC
3D
Version4.0
1-4User’sGuide
1.3GeneralFeatures
1.3.1BasicFeatures
FLAC
3D
offersawiderangeofcapabilitiestosolvecomplexproblemsinmechanics,andes-
AC,FLAC
3D
embodiesspecialnumericalrepresentationsfor
gramhasthirteenbasicbuilt-inmaterial
models:the“null”model;threeelasticitymodels(isotropic,transverselyisotropicandorthotropic
elasticity);andnineplasticitymodels(Drucker-Prager,Mohr-Coulomb,strain-hardening/softening,
ubiquitous-joint,bilinearstrain-hardening/softeningubiquitous-joint,double-yield,modifiedCam-
clay,CysoilandHoek-Brown).ThesemodelsaredescribedindetailinSection2inTheoryand
neinaFLAC
3D
gridmayhaveadifferentmaterialmodelorproperty,anda
continuousgradientorstatisticaldistributionofanypropertymaybespecified.
Additionally,aninterface,orslip-plane,modelisavailabletorepresentdistinctinterfacesbetween
erfacesareplanesuponwhichslipand/orseparationare
allowed,therebysimulatingthepresenceoffaults,erface
modelisdescribedinSection4inTheoryandBackground.
FLAC
3D
containsanautomatic3Dgridgeneratorinwhichgridsarecreatedbymanipulatingand
connectingpredefinedshapes.*Thegeneratorpermitsthecreationofintersectinginternalregions
(e.g.,intersectingtunnels).The3Dgridisdefinedbyaglobalx,y,z-coordinatesystem(ratherthan
inarow-and-columnfashionasinFLAC).Thisprovidesmoreflexibilityinmodelcreationand
definerationproceduresaredescribedin
Section1intheCommandReferenceundertheGENERATEcommand.
Boundaryconditionsandinitialconditionsarespecifi
velocity(anddisplacement)boundaryconditionsorstress(andforce)boundaryconditionsmay
bespecifilstressconditions,includinggravitationalloading,
mayalsobegiven,andawatertablemaybedefiditions
maybespecifiryconditionsareprimarilyassignedviatheAPPLYcom-
mand,andinitialconditionsviatheINITIALcommand,asdescribedinSection1intheCommand
Reference.
FLAC
3D
incorporatesthefacilitytomodelgroundwaterflowandpore-pressuredissipation,andthe
fullcouplingbetweenadeformableporoussolidandaviscousfluidflowingwithintheporespace.
(ThecoupledinteractionisdescribedfurtherinSection1.3.3.)Thefluidisassumedtoobeyeither
theisotropicoranisotropicformofDarcy’efluidandthegrainswithintheporous
-steadyflowismodeled,withsteadyflowtreatedasanasymptoticcase.
Fixedporepressureandconstant-flowboundaryconditionsmaybeused,andsourcesandsinks
(wells)flowmodelcanalsoberunindependentofthemechanicalcalculation,
andbothconfinedandunconfinedflowcanbesimulated,withautomaticcalculationofthephreatic
fluid-flowmodelisdescribedinSection1inFluid-MechanicalInteraction.
*Anoptionalmeshingpre-processorisalsoavailable(seeSection1.3.2).
FLAC
3D
Version4.0
INTRODUCTION1-5
Structuresthatinteractwiththesurroundingrockorsoil,suchastunnelliners,piles,sheetpiles,
cables,rockboltsorgeotextiles,maybemodeledwiththestructuralelementlogicinFLAC
3D
.Itis
possibletoeitherexaminethestabilizingeffectsofsupportedexcavations,ortostudytheeffectsof
ferenttypesofstructuralelementsaredescribed
inSection1inStructuralElements.
AfactorofsafetycanbecalculatedautomaticallyforanyFLAC
3D
modelusingacompatible
culationisbasedona“strengthreductiontechnique”thatperformsa
seriesofsimulationswhilechangingthestrengthpropertiestodeterminetheconditionatwhichan
rofsafetywhichcorrespondstothepointofinstabilityisfound,and
tor-of-safetyalgorithmisdescribedin
Section3.8.
FLAC
3D
alsocontainsapowerfulbuilt-inprogramminglanguage,FISH,thatenablestheuserto
defifersauniquecapabilitytouserswhowishtotailor
analysestosuittheirspecifimple,FISHpermits:
•,nonlinearincreaseinmoduluswith
depth);
•plottingandprintingofuser-defi,custom-designedplots);
•implementationofspecialgridgenerators;
•servo-controlofnumericaltests;
•specificationofunusualboundaryconditions;
•variationsintimeandspace;and
•automationofparameterstudies.
tion2intheFISHvolumeforadetailed
referencetotheFISHlanguage.
FLAC
3D
containsextensivegraphicsfacilitiesforgeneratingplotsofvirtuallyanyproblemvariable.
Three-dingfeatures
includehiddensurfaceplots,dvariablescanbeviewed
infrontof,rsionofFLAC
3D
hasbeencompiledasanativeWindowsexecutableusingtheWIN32APItosupportexecutionunder
gramhasthelook-and-feelofatypicalWindows
program;however,mostmodelingoperationsareperformedinthecommand-drivenmode,while
thegraphicaluserinterfacesupportsfile-handling,modelandresponsevisualization(plotting),
andprinting(usingstandardWindowsfile-handlingandprintingfacilities).Plottingoperationsare
describedinSection1inthePlotCommandReference.
FLAC
3D
Version4.0
1-6User’sGuide
1.3.2OptionalFeatures
Fouroptionalfeatures(fordynamicanalysis,thermalanalysis,modelingcreep-materialbehavior,
andC++plug-ins)areavailableasseparatemodulesthatcanbeincludedinFLAC
3D
atanadditional
costpermodule.
DynamicanalysiscanbeperformedwithFLAC
3D
,usingtheoptionaldynamic-calculationmodule.
User-specifiedacceleration,velocityorstresswavescanbeinputdirectlytothemodel,aseither
3D
containsabsorbing
andfree-fieldboundaryconditionstosimulatetheeffectofaninfiniteelasticmediumsurrounding
amiccalculationcanbecoupledtothegroundwaterflowmodel;thelevelof
coupling,includingdynamicpore-pressuregeneration(liquefaction),isdiscussedinSection1.3.3.
ThedynamicanalysiscapabilityisdescribedinSection1inDynamicAnalysis.
ThereisathermalanalysisoptionavailableasaspecialmoduleinFLAC
3D
.Thismodelsimulates
thetransientfluxofheatinmaterials,andthesubsequentdevelopmentofthermallyinducedstresses.
Thethermalmodelcanberunindependently,orcoupledtothemechanical-stresscalculationor
pore-pressurecalculation,eitherstaticordynamic.(Thecouplinginteractionsaredescribedin
Section1.3.3.)ThethermalanalysiscapabilityisdescribedinSection1inThermalAnalysis.
Thereareeightoptionalmaterialmodelsavailablethatsimulatetime-dependent(creep)material
behavior(allcreepmodelsaredescribedinSection1inCreepMaterialModels):
(1)theclassicalviscoelastic(Maxwell)model;
(2)aBurgerssubstanceviscoelasticmodel;
(3)atwo-componentpowerlaw;
(4)areferencecreepformulation(theWIPPmodel)implementedfornuclearwasteisolation
studies;
(5)aBurgers-creepviscoplasticmodelcombiningtheBurgersmodelandtheMohr-Coulomb
model;
(6)apower-lawviscoplasticmodelcombiningthetwo-componentpowerlawandtheMohr-
Coulombmodel;
(7)aWIPP-creepviscoplasticmodelcombiningthereferencecreepformulationwiththe
Drucker-Pragerplasticitymodel;and
(8)a“crushed-salt”modelthatsimulatesbothvolumetricanddeviatoriccreepcompaction.
WiththeC++plug-infeature,user-definedconstitutivemodelsandFISHintrinsicscanbewritten
inC++andcompiledasDLL(dynamiclinklibrary)filesthatcanbeloadedwheneverneeded.
MicrosoftVisualC++Version8.0(MicrosoftVisualStudio2005)isusedtocompiletheDLL
ficeduretowritenewconstitutivemodelsisdescribedinSection3inTheoryand
ceduretowritenewFISHintrinsicsisdescribedinSection4intheFISH
volume.
FLAC
3D
Version4.0
INTRODUCTION1-7
1.3.3ModelingPhysicalProcessesandInteractions
ThedefaultcalculationmodeinFLAC
3D
atively,aground-
waterflowanalysisoraheat-transferanalysiscanbeperformed,independentofthemechanical
egroundwaterflowandthermalmodelsmaybecoupledtothemechanicalstress
ethefullequationsofmotionareusedinFLAC
3D
,thecoupling
mechanismsoperateindynamicanalysesaswellasstaticanalyses.
Thecouplingmechanismsaredividedintothreetypesofinteraction:mechanicalandgroundwater
flow;mechanicalandthermal;andthermalandgroundwaterflelofinteractionmodeled
inFLAC
3D
foreachtypeisdescribedbelow.
Mechanical-GroundwaterFlowCoupling–Severaltypesoffluid/solidinteractioncanbespecified
inFLAC
3D
.Onetypeofinteractionisconsolidation,inwhichtheslowdissipationofporepressure
,soil).Twomechanicaleffectsareatworkinthis
case:(1)thefluidinazonereactstomechanicalvolumechangesbyachangeintheporepressure;
and(2)thepore-pressurechangecauseschangesintheeffectivestressthataffecttheresponseof
,areductionineffectivestressmayinduceplasticyield).Couplingbetweenfluidand
solidduetodeformablegrainscanalsobespecified.
FLAC
3D
cancalculatepore-pressureeffects,withorwithoutpore-pressuredissipation,simplyby
settingthefl,,relatedto
liquefaction)canbemodeledbyaccountingforirreversiblevolumestrainintheconstitutivemodel.
Thisisdonewithtwodifferentbuilt-inconstitutivemodels:the“Finn”model,andthe“Byrne”
delsareprovidedwiththedynamicoption.
Bydefault,r,thesepropertiescanbe
sequence,two-waycouplingof
mechanicalstressandgroundwaterflowcanbemodeledwithFLAC
3D
.
Othertypesofinteraction,suchascapillary,electricalorchemicalforcesbetweenparticlesofa
partiallysaturatedmaterial,arenotmodeleddirectlybyFLAC
3D
.Butsomeoftheeffectsmaybe
rly,aFISHfunctionmaybeusedtovarythe
localfluidmodulusasafunctionofotherquantitiessuchaspressureortime.
Thermal-MechanicalCoupling–Thethermal-mechanicalcouplinginFLAC
3D
isone-way:tem-
peraturechangemayinduceamechanicalstresschangeasafunctionofthethermal-expansion
coeffiicalchangesinthebody,however,donotresultintemperaturechangeor
onally,mechanicalpropertiescanbemadeafunctionof
temperaturechange,sinceFISHpermitsaccesstobothtemperaturesandproperties.
Thermal-GroundwaterFlowCoupling–Thethermalcalculationmaybecoupledtotheground-
waterfltricstrain
canarisefromthermalexpansionofboththefl
pressurechangeresultsfromthisvolumetricstrain,aswellasfrommechanicalvolumetricstrain.
Groundwaterflowcanalsoinfluenceheattransfer;anadvectionmodelthattakesthetransportof
ectionmodelcanalsosimulatetemperature-
dependentfluiddensityandthermaladvectioninthefluid.
FLAC
3D
Version4.0
1-8User’sGuide
Aswithmechanicalproperties,groundwaterpropertiescanbemadeafunctionoftemperature
changebyaccessingtemperatureandpropertyvaluesviaFISH.
FLAC
3D
Version4.0
INTRODUCTION1-9
1.4SummaryofUpdatesfromVersion3.1
FLAC
3D
4.0containsseveralimprovements;thenewfeaturesaresummarizedinthefollowing
ngdatafilescreatedforVersion3.1shouldstilloperateasbefore,withtheexception
3D
4.0willnotbeabletorestorefiles
savedbypreviousversions.
1.4.1AllNewUserInterface
AcompletelynewgraphicaluserinterfacehasbeendevelopedforFLAC
3D
uresgraphics
hardware-accelerated3Drendering(usingOpenGL),abuilt-ineditorwithsyntaxhighlightingand
datafilevalidation,andaprojectinterfacetohelpkeeptrackofthevariousfilesassociatedwitha
ultofthesechanges,PLOTcommandsarenotbackwardscompatible,norareany
ofthevariouscommands(MAINWIN,etc)thatinteracteddirectlywiththeprevioususerinterface.
Alongwithanewplottingimplementation,manynewplottingfeaturesareavailableinFLAC
3D
4.0,includingthefollowing:
•interactiveclippingbox
•iso-surfaces
•lineprofiles
•equalanglestereonets
•DXFfileimport
•FISHplotting
•exportingplotstoDXFfiles
•transparency
1.4.2FISHImprovements
ManyimprovementshavebeenmadetoFISH,includingthefollowing:
•localvariables
•functionarguments
•command-linedebugging
•improvederrormessages
•vectorsassymboltypes,alongwithreal,integer,etc.
FLAC
3D
Version4.0
1-10User’sGuide
•dynamicarrays–arraylengthisnolongerfixedatcreation
•zonefielddatafunctions–readmodelvariablesefficientlyatarbitrarylocationsinspace
•user-definedC++FISHintrinsicplug-ins
1.4.3Multi-threadingUsingNodalMixedDiscretization
ficiencygained
isnotashighaswithtraditionalmixed-discretization,butanincreaseinspeedofafactorofthree
ispossibleoncurrenthardware.
1.4.4MiscellaneousImprovements
OtherimprovementstoFLAC
3D
4.0includethefollowing:
•AnimprovedC++interfaceismoreeffi-
cientatruntime,andkeepsbettertrackofchangesthatbreakcompatibility.
•necanbeassignedagroupinoneofmany
berofavailablegroupslotsisdeterminedwithaCONFIGcommand.
•nctionscannowbewrittenandconnectedtotheRANGE
logic,allowingfilteringbasedonanyuser-definedcriteria.
•Anewconstitutivemodelhasbeenadded–tion2.5.9in
TheoryandBackground.
FLAC
3D
Version4.0
INTRODUCTION1-11
1.5FieldsofApplication
FLAC
3D
n6containsa
bibliographyofpublicationsontheapplicationofFLAC
3D
togeotechnicalproblemsinthefields
ofmining,undergroundengineering,rockmechanicsandresearch.
SomepossibleapplicationsofFLAC
3D
eFLAC
3D
nowhasessentially
thesamecapabilitiesofFLAC,manyoftheFLACapplicationscannowbeextendedintothree
dimensionswithFLAC
3D
:
•mechanicalloadingcapacityanddeformations–inslopestabilityandfoundationdesign;
•evolutionofprogressivefailureandcollapse–inhardrockmineandtunneldesign;
•factor-of-safetycalculation–instabilityanalysesforearthstructures,embankmentsand
slopes;
•evaluationoftheinfluenceoffaultstructures–inminedesign;
•restraintprovidedbycablesupportongeologicmaterials–inrockbolting,tiebacksand
soilnailing;
•fullyandpartiallysaturatedfluidflow,andpore-pressurebuild-upanddissipationfor
undrainedanddrainedloading–ingroundwaterflowandconsolidationstudiesofearth-
retainingstructures;
•time-dependentcreepbehaviorofviscousmaterials–insaltandpotashminedesign;
•dynamicloadingonslip-pronegeologicstructures–inearthquakeengineeringandmine
rockburststudies;
•dynamiceffectsofexplosiveloadingandvibrations–intunneldrivingorinmining
operations;
•seismicexcitationofstructures–inearthdamdesign;
•deformationandmechanicalinstabilityresultingfromthermal-inducedloads–inper-
formanceassessmentofundergroundrepositoriesofhigh-levelradioactivewaste;and
•analysisofhighlydeformablematerials–inbulkflowofmaterialsinbinsandmine
caving.
FLAC
3D
Version4.0
1-12User’sGuide
1.6GuidetotheFLAC
3D
Manual
TheFLAC
3D
cument,theUser’sGuide,
isthemainguidetousingFLAC
3D
andcontainsdescriptionsofthefeaturesandcapabilitiesof
theprogram,alongwithrecommendationsonthebestuseofFLAC
3D
remainingdocumentscovervariousaspectsofFLAC
3D
,includingtheoreticalbackgroundinforma-
tion,verifipletemanualisavailableinelectronic
formatontheFLAC
3D
CD-ROM(viewedwithAcrobatReader),fic
topicsorkeywordscanbefoundacrossallvolumesbyimplementingthesearchfacilityavailable
inAcrobat.
Theorganizationofthetwelvedocuments,andbriefsummariesofthecontentsofeachsection,
notethatifyouareviewingthemanualintheAcrobatReader,double-clickingon
asectionnumbergivenbelowwillimmediatelyopenthatsectionforviewing.
User’sGuide
Section1Introduction
ThissectionintroducesyoutoFLAC
3D
view
ofthenewfeaturesinthelatestversionofFLAC
3D
isalsoprovided.
Section2GettingStarted
IfyouarejustbeginningtouseFLAC
3D
,oruseitonlyoccasionally,werecommend
ctionprovidesinstructionsoninstallationandop-
erationoftheprogram,aswellasrecommendedproceduresforrunningFLAC
3D
analyses.
Section3ProblemSolvingwithFLAC
3D
thissectiononceyouare
epinaFLAC
3D
analysisisdiscussedin
detail,andadviceisgivenonthemosteffectiveprocedurestofollowwhencreating,
solvingandinterpretingaFLAC
3D
modelsimulation.
Section4FISHBeginner’sGuide
Section4providesthenewuserwithanintroductiontotheFISHprogramming
languageinFLAC
3D
.ThisincludesatutorialontheuseoftheFISHlanguage.
FISHisdescribedindetailinSection2intheFISHvolume.
FLAC
3D
Version4.0
INTRODUCTION1-13
Section5Miscellaneous
Variousinformationiscontainedinthissection,includingtheFLAC
3D
runtime
benchmarkandproceduresforreportingerrorsandrequestingtechnicalsupport.
DescriptionsofutilityfilestoassistwithFLAC
3D
operationarealsogiven.
Section6Bibliography
Thissectioncontainsabibliographyofpublishedpapersdescribingsomeusesof
FLAC
3D
.
CommandReference
Section1CommandReference
Allthecommandsthatcanbeenteredinthecommand-drivenmodeinFLAC
3D
(exceptthePLOTcommand,whichhasitsownvolume)aredescribedinSection1
intheCommandReference.
PlotCommandReference
Section1PlotCommandReference
ThePLOTcommandisdescribedinSection1inthePlotCommandReference.
FISHinFLAC
3D
Section1FISHBeginner’sGuide
Section1intheFISHvolumeprovidesthenewuserwithanintroductiontothe
FISHprogramminglanguageinFLAC
3D
.Thisincludesatutorialontheuseofthe
FISHlanguage.
Section2FISHReference
Section2intheFISHvolumecontainsadetailedreferencetotheFISHlanguage.
AllFISHstatements,variablesandfunctionsareexplainedandexamplesgiven.
Section3LibraryofFISHFunctions
AlibraryofcommonandgeneralpurposeFISHfunctionsisgiveninSection3inthe
unctionscanassistwithvariousaspectsofFLAC
3D
model
generationandsolution.
Section4C++FISHIntrinsicPlug-ins
InstructionsonhowtocompileandinputcustomFISHintrinsicswritteninC++are
providedinSection4intheFISHvolume.
FLAC
3D
Version4.0
1-14User’sGuide
TheoryandBackground
Section1TheoreticalBackground
ThetheoreticalformulationforFLAC
3D
isdescribedindetailinSection1inTheory
cludesboththedescriptionofthemathematicalmodel
thatdescribesthemechanicsofasystemandthenumericalimplementation.
Section2ConstitutiveModels:TheoryandImplementation
Thetheoreticalformulationandimplementationofthevariousbuilt-inconstitutive
modelsaredescribedinSection2inTheoryandBackground.
Section3WritingNewConstitutiveModels
UserscanwritetheirownconstitutivemodelsforincorporationintoFLAC
3D
.The
modelsarewritteninC++,andcompiledasaDLLfile(dynamiclinklibrary)thatcan
ceduretocreatenewmodelsisdescribed
inSection3inTheoryandBackground.
Section4Interfaces
TheinterfacelogicisdescribedandexampleapplicationsaregiveninSection4in
ssiononinterfacepropertiesisalsoprovided.
Fluid-MechanicalInteraction
Section1Fluid-MechanicalInteraction–SinglePhaseFluid
Theformulationforthefluid-flowmodelisdescribed,andthevariouswaystomodel
fluidflow,bothwithandwithoutsolidinteraction,areillustratedinSection1in
Fluid-MechanicalInteraction.
StructuralElements
Section1StructuralElements
Section1inStructuralElementsdescribesthevariousstructuralelementmodels
availableinFLAC
3D
.Theseincludebeams,cables,piles,shells,linersandgeogrids.
ThermalAnalysis
Section1ThermalOption
Section1inThermalAnalysisdescribesthethermalmodeloption,andpresents
severalverificationproblemsthatillustrateitsapplicationbothwithandwithout
interactionwithmechanicalstressandporepressure.
FLAC
3D
Version4.0
INTRODUCTION1-15
Section2Hydration
,
thesettingofconcrete).Twoexampleproblemsareprovided.
CreepMaterialModels
Section1CreepMaterialModels
ThedifferentcreepmaterialmodelsavailableasanoptioninFLAC
3D
aredescribed,
andverificationandexampleproblemsareprovidedinSection1inCreepMaterial
Models.
DynamicAnalysis
Section1DynamicAnalysis
Thedynamicanalysisoptionisdescribed,andconsiderationsforrunningadynamic
lverificationexamples
arealsoincludedinthissection.
VerificationProblems
ThisvolumecontainsacollectionofFLAC
3D
verifiretests
inwhichaFLAC
3D
,closed-form)
le1intheVerificationsvolumeforalistoftheverification
problems.
ExampleApplications
ThisvolumecontainsexampleapplicationsofFLAC
3D
thatdemonstratethevarious
classesofproblemstowhichFLAC
3D
le1intheExamples
volumeforalistoftheexampleapplications.
FLAC
3D
Version4.0
1-16User’sGuide
1.7ItascaConsultingGroupInc.
thanadeveloperanddistributorofengineeringsoftware.
Itascaisaconsultingandresearchfirmconsistingofaspecializedteamofcivil,geotechnicaland
miningengineerswithanestablishedrecordinsolvingproblemsintheareasof:
CivilEngineering
MiningEngineeringandEnergyResourceRecovery
NuclearWasteIsolationandUndergroundSpace
DefenseResearch
SoftwareEngineering
GroundwaterAnalysisandDewatering
Itascawasestablishedin1981toprovideadvancedrockmechanicsservicestotheminingindustry.
Today,Itascaisamultidisciplinarygeotechnicalfirmwith80professionalsinofficesworldwide.
ThecorporateheadquartersforItascaislocatedinMinneapolis,ideofficesof
Itascaare:ItascaDenver(Denver,Colorado);ItascaGeomekanikAB(Stockholm,Sweden);Itasca
ConsultantsS.A.S.(Ecully,France);ItascaConsultantsGmbH(Gelsenkirchen,Germany);Itasca
ConsultoresS.L.(Llanera,Spain);ItascaS.A.(Santiago,Chile);ItascaAfricaLtd.(Johannesburg,
SouthAfrica);ItascaConsultingCanadaInc.(Sudbury,Canada);ItascaConsultingChinaLtd.
(Wuhan,China);ItascaHoustonInc.(Houston,Texas);andItascaAustraliaLtd.(Melbourne,
Australia).
Itasca’sstaffmembersareinternationallyrecognizedfortheiraccomplishmentsingeological,min-
staffconsistsofgeological,mining,hydrologicaland
civilengineerswhoprovidearangeofcomprehensiveservicessuchas(1)computationalanal-
ysisinsupportofgeo-engineeringdesigns,(2)designandperformanceoffieldexperimentsand
demonstrations,(3)laboratorycharacterizationofrockproperties,(4)dataacquisition,analysis
andsystemidentification,(5)groundwatermodeling,and(6)shortcoursesandinstructioninthe
houldneedassistanceinanyofthese
areas,wewouldbegladtoofferourservices.
FLAC
3D
Version4.0
INTRODUCTION1-17
1.8UserSupport
WebelievethatthesupportItascaprovidestocodeusersisamajorreasonforthepopularityofour
provide
atimelyresponseviatelephone,lassistanceintheinstallationof
FLAC
3D
onyourcomputer,plusanswerstoquestionsconcerningcapabilitiesofthevariousfeatures
ofthecode,calassistanceforspecificuser-definedproblems
canbepurchasedonanas-neededbasis.
Ifyouhaveaquestion,ordesiretechnicalsupport,pleasecontactusat:
ItascaConsultingGroupInc.
MillPlace
111ThirdAvenueSouth,Suite450
Minneapolis,Minnesota55401USA
Phone:
Fax:
Email:
Web:
(+1)612-371-4711
(+1)612·371·4717
software@
Wealsohs
maybeobtainedfromItasca.
FLAC
3D
Version4.0
1-18User’sGuide
1.9References
Byrne,P.“ACyclicShear-VolumeCouplingandPore-PressureModelforSand,”inProceedings:
SecondInternationalConferenceonRecentAdvancesinGeotechnicalEarthquakeEngineering
andSoilDynamics(,Missouri,March,1991),PaperNo.1.24,47-55.
Marti,J.,l.“MixedDiscretizationProcedureforAccurateSolutionofPlasticity
Problems,”sinGeomech.,6,129-139,1982.
FLAC
3D
Version4.0
2024年8月28日发(作者:丑水蕊)
INTRODUCTION1-1
1INTRODUCTION
1.1Overview
FLAC
3D
isathree-dimensionalexplicitfinite-differenceprogramforengineeringmechanicscom-
isforthisprogramisthewell-establishednumericalformulationusedbyour
two-dimensionalprogram,FLAC.*FLAC
3D
extendstheanalysiscapabilityofFLACintothree
dimensions,simulatingthebehaviorofthree-dimensionalstructuresbuiltofsoil,rockorother
materialsthatundergoplasticflalsarerepresented
bypolyhedralelementswithinathree-dimensionalgridthatisadjustedbytheusertofittheshape
ementbehavesaccordingtoaprescribedlinearornonlinear
stress/erialcanyieldand
flow,andthegridcandeform(inlarge-strainmode)andmovewiththematerialthatisrepresented.
Theexplicit,Lagrangiancalculationschemeandthemixed-discretizationzoningtechniqueused
inFLAC
3D
ensurethatplasticcollapseandflenomatrices
areformed,largethree-dimensionalcalculationscanbemadewithoutexcessivememoryrequire-
,smalltimesteplimitationandthequestionof
requireddamping)areovercomebyautomaticinertiascalingandautomaticdampingthatdoesnot
infl
3D
offersanidealanalysistoolforsolutionofthree-dimensional
problemsingeotechnicalengineering.
FLAC
3D
isdesignedspecificallytooperateonMicrosoftWindowssystems,andiscurrentlysup-
portedonWindowsXP(includingXP64)andWindowsVista(includingVista64).Itanium-based
ationsonrealisticallysizedthree-dimensionalmodelsingeo-
mple,amodelcontaining125,000
timetoperform
5000calculationstepsfora10,000zonemodelofMohr-Coulombmaterialisroughly2minuteson
a2.7GHzIntelCorei7CPU.†Thenumberofcalculationstepsrequiredtoreachasolutionstate
withtheexplicit-calculationschemecanvary,butasolutiontypicallycanbereachedwithin3000to
5000stepsformodelscontainingupto10,000elements,regardlessofmaterialtype.(Theexplicit-
solutionschemeisexplainedinSection1inTheoryandBackground.)Withtheadvancements
infloating-pointoperationspeed,andtheabilitytoinstalladditionalRAMatlowcost,itshouldbe
possibletosolveincreasinglylargerthree-dimensionalproblemswithFLAC
3D
.
FLAC
3D
canbe
defaultcommand-
willfindthatmostofthecommandsarethesameas,orthree-dimensionalextensionsof,thosein
-driven,graphicaluserinterfaceisalsoavailableinFLAC
3D
forperformingplotting,
printingandfileaccess.
*ItascaConsultingGroup,(FastLagrangianAnalysisofContinua.),Version6.0,2008.
†SeeSection5foracomparisonofFLAC
3D
runtimesonvariouscomputersystems.
FLAC
3D
Version4.0
1-2User’sGuide
WiththegraphicsfacilitiesbuiltintoFLAC
3D
,high-resolution,color-renderedplotsaregenerated
developedagraphicsscreen-plottingfacilitythatallowsyoutoinstantly
viewel
canbetranslated,rotatedandmagnifi-renderedplots
ofsurfacesshowingvectorsorcontourscanbemadein3D,andatwo-dimensionalplanecanbe
locatedatanyorientationandlocationinthemodelforthepurposeofviewingvectororcontour
putcanbedirectedtoablack-and-whiteorcolorhardcopydevice,or
toafile.
YouwillfindthatFLAC
3D
offersafacilityforproblemsolvingsimilartotheoneinFLAC.A
comparisonofFLAC
3D
toothernumericalmethods,adescriptionofgeneralfeaturesandupdatesin
FLAC
3D
Version3.1,andadiscussionoffieldsofapplicationareprovidedinthefollowingsections.
IfyouwishtotryFLAC
3D
rightaway,theprograminstallationinstructionsandasimpletutorial
areprovidedinSection2.
FLAC
3D
Version4.0
INTRODUCTION1-3
1.2ComparisonwithOtherMethods
HowdoesFLAC
3D
comparetothemorecommonmethodofusingfiniteelementsfornumerical
modeling?Bothmethodstranslateasetofdifferentialequationsintomatrixequationsforeach
element,ghFLAC
3D
’sequationsare
derivedbythefinitedifferencemethod,theresultingelementmatricesforanelasticmaterialare
identicaltothoseofthefiniteelementmethod(forconstant-straintetrahedra).However,FLAC
3D
differsinthefollowingrespects:
“mixeddiscretization”scheme(MartiandCundall1982)isusedforac-
curatemodelingofplasticcollapseloadsandplasticflhemeisbe-
lievedtobephysicallymorejustifiablethanthe“reducedintegration”scheme
commonlyusedwithfiniteelements.
ldynamicequationsofmotionareused,evenwhenmodelingsystems
ablesFLAC
3D
tofollowphysicallyunstable
roachtoprovideatime-static
solutionisdiscussedinthedefinitionfor“StaticSolution”giveninSection2.3.
“explicit”solutionschemeisused(incontrasttothemoreusualimplicit
methods).Explicitschemescanfollowarbitrarynonlinearityinstress/strain
lawsinalmostthesamecomputertimeaslinearlaws,whereasimplicitsolu-
tionscantakesignifirmore,
itisnotnecessarytostoreanymatrices,whichmeans:(a)alargenumber
ofelementsmaybemodeledwithamodestmemoryrequirement;and(b)a
large-strainsimulationishardlymoretime-consumingthanasmall-strainrun,
becausethereisnostiffnessmatrixtobeupdated.
3D
isrobustinthesensethatitcanhandleanyconstitutivemodelwithno
adjustmenttothesolutionalgorithm;manyfiniteelementcodesneeddifferent
solutiontechniquesfordifferentconstitutivemodels.
ThesedifferencesaremainlyinFLAC
3D
’sfavor,buttherearetwodisadvantages:
simulationsrunmoreslowlywithFLAC
3D
thanwithequivalentfinite
3D
ismosteffectivewhenappliedtononlinearor
large-strainproblems,ortosituationsinwhichphysicalinstabilitymayoccur.
utiontimewithFLAC
3D
isdeterminedbytheratioofthelongestnatural
int
isdiscussedinmoredetailinSection1inTheoryandBackground,but
certainproblemsareveryineffi,beams,representedby
solidelementsratherthanstructuralelements,orproblemsthatcontainlarge
disparitiesinelasticmoduliorelementsizes).
FLAC
3D
Version4.0
1-4User’sGuide
1.3GeneralFeatures
1.3.1BasicFeatures
FLAC
3D
offersawiderangeofcapabilitiestosolvecomplexproblemsinmechanics,andes-
AC,FLAC
3D
embodiesspecialnumericalrepresentationsfor
gramhasthirteenbasicbuilt-inmaterial
models:the“null”model;threeelasticitymodels(isotropic,transverselyisotropicandorthotropic
elasticity);andnineplasticitymodels(Drucker-Prager,Mohr-Coulomb,strain-hardening/softening,
ubiquitous-joint,bilinearstrain-hardening/softeningubiquitous-joint,double-yield,modifiedCam-
clay,CysoilandHoek-Brown).ThesemodelsaredescribedindetailinSection2inTheoryand
neinaFLAC
3D
gridmayhaveadifferentmaterialmodelorproperty,anda
continuousgradientorstatisticaldistributionofanypropertymaybespecified.
Additionally,aninterface,orslip-plane,modelisavailabletorepresentdistinctinterfacesbetween
erfacesareplanesuponwhichslipand/orseparationare
allowed,therebysimulatingthepresenceoffaults,erface
modelisdescribedinSection4inTheoryandBackground.
FLAC
3D
containsanautomatic3Dgridgeneratorinwhichgridsarecreatedbymanipulatingand
connectingpredefinedshapes.*Thegeneratorpermitsthecreationofintersectinginternalregions
(e.g.,intersectingtunnels).The3Dgridisdefinedbyaglobalx,y,z-coordinatesystem(ratherthan
inarow-and-columnfashionasinFLAC).Thisprovidesmoreflexibilityinmodelcreationand
definerationproceduresaredescribedin
Section1intheCommandReferenceundertheGENERATEcommand.
Boundaryconditionsandinitialconditionsarespecifi
velocity(anddisplacement)boundaryconditionsorstress(andforce)boundaryconditionsmay
bespecifilstressconditions,includinggravitationalloading,
mayalsobegiven,andawatertablemaybedefiditions
maybespecifiryconditionsareprimarilyassignedviatheAPPLYcom-
mand,andinitialconditionsviatheINITIALcommand,asdescribedinSection1intheCommand
Reference.
FLAC
3D
incorporatesthefacilitytomodelgroundwaterflowandpore-pressuredissipation,andthe
fullcouplingbetweenadeformableporoussolidandaviscousfluidflowingwithintheporespace.
(ThecoupledinteractionisdescribedfurtherinSection1.3.3.)Thefluidisassumedtoobeyeither
theisotropicoranisotropicformofDarcy’efluidandthegrainswithintheporous
-steadyflowismodeled,withsteadyflowtreatedasanasymptoticcase.
Fixedporepressureandconstant-flowboundaryconditionsmaybeused,andsourcesandsinks
(wells)flowmodelcanalsoberunindependentofthemechanicalcalculation,
andbothconfinedandunconfinedflowcanbesimulated,withautomaticcalculationofthephreatic
fluid-flowmodelisdescribedinSection1inFluid-MechanicalInteraction.
*Anoptionalmeshingpre-processorisalsoavailable(seeSection1.3.2).
FLAC
3D
Version4.0
INTRODUCTION1-5
Structuresthatinteractwiththesurroundingrockorsoil,suchastunnelliners,piles,sheetpiles,
cables,rockboltsorgeotextiles,maybemodeledwiththestructuralelementlogicinFLAC
3D
.Itis
possibletoeitherexaminethestabilizingeffectsofsupportedexcavations,ortostudytheeffectsof
ferenttypesofstructuralelementsaredescribed
inSection1inStructuralElements.
AfactorofsafetycanbecalculatedautomaticallyforanyFLAC
3D
modelusingacompatible
culationisbasedona“strengthreductiontechnique”thatperformsa
seriesofsimulationswhilechangingthestrengthpropertiestodeterminetheconditionatwhichan
rofsafetywhichcorrespondstothepointofinstabilityisfound,and
tor-of-safetyalgorithmisdescribedin
Section3.8.
FLAC
3D
alsocontainsapowerfulbuilt-inprogramminglanguage,FISH,thatenablestheuserto
defifersauniquecapabilitytouserswhowishtotailor
analysestosuittheirspecifimple,FISHpermits:
•,nonlinearincreaseinmoduluswith
depth);
•plottingandprintingofuser-defi,custom-designedplots);
•implementationofspecialgridgenerators;
•servo-controlofnumericaltests;
•specificationofunusualboundaryconditions;
•variationsintimeandspace;and
•automationofparameterstudies.
tion2intheFISHvolumeforadetailed
referencetotheFISHlanguage.
FLAC
3D
containsextensivegraphicsfacilitiesforgeneratingplotsofvirtuallyanyproblemvariable.
Three-dingfeatures
includehiddensurfaceplots,dvariablescanbeviewed
infrontof,rsionofFLAC
3D
hasbeencompiledasanativeWindowsexecutableusingtheWIN32APItosupportexecutionunder
gramhasthelook-and-feelofatypicalWindows
program;however,mostmodelingoperationsareperformedinthecommand-drivenmode,while
thegraphicaluserinterfacesupportsfile-handling,modelandresponsevisualization(plotting),
andprinting(usingstandardWindowsfile-handlingandprintingfacilities).Plottingoperationsare
describedinSection1inthePlotCommandReference.
FLAC
3D
Version4.0
1-6User’sGuide
1.3.2OptionalFeatures
Fouroptionalfeatures(fordynamicanalysis,thermalanalysis,modelingcreep-materialbehavior,
andC++plug-ins)areavailableasseparatemodulesthatcanbeincludedinFLAC
3D
atanadditional
costpermodule.
DynamicanalysiscanbeperformedwithFLAC
3D
,usingtheoptionaldynamic-calculationmodule.
User-specifiedacceleration,velocityorstresswavescanbeinputdirectlytothemodel,aseither
3D
containsabsorbing
andfree-fieldboundaryconditionstosimulatetheeffectofaninfiniteelasticmediumsurrounding
amiccalculationcanbecoupledtothegroundwaterflowmodel;thelevelof
coupling,includingdynamicpore-pressuregeneration(liquefaction),isdiscussedinSection1.3.3.
ThedynamicanalysiscapabilityisdescribedinSection1inDynamicAnalysis.
ThereisathermalanalysisoptionavailableasaspecialmoduleinFLAC
3D
.Thismodelsimulates
thetransientfluxofheatinmaterials,andthesubsequentdevelopmentofthermallyinducedstresses.
Thethermalmodelcanberunindependently,orcoupledtothemechanical-stresscalculationor
pore-pressurecalculation,eitherstaticordynamic.(Thecouplinginteractionsaredescribedin
Section1.3.3.)ThethermalanalysiscapabilityisdescribedinSection1inThermalAnalysis.
Thereareeightoptionalmaterialmodelsavailablethatsimulatetime-dependent(creep)material
behavior(allcreepmodelsaredescribedinSection1inCreepMaterialModels):
(1)theclassicalviscoelastic(Maxwell)model;
(2)aBurgerssubstanceviscoelasticmodel;
(3)atwo-componentpowerlaw;
(4)areferencecreepformulation(theWIPPmodel)implementedfornuclearwasteisolation
studies;
(5)aBurgers-creepviscoplasticmodelcombiningtheBurgersmodelandtheMohr-Coulomb
model;
(6)apower-lawviscoplasticmodelcombiningthetwo-componentpowerlawandtheMohr-
Coulombmodel;
(7)aWIPP-creepviscoplasticmodelcombiningthereferencecreepformulationwiththe
Drucker-Pragerplasticitymodel;and
(8)a“crushed-salt”modelthatsimulatesbothvolumetricanddeviatoriccreepcompaction.
WiththeC++plug-infeature,user-definedconstitutivemodelsandFISHintrinsicscanbewritten
inC++andcompiledasDLL(dynamiclinklibrary)filesthatcanbeloadedwheneverneeded.
MicrosoftVisualC++Version8.0(MicrosoftVisualStudio2005)isusedtocompiletheDLL
ficeduretowritenewconstitutivemodelsisdescribedinSection3inTheoryand
ceduretowritenewFISHintrinsicsisdescribedinSection4intheFISH
volume.
FLAC
3D
Version4.0
INTRODUCTION1-7
1.3.3ModelingPhysicalProcessesandInteractions
ThedefaultcalculationmodeinFLAC
3D
atively,aground-
waterflowanalysisoraheat-transferanalysiscanbeperformed,independentofthemechanical
egroundwaterflowandthermalmodelsmaybecoupledtothemechanicalstress
ethefullequationsofmotionareusedinFLAC
3D
,thecoupling
mechanismsoperateindynamicanalysesaswellasstaticanalyses.
Thecouplingmechanismsaredividedintothreetypesofinteraction:mechanicalandgroundwater
flow;mechanicalandthermal;andthermalandgroundwaterflelofinteractionmodeled
inFLAC
3D
foreachtypeisdescribedbelow.
Mechanical-GroundwaterFlowCoupling–Severaltypesoffluid/solidinteractioncanbespecified
inFLAC
3D
.Onetypeofinteractionisconsolidation,inwhichtheslowdissipationofporepressure
,soil).Twomechanicaleffectsareatworkinthis
case:(1)thefluidinazonereactstomechanicalvolumechangesbyachangeintheporepressure;
and(2)thepore-pressurechangecauseschangesintheeffectivestressthataffecttheresponseof
,areductionineffectivestressmayinduceplasticyield).Couplingbetweenfluidand
solidduetodeformablegrainscanalsobespecified.
FLAC
3D
cancalculatepore-pressureeffects,withorwithoutpore-pressuredissipation,simplyby
settingthefl,,relatedto
liquefaction)canbemodeledbyaccountingforirreversiblevolumestrainintheconstitutivemodel.
Thisisdonewithtwodifferentbuilt-inconstitutivemodels:the“Finn”model,andthe“Byrne”
delsareprovidedwiththedynamicoption.
Bydefault,r,thesepropertiescanbe
sequence,two-waycouplingof
mechanicalstressandgroundwaterflowcanbemodeledwithFLAC
3D
.
Othertypesofinteraction,suchascapillary,electricalorchemicalforcesbetweenparticlesofa
partiallysaturatedmaterial,arenotmodeleddirectlybyFLAC
3D
.Butsomeoftheeffectsmaybe
rly,aFISHfunctionmaybeusedtovarythe
localfluidmodulusasafunctionofotherquantitiessuchaspressureortime.
Thermal-MechanicalCoupling–Thethermal-mechanicalcouplinginFLAC
3D
isone-way:tem-
peraturechangemayinduceamechanicalstresschangeasafunctionofthethermal-expansion
coeffiicalchangesinthebody,however,donotresultintemperaturechangeor
onally,mechanicalpropertiescanbemadeafunctionof
temperaturechange,sinceFISHpermitsaccesstobothtemperaturesandproperties.
Thermal-GroundwaterFlowCoupling–Thethermalcalculationmaybecoupledtotheground-
waterfltricstrain
canarisefromthermalexpansionofboththefl
pressurechangeresultsfromthisvolumetricstrain,aswellasfrommechanicalvolumetricstrain.
Groundwaterflowcanalsoinfluenceheattransfer;anadvectionmodelthattakesthetransportof
ectionmodelcanalsosimulatetemperature-
dependentfluiddensityandthermaladvectioninthefluid.
FLAC
3D
Version4.0
1-8User’sGuide
Aswithmechanicalproperties,groundwaterpropertiescanbemadeafunctionoftemperature
changebyaccessingtemperatureandpropertyvaluesviaFISH.
FLAC
3D
Version4.0
INTRODUCTION1-9
1.4SummaryofUpdatesfromVersion3.1
FLAC
3D
4.0containsseveralimprovements;thenewfeaturesaresummarizedinthefollowing
ngdatafilescreatedforVersion3.1shouldstilloperateasbefore,withtheexception
3D
4.0willnotbeabletorestorefiles
savedbypreviousversions.
1.4.1AllNewUserInterface
AcompletelynewgraphicaluserinterfacehasbeendevelopedforFLAC
3D
uresgraphics
hardware-accelerated3Drendering(usingOpenGL),abuilt-ineditorwithsyntaxhighlightingand
datafilevalidation,andaprojectinterfacetohelpkeeptrackofthevariousfilesassociatedwitha
ultofthesechanges,PLOTcommandsarenotbackwardscompatible,norareany
ofthevariouscommands(MAINWIN,etc)thatinteracteddirectlywiththeprevioususerinterface.
Alongwithanewplottingimplementation,manynewplottingfeaturesareavailableinFLAC
3D
4.0,includingthefollowing:
•interactiveclippingbox
•iso-surfaces
•lineprofiles
•equalanglestereonets
•DXFfileimport
•FISHplotting
•exportingplotstoDXFfiles
•transparency
1.4.2FISHImprovements
ManyimprovementshavebeenmadetoFISH,includingthefollowing:
•localvariables
•functionarguments
•command-linedebugging
•improvederrormessages
•vectorsassymboltypes,alongwithreal,integer,etc.
FLAC
3D
Version4.0
1-10User’sGuide
•dynamicarrays–arraylengthisnolongerfixedatcreation
•zonefielddatafunctions–readmodelvariablesefficientlyatarbitrarylocationsinspace
•user-definedC++FISHintrinsicplug-ins
1.4.3Multi-threadingUsingNodalMixedDiscretization
ficiencygained
isnotashighaswithtraditionalmixed-discretization,butanincreaseinspeedofafactorofthree
ispossibleoncurrenthardware.
1.4.4MiscellaneousImprovements
OtherimprovementstoFLAC
3D
4.0includethefollowing:
•AnimprovedC++interfaceismoreeffi-
cientatruntime,andkeepsbettertrackofchangesthatbreakcompatibility.
•necanbeassignedagroupinoneofmany
berofavailablegroupslotsisdeterminedwithaCONFIGcommand.
•nctionscannowbewrittenandconnectedtotheRANGE
logic,allowingfilteringbasedonanyuser-definedcriteria.
•Anewconstitutivemodelhasbeenadded–tion2.5.9in
TheoryandBackground.
FLAC
3D
Version4.0
INTRODUCTION1-11
1.5FieldsofApplication
FLAC
3D
n6containsa
bibliographyofpublicationsontheapplicationofFLAC
3D
togeotechnicalproblemsinthefields
ofmining,undergroundengineering,rockmechanicsandresearch.
SomepossibleapplicationsofFLAC
3D
eFLAC
3D
nowhasessentially
thesamecapabilitiesofFLAC,manyoftheFLACapplicationscannowbeextendedintothree
dimensionswithFLAC
3D
:
•mechanicalloadingcapacityanddeformations–inslopestabilityandfoundationdesign;
•evolutionofprogressivefailureandcollapse–inhardrockmineandtunneldesign;
•factor-of-safetycalculation–instabilityanalysesforearthstructures,embankmentsand
slopes;
•evaluationoftheinfluenceoffaultstructures–inminedesign;
•restraintprovidedbycablesupportongeologicmaterials–inrockbolting,tiebacksand
soilnailing;
•fullyandpartiallysaturatedfluidflow,andpore-pressurebuild-upanddissipationfor
undrainedanddrainedloading–ingroundwaterflowandconsolidationstudiesofearth-
retainingstructures;
•time-dependentcreepbehaviorofviscousmaterials–insaltandpotashminedesign;
•dynamicloadingonslip-pronegeologicstructures–inearthquakeengineeringandmine
rockburststudies;
•dynamiceffectsofexplosiveloadingandvibrations–intunneldrivingorinmining
operations;
•seismicexcitationofstructures–inearthdamdesign;
•deformationandmechanicalinstabilityresultingfromthermal-inducedloads–inper-
formanceassessmentofundergroundrepositoriesofhigh-levelradioactivewaste;and
•analysisofhighlydeformablematerials–inbulkflowofmaterialsinbinsandmine
caving.
FLAC
3D
Version4.0
1-12User’sGuide
1.6GuidetotheFLAC
3D
Manual
TheFLAC
3D
cument,theUser’sGuide,
isthemainguidetousingFLAC
3D
andcontainsdescriptionsofthefeaturesandcapabilitiesof
theprogram,alongwithrecommendationsonthebestuseofFLAC
3D
remainingdocumentscovervariousaspectsofFLAC
3D
,includingtheoreticalbackgroundinforma-
tion,verifipletemanualisavailableinelectronic
formatontheFLAC
3D
CD-ROM(viewedwithAcrobatReader),fic
topicsorkeywordscanbefoundacrossallvolumesbyimplementingthesearchfacilityavailable
inAcrobat.
Theorganizationofthetwelvedocuments,andbriefsummariesofthecontentsofeachsection,
notethatifyouareviewingthemanualintheAcrobatReader,double-clickingon
asectionnumbergivenbelowwillimmediatelyopenthatsectionforviewing.
User’sGuide
Section1Introduction
ThissectionintroducesyoutoFLAC
3D
view
ofthenewfeaturesinthelatestversionofFLAC
3D
isalsoprovided.
Section2GettingStarted
IfyouarejustbeginningtouseFLAC
3D
,oruseitonlyoccasionally,werecommend
ctionprovidesinstructionsoninstallationandop-
erationoftheprogram,aswellasrecommendedproceduresforrunningFLAC
3D
analyses.
Section3ProblemSolvingwithFLAC
3D
thissectiononceyouare
epinaFLAC
3D
analysisisdiscussedin
detail,andadviceisgivenonthemosteffectiveprocedurestofollowwhencreating,
solvingandinterpretingaFLAC
3D
modelsimulation.
Section4FISHBeginner’sGuide
Section4providesthenewuserwithanintroductiontotheFISHprogramming
languageinFLAC
3D
.ThisincludesatutorialontheuseoftheFISHlanguage.
FISHisdescribedindetailinSection2intheFISHvolume.
FLAC
3D
Version4.0
INTRODUCTION1-13
Section5Miscellaneous
Variousinformationiscontainedinthissection,includingtheFLAC
3D
runtime
benchmarkandproceduresforreportingerrorsandrequestingtechnicalsupport.
DescriptionsofutilityfilestoassistwithFLAC
3D
operationarealsogiven.
Section6Bibliography
Thissectioncontainsabibliographyofpublishedpapersdescribingsomeusesof
FLAC
3D
.
CommandReference
Section1CommandReference
Allthecommandsthatcanbeenteredinthecommand-drivenmodeinFLAC
3D
(exceptthePLOTcommand,whichhasitsownvolume)aredescribedinSection1
intheCommandReference.
PlotCommandReference
Section1PlotCommandReference
ThePLOTcommandisdescribedinSection1inthePlotCommandReference.
FISHinFLAC
3D
Section1FISHBeginner’sGuide
Section1intheFISHvolumeprovidesthenewuserwithanintroductiontothe
FISHprogramminglanguageinFLAC
3D
.Thisincludesatutorialontheuseofthe
FISHlanguage.
Section2FISHReference
Section2intheFISHvolumecontainsadetailedreferencetotheFISHlanguage.
AllFISHstatements,variablesandfunctionsareexplainedandexamplesgiven.
Section3LibraryofFISHFunctions
AlibraryofcommonandgeneralpurposeFISHfunctionsisgiveninSection3inthe
unctionscanassistwithvariousaspectsofFLAC
3D
model
generationandsolution.
Section4C++FISHIntrinsicPlug-ins
InstructionsonhowtocompileandinputcustomFISHintrinsicswritteninC++are
providedinSection4intheFISHvolume.
FLAC
3D
Version4.0
1-14User’sGuide
TheoryandBackground
Section1TheoreticalBackground
ThetheoreticalformulationforFLAC
3D
isdescribedindetailinSection1inTheory
cludesboththedescriptionofthemathematicalmodel
thatdescribesthemechanicsofasystemandthenumericalimplementation.
Section2ConstitutiveModels:TheoryandImplementation
Thetheoreticalformulationandimplementationofthevariousbuilt-inconstitutive
modelsaredescribedinSection2inTheoryandBackground.
Section3WritingNewConstitutiveModels
UserscanwritetheirownconstitutivemodelsforincorporationintoFLAC
3D
.The
modelsarewritteninC++,andcompiledasaDLLfile(dynamiclinklibrary)thatcan
ceduretocreatenewmodelsisdescribed
inSection3inTheoryandBackground.
Section4Interfaces
TheinterfacelogicisdescribedandexampleapplicationsaregiveninSection4in
ssiononinterfacepropertiesisalsoprovided.
Fluid-MechanicalInteraction
Section1Fluid-MechanicalInteraction–SinglePhaseFluid
Theformulationforthefluid-flowmodelisdescribed,andthevariouswaystomodel
fluidflow,bothwithandwithoutsolidinteraction,areillustratedinSection1in
Fluid-MechanicalInteraction.
StructuralElements
Section1StructuralElements
Section1inStructuralElementsdescribesthevariousstructuralelementmodels
availableinFLAC
3D
.Theseincludebeams,cables,piles,shells,linersandgeogrids.
ThermalAnalysis
Section1ThermalOption
Section1inThermalAnalysisdescribesthethermalmodeloption,andpresents
severalverificationproblemsthatillustrateitsapplicationbothwithandwithout
interactionwithmechanicalstressandporepressure.
FLAC
3D
Version4.0
INTRODUCTION1-15
Section2Hydration
,
thesettingofconcrete).Twoexampleproblemsareprovided.
CreepMaterialModels
Section1CreepMaterialModels
ThedifferentcreepmaterialmodelsavailableasanoptioninFLAC
3D
aredescribed,
andverificationandexampleproblemsareprovidedinSection1inCreepMaterial
Models.
DynamicAnalysis
Section1DynamicAnalysis
Thedynamicanalysisoptionisdescribed,andconsiderationsforrunningadynamic
lverificationexamples
arealsoincludedinthissection.
VerificationProblems
ThisvolumecontainsacollectionofFLAC
3D
verifiretests
inwhichaFLAC
3D
,closed-form)
le1intheVerificationsvolumeforalistoftheverification
problems.
ExampleApplications
ThisvolumecontainsexampleapplicationsofFLAC
3D
thatdemonstratethevarious
classesofproblemstowhichFLAC
3D
le1intheExamples
volumeforalistoftheexampleapplications.
FLAC
3D
Version4.0
1-16User’sGuide
1.7ItascaConsultingGroupInc.
thanadeveloperanddistributorofengineeringsoftware.
Itascaisaconsultingandresearchfirmconsistingofaspecializedteamofcivil,geotechnicaland
miningengineerswithanestablishedrecordinsolvingproblemsintheareasof:
CivilEngineering
MiningEngineeringandEnergyResourceRecovery
NuclearWasteIsolationandUndergroundSpace
DefenseResearch
SoftwareEngineering
GroundwaterAnalysisandDewatering
Itascawasestablishedin1981toprovideadvancedrockmechanicsservicestotheminingindustry.
Today,Itascaisamultidisciplinarygeotechnicalfirmwith80professionalsinofficesworldwide.
ThecorporateheadquartersforItascaislocatedinMinneapolis,ideofficesof
Itascaare:ItascaDenver(Denver,Colorado);ItascaGeomekanikAB(Stockholm,Sweden);Itasca
ConsultantsS.A.S.(Ecully,France);ItascaConsultantsGmbH(Gelsenkirchen,Germany);Itasca
ConsultoresS.L.(Llanera,Spain);ItascaS.A.(Santiago,Chile);ItascaAfricaLtd.(Johannesburg,
SouthAfrica);ItascaConsultingCanadaInc.(Sudbury,Canada);ItascaConsultingChinaLtd.
(Wuhan,China);ItascaHoustonInc.(Houston,Texas);andItascaAustraliaLtd.(Melbourne,
Australia).
Itasca’sstaffmembersareinternationallyrecognizedfortheiraccomplishmentsingeological,min-
staffconsistsofgeological,mining,hydrologicaland
civilengineerswhoprovidearangeofcomprehensiveservicessuchas(1)computationalanal-
ysisinsupportofgeo-engineeringdesigns,(2)designandperformanceoffieldexperimentsand
demonstrations,(3)laboratorycharacterizationofrockproperties,(4)dataacquisition,analysis
andsystemidentification,(5)groundwatermodeling,and(6)shortcoursesandinstructioninthe
houldneedassistanceinanyofthese
areas,wewouldbegladtoofferourservices.
FLAC
3D
Version4.0
INTRODUCTION1-17
1.8UserSupport
WebelievethatthesupportItascaprovidestocodeusersisamajorreasonforthepopularityofour
provide
atimelyresponseviatelephone,lassistanceintheinstallationof
FLAC
3D
onyourcomputer,plusanswerstoquestionsconcerningcapabilitiesofthevariousfeatures
ofthecode,calassistanceforspecificuser-definedproblems
canbepurchasedonanas-neededbasis.
Ifyouhaveaquestion,ordesiretechnicalsupport,pleasecontactusat:
ItascaConsultingGroupInc.
MillPlace
111ThirdAvenueSouth,Suite450
Minneapolis,Minnesota55401USA
Phone:
Fax:
Email:
Web:
(+1)612-371-4711
(+1)612·371·4717
software@
Wealsohs
maybeobtainedfromItasca.
FLAC
3D
Version4.0
1-18User’sGuide
1.9References
Byrne,P.“ACyclicShear-VolumeCouplingandPore-PressureModelforSand,”inProceedings:
SecondInternationalConferenceonRecentAdvancesinGeotechnicalEarthquakeEngineering
andSoilDynamics(,Missouri,March,1991),PaperNo.1.24,47-55.
Marti,J.,l.“MixedDiscretizationProcedureforAccurateSolutionofPlasticity
Problems,”sinGeomech.,6,129-139,1982.
FLAC
3D
Version4.0