最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

FLAC介绍

IT圈 admin 67浏览 0评论

2024年8月28日发(作者:丑水蕊)

INTRODUCTION1-1

1INTRODUCTION

1.1Overview

FLAC

3D

isathree-dimensionalexplicitfinite-differenceprogramforengineeringmechanicscom-

isforthisprogramisthewell-establishednumericalformulationusedbyour

two-dimensionalprogram,FLAC.*FLAC

3D

extendstheanalysiscapabilityofFLACintothree

dimensions,simulatingthebehaviorofthree-dimensionalstructuresbuiltofsoil,rockorother

materialsthatundergoplasticflalsarerepresented

bypolyhedralelementswithinathree-dimensionalgridthatisadjustedbytheusertofittheshape

ementbehavesaccordingtoaprescribedlinearornonlinear

stress/erialcanyieldand

flow,andthegridcandeform(inlarge-strainmode)andmovewiththematerialthatisrepresented.

Theexplicit,Lagrangiancalculationschemeandthemixed-discretizationzoningtechniqueused

inFLAC

3D

ensurethatplasticcollapseandflenomatrices

areformed,largethree-dimensionalcalculationscanbemadewithoutexcessivememoryrequire-

,smalltimesteplimitationandthequestionof

requireddamping)areovercomebyautomaticinertiascalingandautomaticdampingthatdoesnot

infl

3D

offersanidealanalysistoolforsolutionofthree-dimensional

problemsingeotechnicalengineering.

FLAC

3D

isdesignedspecificallytooperateonMicrosoftWindowssystems,andiscurrentlysup-

portedonWindowsXP(includingXP64)andWindowsVista(includingVista64).Itanium-based

ationsonrealisticallysizedthree-dimensionalmodelsingeo-

mple,amodelcontaining125,000

timetoperform

5000calculationstepsfora10,000zonemodelofMohr-Coulombmaterialisroughly2minuteson

a2.7GHzIntelCorei7CPU.†Thenumberofcalculationstepsrequiredtoreachasolutionstate

withtheexplicit-calculationschemecanvary,butasolutiontypicallycanbereachedwithin3000to

5000stepsformodelscontainingupto10,000elements,regardlessofmaterialtype.(Theexplicit-

solutionschemeisexplainedinSection1inTheoryandBackground.)Withtheadvancements

infloating-pointoperationspeed,andtheabilitytoinstalladditionalRAMatlowcost,itshouldbe

possibletosolveincreasinglylargerthree-dimensionalproblemswithFLAC

3D

.

FLAC

3D

canbe

defaultcommand-

willfindthatmostofthecommandsarethesameas,orthree-dimensionalextensionsof,thosein

-driven,graphicaluserinterfaceisalsoavailableinFLAC

3D

forperformingplotting,

printingandfileaccess.

*ItascaConsultingGroup,(FastLagrangianAnalysisofContinua.),Version6.0,2008.

†SeeSection5foracomparisonofFLAC

3D

runtimesonvariouscomputersystems.

FLAC

3D

Version4.0

1-2User’sGuide

WiththegraphicsfacilitiesbuiltintoFLAC

3D

,high-resolution,color-renderedplotsaregenerated

developedagraphicsscreen-plottingfacilitythatallowsyoutoinstantly

viewel

canbetranslated,rotatedandmagnifi-renderedplots

ofsurfacesshowingvectorsorcontourscanbemadein3D,andatwo-dimensionalplanecanbe

locatedatanyorientationandlocationinthemodelforthepurposeofviewingvectororcontour

putcanbedirectedtoablack-and-whiteorcolorhardcopydevice,or

toafile.

YouwillfindthatFLAC

3D

offersafacilityforproblemsolvingsimilartotheoneinFLAC.A

comparisonofFLAC

3D

toothernumericalmethods,adescriptionofgeneralfeaturesandupdatesin

FLAC

3D

Version3.1,andadiscussionoffieldsofapplicationareprovidedinthefollowingsections.

IfyouwishtotryFLAC

3D

rightaway,theprograminstallationinstructionsandasimpletutorial

areprovidedinSection2.

FLAC

3D

Version4.0

INTRODUCTION1-3

1.2ComparisonwithOtherMethods

HowdoesFLAC

3D

comparetothemorecommonmethodofusingfiniteelementsfornumerical

modeling?Bothmethodstranslateasetofdifferentialequationsintomatrixequationsforeach

element,ghFLAC

3D

’sequationsare

derivedbythefinitedifferencemethod,theresultingelementmatricesforanelasticmaterialare

identicaltothoseofthefiniteelementmethod(forconstant-straintetrahedra).However,FLAC

3D

differsinthefollowingrespects:

“mixeddiscretization”scheme(MartiandCundall1982)isusedforac-

curatemodelingofplasticcollapseloadsandplasticflhemeisbe-

lievedtobephysicallymorejustifiablethanthe“reducedintegration”scheme

commonlyusedwithfiniteelements.

ldynamicequationsofmotionareused,evenwhenmodelingsystems

ablesFLAC

3D

tofollowphysicallyunstable

roachtoprovideatime-static

solutionisdiscussedinthedefinitionfor“StaticSolution”giveninSection2.3.

“explicit”solutionschemeisused(incontrasttothemoreusualimplicit

methods).Explicitschemescanfollowarbitrarynonlinearityinstress/strain

lawsinalmostthesamecomputertimeaslinearlaws,whereasimplicitsolu-

tionscantakesignifirmore,

itisnotnecessarytostoreanymatrices,whichmeans:(a)alargenumber

ofelementsmaybemodeledwithamodestmemoryrequirement;and(b)a

large-strainsimulationishardlymoretime-consumingthanasmall-strainrun,

becausethereisnostiffnessmatrixtobeupdated.

3D

isrobustinthesensethatitcanhandleanyconstitutivemodelwithno

adjustmenttothesolutionalgorithm;manyfiniteelementcodesneeddifferent

solutiontechniquesfordifferentconstitutivemodels.

ThesedifferencesaremainlyinFLAC

3D

’sfavor,buttherearetwodisadvantages:

simulationsrunmoreslowlywithFLAC

3D

thanwithequivalentfinite

3D

ismosteffectivewhenappliedtononlinearor

large-strainproblems,ortosituationsinwhichphysicalinstabilitymayoccur.

utiontimewithFLAC

3D

isdeterminedbytheratioofthelongestnatural

int

isdiscussedinmoredetailinSection1inTheoryandBackground,but

certainproblemsareveryineffi,beams,representedby

solidelementsratherthanstructuralelements,orproblemsthatcontainlarge

disparitiesinelasticmoduliorelementsizes).

FLAC

3D

Version4.0

1-4User’sGuide

1.3GeneralFeatures

1.3.1BasicFeatures

FLAC

3D

offersawiderangeofcapabilitiestosolvecomplexproblemsinmechanics,andes-

AC,FLAC

3D

embodiesspecialnumericalrepresentationsfor

gramhasthirteenbasicbuilt-inmaterial

models:the“null”model;threeelasticitymodels(isotropic,transverselyisotropicandorthotropic

elasticity);andnineplasticitymodels(Drucker-Prager,Mohr-Coulomb,strain-hardening/softening,

ubiquitous-joint,bilinearstrain-hardening/softeningubiquitous-joint,double-yield,modifiedCam-

clay,CysoilandHoek-Brown).ThesemodelsaredescribedindetailinSection2inTheoryand

neinaFLAC

3D

gridmayhaveadifferentmaterialmodelorproperty,anda

continuousgradientorstatisticaldistributionofanypropertymaybespecified.

Additionally,aninterface,orslip-plane,modelisavailabletorepresentdistinctinterfacesbetween

erfacesareplanesuponwhichslipand/orseparationare

allowed,therebysimulatingthepresenceoffaults,erface

modelisdescribedinSection4inTheoryandBackground.

FLAC

3D

containsanautomatic3Dgridgeneratorinwhichgridsarecreatedbymanipulatingand

connectingpredefinedshapes.*Thegeneratorpermitsthecreationofintersectinginternalregions

(e.g.,intersectingtunnels).The3Dgridisdefinedbyaglobalx,y,z-coordinatesystem(ratherthan

inarow-and-columnfashionasinFLAC).Thisprovidesmoreflexibilityinmodelcreationand

definerationproceduresaredescribedin

Section1intheCommandReferenceundertheGENERATEcommand.

Boundaryconditionsandinitialconditionsarespecifi

velocity(anddisplacement)boundaryconditionsorstress(andforce)boundaryconditionsmay

bespecifilstressconditions,includinggravitationalloading,

mayalsobegiven,andawatertablemaybedefiditions

maybespecifiryconditionsareprimarilyassignedviatheAPPLYcom-

mand,andinitialconditionsviatheINITIALcommand,asdescribedinSection1intheCommand

Reference.

FLAC

3D

incorporatesthefacilitytomodelgroundwaterflowandpore-pressuredissipation,andthe

fullcouplingbetweenadeformableporoussolidandaviscousfluidflowingwithintheporespace.

(ThecoupledinteractionisdescribedfurtherinSection1.3.3.)Thefluidisassumedtoobeyeither

theisotropicoranisotropicformofDarcy’efluidandthegrainswithintheporous

-steadyflowismodeled,withsteadyflowtreatedasanasymptoticcase.

Fixedporepressureandconstant-flowboundaryconditionsmaybeused,andsourcesandsinks

(wells)flowmodelcanalsoberunindependentofthemechanicalcalculation,

andbothconfinedandunconfinedflowcanbesimulated,withautomaticcalculationofthephreatic

fluid-flowmodelisdescribedinSection1inFluid-MechanicalInteraction.

*Anoptionalmeshingpre-processorisalsoavailable(seeSection1.3.2).

FLAC

3D

Version4.0

INTRODUCTION1-5

Structuresthatinteractwiththesurroundingrockorsoil,suchastunnelliners,piles,sheetpiles,

cables,rockboltsorgeotextiles,maybemodeledwiththestructuralelementlogicinFLAC

3D

.Itis

possibletoeitherexaminethestabilizingeffectsofsupportedexcavations,ortostudytheeffectsof

ferenttypesofstructuralelementsaredescribed

inSection1inStructuralElements.

AfactorofsafetycanbecalculatedautomaticallyforanyFLAC

3D

modelusingacompatible

culationisbasedona“strengthreductiontechnique”thatperformsa

seriesofsimulationswhilechangingthestrengthpropertiestodeterminetheconditionatwhichan

rofsafetywhichcorrespondstothepointofinstabilityisfound,and

tor-of-safetyalgorithmisdescribedin

Section3.8.

FLAC

3D

alsocontainsapowerfulbuilt-inprogramminglanguage,FISH,thatenablestheuserto

defifersauniquecapabilitytouserswhowishtotailor

analysestosuittheirspecifimple,FISHpermits:

•,nonlinearincreaseinmoduluswith

depth);

•plottingandprintingofuser-defi,custom-designedplots);

•implementationofspecialgridgenerators;

•servo-controlofnumericaltests;

•specificationofunusualboundaryconditions;

•variationsintimeandspace;and

•automationofparameterstudies.

tion2intheFISHvolumeforadetailed

referencetotheFISHlanguage.

FLAC

3D

containsextensivegraphicsfacilitiesforgeneratingplotsofvirtuallyanyproblemvariable.

Three-dingfeatures

includehiddensurfaceplots,dvariablescanbeviewed

infrontof,rsionofFLAC

3D

hasbeencompiledasanativeWindowsexecutableusingtheWIN32APItosupportexecutionunder

gramhasthelook-and-feelofatypicalWindows

program;however,mostmodelingoperationsareperformedinthecommand-drivenmode,while

thegraphicaluserinterfacesupportsfile-handling,modelandresponsevisualization(plotting),

andprinting(usingstandardWindowsfile-handlingandprintingfacilities).Plottingoperationsare

describedinSection1inthePlotCommandReference.

FLAC

3D

Version4.0

1-6User’sGuide

1.3.2OptionalFeatures

Fouroptionalfeatures(fordynamicanalysis,thermalanalysis,modelingcreep-materialbehavior,

andC++plug-ins)areavailableasseparatemodulesthatcanbeincludedinFLAC

3D

atanadditional

costpermodule.

DynamicanalysiscanbeperformedwithFLAC

3D

,usingtheoptionaldynamic-calculationmodule.

User-specifiedacceleration,velocityorstresswavescanbeinputdirectlytothemodel,aseither

3D

containsabsorbing

andfree-fieldboundaryconditionstosimulatetheeffectofaninfiniteelasticmediumsurrounding

amiccalculationcanbecoupledtothegroundwaterflowmodel;thelevelof

coupling,includingdynamicpore-pressuregeneration(liquefaction),isdiscussedinSection1.3.3.

ThedynamicanalysiscapabilityisdescribedinSection1inDynamicAnalysis.

ThereisathermalanalysisoptionavailableasaspecialmoduleinFLAC

3D

.Thismodelsimulates

thetransientfluxofheatinmaterials,andthesubsequentdevelopmentofthermallyinducedstresses.

Thethermalmodelcanberunindependently,orcoupledtothemechanical-stresscalculationor

pore-pressurecalculation,eitherstaticordynamic.(Thecouplinginteractionsaredescribedin

Section1.3.3.)ThethermalanalysiscapabilityisdescribedinSection1inThermalAnalysis.

Thereareeightoptionalmaterialmodelsavailablethatsimulatetime-dependent(creep)material

behavior(allcreepmodelsaredescribedinSection1inCreepMaterialModels):

(1)theclassicalviscoelastic(Maxwell)model;

(2)aBurgerssubstanceviscoelasticmodel;

(3)atwo-componentpowerlaw;

(4)areferencecreepformulation(theWIPPmodel)implementedfornuclearwasteisolation

studies;

(5)aBurgers-creepviscoplasticmodelcombiningtheBurgersmodelandtheMohr-Coulomb

model;

(6)apower-lawviscoplasticmodelcombiningthetwo-componentpowerlawandtheMohr-

Coulombmodel;

(7)aWIPP-creepviscoplasticmodelcombiningthereferencecreepformulationwiththe

Drucker-Pragerplasticitymodel;and

(8)a“crushed-salt”modelthatsimulatesbothvolumetricanddeviatoriccreepcompaction.

WiththeC++plug-infeature,user-definedconstitutivemodelsandFISHintrinsicscanbewritten

inC++andcompiledasDLL(dynamiclinklibrary)filesthatcanbeloadedwheneverneeded.

MicrosoftVisualC++Version8.0(MicrosoftVisualStudio2005)isusedtocompiletheDLL

ficeduretowritenewconstitutivemodelsisdescribedinSection3inTheoryand

ceduretowritenewFISHintrinsicsisdescribedinSection4intheFISH

volume.

FLAC

3D

Version4.0

INTRODUCTION1-7

1.3.3ModelingPhysicalProcessesandInteractions

ThedefaultcalculationmodeinFLAC

3D

atively,aground-

waterflowanalysisoraheat-transferanalysiscanbeperformed,independentofthemechanical

egroundwaterflowandthermalmodelsmaybecoupledtothemechanicalstress

ethefullequationsofmotionareusedinFLAC

3D

,thecoupling

mechanismsoperateindynamicanalysesaswellasstaticanalyses.

Thecouplingmechanismsaredividedintothreetypesofinteraction:mechanicalandgroundwater

flow;mechanicalandthermal;andthermalandgroundwaterflelofinteractionmodeled

inFLAC

3D

foreachtypeisdescribedbelow.

Mechanical-GroundwaterFlowCoupling–Severaltypesoffluid/solidinteractioncanbespecified

inFLAC

3D

.Onetypeofinteractionisconsolidation,inwhichtheslowdissipationofporepressure

,soil).Twomechanicaleffectsareatworkinthis

case:(1)thefluidinazonereactstomechanicalvolumechangesbyachangeintheporepressure;

and(2)thepore-pressurechangecauseschangesintheeffectivestressthataffecttheresponseof

,areductionineffectivestressmayinduceplasticyield).Couplingbetweenfluidand

solidduetodeformablegrainscanalsobespecified.

FLAC

3D

cancalculatepore-pressureeffects,withorwithoutpore-pressuredissipation,simplyby

settingthefl,,relatedto

liquefaction)canbemodeledbyaccountingforirreversiblevolumestrainintheconstitutivemodel.

Thisisdonewithtwodifferentbuilt-inconstitutivemodels:the“Finn”model,andthe“Byrne”

delsareprovidedwiththedynamicoption.

Bydefault,r,thesepropertiescanbe

sequence,two-waycouplingof

mechanicalstressandgroundwaterflowcanbemodeledwithFLAC

3D

.

Othertypesofinteraction,suchascapillary,electricalorchemicalforcesbetweenparticlesofa

partiallysaturatedmaterial,arenotmodeleddirectlybyFLAC

3D

.Butsomeoftheeffectsmaybe

rly,aFISHfunctionmaybeusedtovarythe

localfluidmodulusasafunctionofotherquantitiessuchaspressureortime.

Thermal-MechanicalCoupling–Thethermal-mechanicalcouplinginFLAC

3D

isone-way:tem-

peraturechangemayinduceamechanicalstresschangeasafunctionofthethermal-expansion

coeffiicalchangesinthebody,however,donotresultintemperaturechangeor

onally,mechanicalpropertiescanbemadeafunctionof

temperaturechange,sinceFISHpermitsaccesstobothtemperaturesandproperties.

Thermal-GroundwaterFlowCoupling–Thethermalcalculationmaybecoupledtotheground-

waterfltricstrain

canarisefromthermalexpansionofboththefl

pressurechangeresultsfromthisvolumetricstrain,aswellasfrommechanicalvolumetricstrain.

Groundwaterflowcanalsoinfluenceheattransfer;anadvectionmodelthattakesthetransportof

ectionmodelcanalsosimulatetemperature-

dependentfluiddensityandthermaladvectioninthefluid.

FLAC

3D

Version4.0

1-8User’sGuide

Aswithmechanicalproperties,groundwaterpropertiescanbemadeafunctionoftemperature

changebyaccessingtemperatureandpropertyvaluesviaFISH.

FLAC

3D

Version4.0

INTRODUCTION1-9

1.4SummaryofUpdatesfromVersion3.1

FLAC

3D

4.0containsseveralimprovements;thenewfeaturesaresummarizedinthefollowing

ngdatafilescreatedforVersion3.1shouldstilloperateasbefore,withtheexception

3D

4.0willnotbeabletorestorefiles

savedbypreviousversions.

1.4.1AllNewUserInterface

AcompletelynewgraphicaluserinterfacehasbeendevelopedforFLAC

3D

uresgraphics

hardware-accelerated3Drendering(usingOpenGL),abuilt-ineditorwithsyntaxhighlightingand

datafilevalidation,andaprojectinterfacetohelpkeeptrackofthevariousfilesassociatedwitha

ultofthesechanges,PLOTcommandsarenotbackwardscompatible,norareany

ofthevariouscommands(MAINWIN,etc)thatinteracteddirectlywiththeprevioususerinterface.

Alongwithanewplottingimplementation,manynewplottingfeaturesareavailableinFLAC

3D

4.0,includingthefollowing:

•interactiveclippingbox

•iso-surfaces

•lineprofiles

•equalanglestereonets

•DXFfileimport

•FISHplotting

•exportingplotstoDXFfiles

•transparency

1.4.2FISHImprovements

ManyimprovementshavebeenmadetoFISH,includingthefollowing:

•localvariables

•functionarguments

•command-linedebugging

•improvederrormessages

•vectorsassymboltypes,alongwithreal,integer,etc.

FLAC

3D

Version4.0

1-10User’sGuide

•dynamicarrays–arraylengthisnolongerfixedatcreation

•zonefielddatafunctions–readmodelvariablesefficientlyatarbitrarylocationsinspace

•user-definedC++FISHintrinsicplug-ins

1.4.3Multi-threadingUsingNodalMixedDiscretization

ficiencygained

isnotashighaswithtraditionalmixed-discretization,butanincreaseinspeedofafactorofthree

ispossibleoncurrenthardware.

1.4.4MiscellaneousImprovements

OtherimprovementstoFLAC

3D

4.0includethefollowing:

•AnimprovedC++interfaceismoreeffi-

cientatruntime,andkeepsbettertrackofchangesthatbreakcompatibility.

•necanbeassignedagroupinoneofmany

berofavailablegroupslotsisdeterminedwithaCONFIGcommand.

•nctionscannowbewrittenandconnectedtotheRANGE

logic,allowingfilteringbasedonanyuser-definedcriteria.

•Anewconstitutivemodelhasbeenadded–tion2.5.9in

TheoryandBackground.

FLAC

3D

Version4.0

INTRODUCTION1-11

1.5FieldsofApplication

FLAC

3D

n6containsa

bibliographyofpublicationsontheapplicationofFLAC

3D

togeotechnicalproblemsinthefields

ofmining,undergroundengineering,rockmechanicsandresearch.

SomepossibleapplicationsofFLAC

3D

eFLAC

3D

nowhasessentially

thesamecapabilitiesofFLAC,manyoftheFLACapplicationscannowbeextendedintothree

dimensionswithFLAC

3D

:

•mechanicalloadingcapacityanddeformations–inslopestabilityandfoundationdesign;

•evolutionofprogressivefailureandcollapse–inhardrockmineandtunneldesign;

•factor-of-safetycalculation–instabilityanalysesforearthstructures,embankmentsand

slopes;

•evaluationoftheinfluenceoffaultstructures–inminedesign;

•restraintprovidedbycablesupportongeologicmaterials–inrockbolting,tiebacksand

soilnailing;

•fullyandpartiallysaturatedfluidflow,andpore-pressurebuild-upanddissipationfor

undrainedanddrainedloading–ingroundwaterflowandconsolidationstudiesofearth-

retainingstructures;

•time-dependentcreepbehaviorofviscousmaterials–insaltandpotashminedesign;

•dynamicloadingonslip-pronegeologicstructures–inearthquakeengineeringandmine

rockburststudies;

•dynamiceffectsofexplosiveloadingandvibrations–intunneldrivingorinmining

operations;

•seismicexcitationofstructures–inearthdamdesign;

•deformationandmechanicalinstabilityresultingfromthermal-inducedloads–inper-

formanceassessmentofundergroundrepositoriesofhigh-levelradioactivewaste;and

•analysisofhighlydeformablematerials–inbulkflowofmaterialsinbinsandmine

caving.

FLAC

3D

Version4.0

1-12User’sGuide

1.6GuidetotheFLAC

3D

Manual

TheFLAC

3D

cument,theUser’sGuide,

isthemainguidetousingFLAC

3D

andcontainsdescriptionsofthefeaturesandcapabilitiesof

theprogram,alongwithrecommendationsonthebestuseofFLAC

3D

remainingdocumentscovervariousaspectsofFLAC

3D

,includingtheoreticalbackgroundinforma-

tion,verifipletemanualisavailableinelectronic

formatontheFLAC

3D

CD-ROM(viewedwithAcrobatReader),fic

topicsorkeywordscanbefoundacrossallvolumesbyimplementingthesearchfacilityavailable

inAcrobat.

Theorganizationofthetwelvedocuments,andbriefsummariesofthecontentsofeachsection,

notethatifyouareviewingthemanualintheAcrobatReader,double-clickingon

asectionnumbergivenbelowwillimmediatelyopenthatsectionforviewing.

User’sGuide

Section1Introduction

ThissectionintroducesyoutoFLAC

3D

view

ofthenewfeaturesinthelatestversionofFLAC

3D

isalsoprovided.

Section2GettingStarted

IfyouarejustbeginningtouseFLAC

3D

,oruseitonlyoccasionally,werecommend

ctionprovidesinstructionsoninstallationandop-

erationoftheprogram,aswellasrecommendedproceduresforrunningFLAC

3D

analyses.

Section3ProblemSolvingwithFLAC

3D

thissectiononceyouare

epinaFLAC

3D

analysisisdiscussedin

detail,andadviceisgivenonthemosteffectiveprocedurestofollowwhencreating,

solvingandinterpretingaFLAC

3D

modelsimulation.

Section4FISHBeginner’sGuide

Section4providesthenewuserwithanintroductiontotheFISHprogramming

languageinFLAC

3D

.ThisincludesatutorialontheuseoftheFISHlanguage.

FISHisdescribedindetailinSection2intheFISHvolume.

FLAC

3D

Version4.0

INTRODUCTION1-13

Section5Miscellaneous

Variousinformationiscontainedinthissection,includingtheFLAC

3D

runtime

benchmarkandproceduresforreportingerrorsandrequestingtechnicalsupport.

DescriptionsofutilityfilestoassistwithFLAC

3D

operationarealsogiven.

Section6Bibliography

Thissectioncontainsabibliographyofpublishedpapersdescribingsomeusesof

FLAC

3D

.

CommandReference

Section1CommandReference

Allthecommandsthatcanbeenteredinthecommand-drivenmodeinFLAC

3D

(exceptthePLOTcommand,whichhasitsownvolume)aredescribedinSection1

intheCommandReference.

PlotCommandReference

Section1PlotCommandReference

ThePLOTcommandisdescribedinSection1inthePlotCommandReference.

FISHinFLAC

3D

Section1FISHBeginner’sGuide

Section1intheFISHvolumeprovidesthenewuserwithanintroductiontothe

FISHprogramminglanguageinFLAC

3D

.Thisincludesatutorialontheuseofthe

FISHlanguage.

Section2FISHReference

Section2intheFISHvolumecontainsadetailedreferencetotheFISHlanguage.

AllFISHstatements,variablesandfunctionsareexplainedandexamplesgiven.

Section3LibraryofFISHFunctions

AlibraryofcommonandgeneralpurposeFISHfunctionsisgiveninSection3inthe

unctionscanassistwithvariousaspectsofFLAC

3D

model

generationandsolution.

Section4C++FISHIntrinsicPlug-ins

InstructionsonhowtocompileandinputcustomFISHintrinsicswritteninC++are

providedinSection4intheFISHvolume.

FLAC

3D

Version4.0

1-14User’sGuide

TheoryandBackground

Section1TheoreticalBackground

ThetheoreticalformulationforFLAC

3D

isdescribedindetailinSection1inTheory

cludesboththedescriptionofthemathematicalmodel

thatdescribesthemechanicsofasystemandthenumericalimplementation.

Section2ConstitutiveModels:TheoryandImplementation

Thetheoreticalformulationandimplementationofthevariousbuilt-inconstitutive

modelsaredescribedinSection2inTheoryandBackground.

Section3WritingNewConstitutiveModels

UserscanwritetheirownconstitutivemodelsforincorporationintoFLAC

3D

.The

modelsarewritteninC++,andcompiledasaDLLfile(dynamiclinklibrary)thatcan

ceduretocreatenewmodelsisdescribed

inSection3inTheoryandBackground.

Section4Interfaces

TheinterfacelogicisdescribedandexampleapplicationsaregiveninSection4in

ssiononinterfacepropertiesisalsoprovided.

Fluid-MechanicalInteraction

Section1Fluid-MechanicalInteraction–SinglePhaseFluid

Theformulationforthefluid-flowmodelisdescribed,andthevariouswaystomodel

fluidflow,bothwithandwithoutsolidinteraction,areillustratedinSection1in

Fluid-MechanicalInteraction.

StructuralElements

Section1StructuralElements

Section1inStructuralElementsdescribesthevariousstructuralelementmodels

availableinFLAC

3D

.Theseincludebeams,cables,piles,shells,linersandgeogrids.

ThermalAnalysis

Section1ThermalOption

Section1inThermalAnalysisdescribesthethermalmodeloption,andpresents

severalverificationproblemsthatillustrateitsapplicationbothwithandwithout

interactionwithmechanicalstressandporepressure.

FLAC

3D

Version4.0

INTRODUCTION1-15

Section2Hydration

,

thesettingofconcrete).Twoexampleproblemsareprovided.

CreepMaterialModels

Section1CreepMaterialModels

ThedifferentcreepmaterialmodelsavailableasanoptioninFLAC

3D

aredescribed,

andverificationandexampleproblemsareprovidedinSection1inCreepMaterial

Models.

DynamicAnalysis

Section1DynamicAnalysis

Thedynamicanalysisoptionisdescribed,andconsiderationsforrunningadynamic

lverificationexamples

arealsoincludedinthissection.

VerificationProblems

ThisvolumecontainsacollectionofFLAC

3D

verifiretests

inwhichaFLAC

3D

,closed-form)

le1intheVerificationsvolumeforalistoftheverification

problems.

ExampleApplications

ThisvolumecontainsexampleapplicationsofFLAC

3D

thatdemonstratethevarious

classesofproblemstowhichFLAC

3D

le1intheExamples

volumeforalistoftheexampleapplications.

FLAC

3D

Version4.0

1-16User’sGuide

1.7ItascaConsultingGroupInc.

thanadeveloperanddistributorofengineeringsoftware.

Itascaisaconsultingandresearchfirmconsistingofaspecializedteamofcivil,geotechnicaland

miningengineerswithanestablishedrecordinsolvingproblemsintheareasof:

CivilEngineering

MiningEngineeringandEnergyResourceRecovery

NuclearWasteIsolationandUndergroundSpace

DefenseResearch

SoftwareEngineering

GroundwaterAnalysisandDewatering

Itascawasestablishedin1981toprovideadvancedrockmechanicsservicestotheminingindustry.

Today,Itascaisamultidisciplinarygeotechnicalfirmwith80professionalsinofficesworldwide.

ThecorporateheadquartersforItascaislocatedinMinneapolis,ideofficesof

Itascaare:ItascaDenver(Denver,Colorado);ItascaGeomekanikAB(Stockholm,Sweden);Itasca

ConsultantsS.A.S.(Ecully,France);ItascaConsultantsGmbH(Gelsenkirchen,Germany);Itasca

ConsultoresS.L.(Llanera,Spain);ItascaS.A.(Santiago,Chile);ItascaAfricaLtd.(Johannesburg,

SouthAfrica);ItascaConsultingCanadaInc.(Sudbury,Canada);ItascaConsultingChinaLtd.

(Wuhan,China);ItascaHoustonInc.(Houston,Texas);andItascaAustraliaLtd.(Melbourne,

Australia).

Itasca’sstaffmembersareinternationallyrecognizedfortheiraccomplishmentsingeological,min-

staffconsistsofgeological,mining,hydrologicaland

civilengineerswhoprovidearangeofcomprehensiveservicessuchas(1)computationalanal-

ysisinsupportofgeo-engineeringdesigns,(2)designandperformanceoffieldexperimentsand

demonstrations,(3)laboratorycharacterizationofrockproperties,(4)dataacquisition,analysis

andsystemidentification,(5)groundwatermodeling,and(6)shortcoursesandinstructioninthe

houldneedassistanceinanyofthese

areas,wewouldbegladtoofferourservices.

FLAC

3D

Version4.0

INTRODUCTION1-17

1.8UserSupport

WebelievethatthesupportItascaprovidestocodeusersisamajorreasonforthepopularityofour

provide

atimelyresponseviatelephone,lassistanceintheinstallationof

FLAC

3D

onyourcomputer,plusanswerstoquestionsconcerningcapabilitiesofthevariousfeatures

ofthecode,calassistanceforspecificuser-definedproblems

canbepurchasedonanas-neededbasis.

Ifyouhaveaquestion,ordesiretechnicalsupport,pleasecontactusat:

ItascaConsultingGroupInc.

MillPlace

111ThirdAvenueSouth,Suite450

Minneapolis,Minnesota55401USA

Phone:

Fax:

Email:

Web:

(+1)612-371-4711

(+1)612·371·4717

software@

Wealsohs

maybeobtainedfromItasca.

FLAC

3D

Version4.0

1-18User’sGuide

1.9References

Byrne,P.“ACyclicShear-VolumeCouplingandPore-PressureModelforSand,”inProceedings:

SecondInternationalConferenceonRecentAdvancesinGeotechnicalEarthquakeEngineering

andSoilDynamics(,Missouri,March,1991),PaperNo.1.24,47-55.

Marti,J.,l.“MixedDiscretizationProcedureforAccurateSolutionofPlasticity

Problems,”sinGeomech.,6,129-139,1982.

FLAC

3D

Version4.0

2024年8月28日发(作者:丑水蕊)

INTRODUCTION1-1

1INTRODUCTION

1.1Overview

FLAC

3D

isathree-dimensionalexplicitfinite-differenceprogramforengineeringmechanicscom-

isforthisprogramisthewell-establishednumericalformulationusedbyour

two-dimensionalprogram,FLAC.*FLAC

3D

extendstheanalysiscapabilityofFLACintothree

dimensions,simulatingthebehaviorofthree-dimensionalstructuresbuiltofsoil,rockorother

materialsthatundergoplasticflalsarerepresented

bypolyhedralelementswithinathree-dimensionalgridthatisadjustedbytheusertofittheshape

ementbehavesaccordingtoaprescribedlinearornonlinear

stress/erialcanyieldand

flow,andthegridcandeform(inlarge-strainmode)andmovewiththematerialthatisrepresented.

Theexplicit,Lagrangiancalculationschemeandthemixed-discretizationzoningtechniqueused

inFLAC

3D

ensurethatplasticcollapseandflenomatrices

areformed,largethree-dimensionalcalculationscanbemadewithoutexcessivememoryrequire-

,smalltimesteplimitationandthequestionof

requireddamping)areovercomebyautomaticinertiascalingandautomaticdampingthatdoesnot

infl

3D

offersanidealanalysistoolforsolutionofthree-dimensional

problemsingeotechnicalengineering.

FLAC

3D

isdesignedspecificallytooperateonMicrosoftWindowssystems,andiscurrentlysup-

portedonWindowsXP(includingXP64)andWindowsVista(includingVista64).Itanium-based

ationsonrealisticallysizedthree-dimensionalmodelsingeo-

mple,amodelcontaining125,000

timetoperform

5000calculationstepsfora10,000zonemodelofMohr-Coulombmaterialisroughly2minuteson

a2.7GHzIntelCorei7CPU.†Thenumberofcalculationstepsrequiredtoreachasolutionstate

withtheexplicit-calculationschemecanvary,butasolutiontypicallycanbereachedwithin3000to

5000stepsformodelscontainingupto10,000elements,regardlessofmaterialtype.(Theexplicit-

solutionschemeisexplainedinSection1inTheoryandBackground.)Withtheadvancements

infloating-pointoperationspeed,andtheabilitytoinstalladditionalRAMatlowcost,itshouldbe

possibletosolveincreasinglylargerthree-dimensionalproblemswithFLAC

3D

.

FLAC

3D

canbe

defaultcommand-

willfindthatmostofthecommandsarethesameas,orthree-dimensionalextensionsof,thosein

-driven,graphicaluserinterfaceisalsoavailableinFLAC

3D

forperformingplotting,

printingandfileaccess.

*ItascaConsultingGroup,(FastLagrangianAnalysisofContinua.),Version6.0,2008.

†SeeSection5foracomparisonofFLAC

3D

runtimesonvariouscomputersystems.

FLAC

3D

Version4.0

1-2User’sGuide

WiththegraphicsfacilitiesbuiltintoFLAC

3D

,high-resolution,color-renderedplotsaregenerated

developedagraphicsscreen-plottingfacilitythatallowsyoutoinstantly

viewel

canbetranslated,rotatedandmagnifi-renderedplots

ofsurfacesshowingvectorsorcontourscanbemadein3D,andatwo-dimensionalplanecanbe

locatedatanyorientationandlocationinthemodelforthepurposeofviewingvectororcontour

putcanbedirectedtoablack-and-whiteorcolorhardcopydevice,or

toafile.

YouwillfindthatFLAC

3D

offersafacilityforproblemsolvingsimilartotheoneinFLAC.A

comparisonofFLAC

3D

toothernumericalmethods,adescriptionofgeneralfeaturesandupdatesin

FLAC

3D

Version3.1,andadiscussionoffieldsofapplicationareprovidedinthefollowingsections.

IfyouwishtotryFLAC

3D

rightaway,theprograminstallationinstructionsandasimpletutorial

areprovidedinSection2.

FLAC

3D

Version4.0

INTRODUCTION1-3

1.2ComparisonwithOtherMethods

HowdoesFLAC

3D

comparetothemorecommonmethodofusingfiniteelementsfornumerical

modeling?Bothmethodstranslateasetofdifferentialequationsintomatrixequationsforeach

element,ghFLAC

3D

’sequationsare

derivedbythefinitedifferencemethod,theresultingelementmatricesforanelasticmaterialare

identicaltothoseofthefiniteelementmethod(forconstant-straintetrahedra).However,FLAC

3D

differsinthefollowingrespects:

“mixeddiscretization”scheme(MartiandCundall1982)isusedforac-

curatemodelingofplasticcollapseloadsandplasticflhemeisbe-

lievedtobephysicallymorejustifiablethanthe“reducedintegration”scheme

commonlyusedwithfiniteelements.

ldynamicequationsofmotionareused,evenwhenmodelingsystems

ablesFLAC

3D

tofollowphysicallyunstable

roachtoprovideatime-static

solutionisdiscussedinthedefinitionfor“StaticSolution”giveninSection2.3.

“explicit”solutionschemeisused(incontrasttothemoreusualimplicit

methods).Explicitschemescanfollowarbitrarynonlinearityinstress/strain

lawsinalmostthesamecomputertimeaslinearlaws,whereasimplicitsolu-

tionscantakesignifirmore,

itisnotnecessarytostoreanymatrices,whichmeans:(a)alargenumber

ofelementsmaybemodeledwithamodestmemoryrequirement;and(b)a

large-strainsimulationishardlymoretime-consumingthanasmall-strainrun,

becausethereisnostiffnessmatrixtobeupdated.

3D

isrobustinthesensethatitcanhandleanyconstitutivemodelwithno

adjustmenttothesolutionalgorithm;manyfiniteelementcodesneeddifferent

solutiontechniquesfordifferentconstitutivemodels.

ThesedifferencesaremainlyinFLAC

3D

’sfavor,buttherearetwodisadvantages:

simulationsrunmoreslowlywithFLAC

3D

thanwithequivalentfinite

3D

ismosteffectivewhenappliedtononlinearor

large-strainproblems,ortosituationsinwhichphysicalinstabilitymayoccur.

utiontimewithFLAC

3D

isdeterminedbytheratioofthelongestnatural

int

isdiscussedinmoredetailinSection1inTheoryandBackground,but

certainproblemsareveryineffi,beams,representedby

solidelementsratherthanstructuralelements,orproblemsthatcontainlarge

disparitiesinelasticmoduliorelementsizes).

FLAC

3D

Version4.0

1-4User’sGuide

1.3GeneralFeatures

1.3.1BasicFeatures

FLAC

3D

offersawiderangeofcapabilitiestosolvecomplexproblemsinmechanics,andes-

AC,FLAC

3D

embodiesspecialnumericalrepresentationsfor

gramhasthirteenbasicbuilt-inmaterial

models:the“null”model;threeelasticitymodels(isotropic,transverselyisotropicandorthotropic

elasticity);andnineplasticitymodels(Drucker-Prager,Mohr-Coulomb,strain-hardening/softening,

ubiquitous-joint,bilinearstrain-hardening/softeningubiquitous-joint,double-yield,modifiedCam-

clay,CysoilandHoek-Brown).ThesemodelsaredescribedindetailinSection2inTheoryand

neinaFLAC

3D

gridmayhaveadifferentmaterialmodelorproperty,anda

continuousgradientorstatisticaldistributionofanypropertymaybespecified.

Additionally,aninterface,orslip-plane,modelisavailabletorepresentdistinctinterfacesbetween

erfacesareplanesuponwhichslipand/orseparationare

allowed,therebysimulatingthepresenceoffaults,erface

modelisdescribedinSection4inTheoryandBackground.

FLAC

3D

containsanautomatic3Dgridgeneratorinwhichgridsarecreatedbymanipulatingand

connectingpredefinedshapes.*Thegeneratorpermitsthecreationofintersectinginternalregions

(e.g.,intersectingtunnels).The3Dgridisdefinedbyaglobalx,y,z-coordinatesystem(ratherthan

inarow-and-columnfashionasinFLAC).Thisprovidesmoreflexibilityinmodelcreationand

definerationproceduresaredescribedin

Section1intheCommandReferenceundertheGENERATEcommand.

Boundaryconditionsandinitialconditionsarespecifi

velocity(anddisplacement)boundaryconditionsorstress(andforce)boundaryconditionsmay

bespecifilstressconditions,includinggravitationalloading,

mayalsobegiven,andawatertablemaybedefiditions

maybespecifiryconditionsareprimarilyassignedviatheAPPLYcom-

mand,andinitialconditionsviatheINITIALcommand,asdescribedinSection1intheCommand

Reference.

FLAC

3D

incorporatesthefacilitytomodelgroundwaterflowandpore-pressuredissipation,andthe

fullcouplingbetweenadeformableporoussolidandaviscousfluidflowingwithintheporespace.

(ThecoupledinteractionisdescribedfurtherinSection1.3.3.)Thefluidisassumedtoobeyeither

theisotropicoranisotropicformofDarcy’efluidandthegrainswithintheporous

-steadyflowismodeled,withsteadyflowtreatedasanasymptoticcase.

Fixedporepressureandconstant-flowboundaryconditionsmaybeused,andsourcesandsinks

(wells)flowmodelcanalsoberunindependentofthemechanicalcalculation,

andbothconfinedandunconfinedflowcanbesimulated,withautomaticcalculationofthephreatic

fluid-flowmodelisdescribedinSection1inFluid-MechanicalInteraction.

*Anoptionalmeshingpre-processorisalsoavailable(seeSection1.3.2).

FLAC

3D

Version4.0

INTRODUCTION1-5

Structuresthatinteractwiththesurroundingrockorsoil,suchastunnelliners,piles,sheetpiles,

cables,rockboltsorgeotextiles,maybemodeledwiththestructuralelementlogicinFLAC

3D

.Itis

possibletoeitherexaminethestabilizingeffectsofsupportedexcavations,ortostudytheeffectsof

ferenttypesofstructuralelementsaredescribed

inSection1inStructuralElements.

AfactorofsafetycanbecalculatedautomaticallyforanyFLAC

3D

modelusingacompatible

culationisbasedona“strengthreductiontechnique”thatperformsa

seriesofsimulationswhilechangingthestrengthpropertiestodeterminetheconditionatwhichan

rofsafetywhichcorrespondstothepointofinstabilityisfound,and

tor-of-safetyalgorithmisdescribedin

Section3.8.

FLAC

3D

alsocontainsapowerfulbuilt-inprogramminglanguage,FISH,thatenablestheuserto

defifersauniquecapabilitytouserswhowishtotailor

analysestosuittheirspecifimple,FISHpermits:

•,nonlinearincreaseinmoduluswith

depth);

•plottingandprintingofuser-defi,custom-designedplots);

•implementationofspecialgridgenerators;

•servo-controlofnumericaltests;

•specificationofunusualboundaryconditions;

•variationsintimeandspace;and

•automationofparameterstudies.

tion2intheFISHvolumeforadetailed

referencetotheFISHlanguage.

FLAC

3D

containsextensivegraphicsfacilitiesforgeneratingplotsofvirtuallyanyproblemvariable.

Three-dingfeatures

includehiddensurfaceplots,dvariablescanbeviewed

infrontof,rsionofFLAC

3D

hasbeencompiledasanativeWindowsexecutableusingtheWIN32APItosupportexecutionunder

gramhasthelook-and-feelofatypicalWindows

program;however,mostmodelingoperationsareperformedinthecommand-drivenmode,while

thegraphicaluserinterfacesupportsfile-handling,modelandresponsevisualization(plotting),

andprinting(usingstandardWindowsfile-handlingandprintingfacilities).Plottingoperationsare

describedinSection1inthePlotCommandReference.

FLAC

3D

Version4.0

1-6User’sGuide

1.3.2OptionalFeatures

Fouroptionalfeatures(fordynamicanalysis,thermalanalysis,modelingcreep-materialbehavior,

andC++plug-ins)areavailableasseparatemodulesthatcanbeincludedinFLAC

3D

atanadditional

costpermodule.

DynamicanalysiscanbeperformedwithFLAC

3D

,usingtheoptionaldynamic-calculationmodule.

User-specifiedacceleration,velocityorstresswavescanbeinputdirectlytothemodel,aseither

3D

containsabsorbing

andfree-fieldboundaryconditionstosimulatetheeffectofaninfiniteelasticmediumsurrounding

amiccalculationcanbecoupledtothegroundwaterflowmodel;thelevelof

coupling,includingdynamicpore-pressuregeneration(liquefaction),isdiscussedinSection1.3.3.

ThedynamicanalysiscapabilityisdescribedinSection1inDynamicAnalysis.

ThereisathermalanalysisoptionavailableasaspecialmoduleinFLAC

3D

.Thismodelsimulates

thetransientfluxofheatinmaterials,andthesubsequentdevelopmentofthermallyinducedstresses.

Thethermalmodelcanberunindependently,orcoupledtothemechanical-stresscalculationor

pore-pressurecalculation,eitherstaticordynamic.(Thecouplinginteractionsaredescribedin

Section1.3.3.)ThethermalanalysiscapabilityisdescribedinSection1inThermalAnalysis.

Thereareeightoptionalmaterialmodelsavailablethatsimulatetime-dependent(creep)material

behavior(allcreepmodelsaredescribedinSection1inCreepMaterialModels):

(1)theclassicalviscoelastic(Maxwell)model;

(2)aBurgerssubstanceviscoelasticmodel;

(3)atwo-componentpowerlaw;

(4)areferencecreepformulation(theWIPPmodel)implementedfornuclearwasteisolation

studies;

(5)aBurgers-creepviscoplasticmodelcombiningtheBurgersmodelandtheMohr-Coulomb

model;

(6)apower-lawviscoplasticmodelcombiningthetwo-componentpowerlawandtheMohr-

Coulombmodel;

(7)aWIPP-creepviscoplasticmodelcombiningthereferencecreepformulationwiththe

Drucker-Pragerplasticitymodel;and

(8)a“crushed-salt”modelthatsimulatesbothvolumetricanddeviatoriccreepcompaction.

WiththeC++plug-infeature,user-definedconstitutivemodelsandFISHintrinsicscanbewritten

inC++andcompiledasDLL(dynamiclinklibrary)filesthatcanbeloadedwheneverneeded.

MicrosoftVisualC++Version8.0(MicrosoftVisualStudio2005)isusedtocompiletheDLL

ficeduretowritenewconstitutivemodelsisdescribedinSection3inTheoryand

ceduretowritenewFISHintrinsicsisdescribedinSection4intheFISH

volume.

FLAC

3D

Version4.0

INTRODUCTION1-7

1.3.3ModelingPhysicalProcessesandInteractions

ThedefaultcalculationmodeinFLAC

3D

atively,aground-

waterflowanalysisoraheat-transferanalysiscanbeperformed,independentofthemechanical

egroundwaterflowandthermalmodelsmaybecoupledtothemechanicalstress

ethefullequationsofmotionareusedinFLAC

3D

,thecoupling

mechanismsoperateindynamicanalysesaswellasstaticanalyses.

Thecouplingmechanismsaredividedintothreetypesofinteraction:mechanicalandgroundwater

flow;mechanicalandthermal;andthermalandgroundwaterflelofinteractionmodeled

inFLAC

3D

foreachtypeisdescribedbelow.

Mechanical-GroundwaterFlowCoupling–Severaltypesoffluid/solidinteractioncanbespecified

inFLAC

3D

.Onetypeofinteractionisconsolidation,inwhichtheslowdissipationofporepressure

,soil).Twomechanicaleffectsareatworkinthis

case:(1)thefluidinazonereactstomechanicalvolumechangesbyachangeintheporepressure;

and(2)thepore-pressurechangecauseschangesintheeffectivestressthataffecttheresponseof

,areductionineffectivestressmayinduceplasticyield).Couplingbetweenfluidand

solidduetodeformablegrainscanalsobespecified.

FLAC

3D

cancalculatepore-pressureeffects,withorwithoutpore-pressuredissipation,simplyby

settingthefl,,relatedto

liquefaction)canbemodeledbyaccountingforirreversiblevolumestrainintheconstitutivemodel.

Thisisdonewithtwodifferentbuilt-inconstitutivemodels:the“Finn”model,andthe“Byrne”

delsareprovidedwiththedynamicoption.

Bydefault,r,thesepropertiescanbe

sequence,two-waycouplingof

mechanicalstressandgroundwaterflowcanbemodeledwithFLAC

3D

.

Othertypesofinteraction,suchascapillary,electricalorchemicalforcesbetweenparticlesofa

partiallysaturatedmaterial,arenotmodeleddirectlybyFLAC

3D

.Butsomeoftheeffectsmaybe

rly,aFISHfunctionmaybeusedtovarythe

localfluidmodulusasafunctionofotherquantitiessuchaspressureortime.

Thermal-MechanicalCoupling–Thethermal-mechanicalcouplinginFLAC

3D

isone-way:tem-

peraturechangemayinduceamechanicalstresschangeasafunctionofthethermal-expansion

coeffiicalchangesinthebody,however,donotresultintemperaturechangeor

onally,mechanicalpropertiescanbemadeafunctionof

temperaturechange,sinceFISHpermitsaccesstobothtemperaturesandproperties.

Thermal-GroundwaterFlowCoupling–Thethermalcalculationmaybecoupledtotheground-

waterfltricstrain

canarisefromthermalexpansionofboththefl

pressurechangeresultsfromthisvolumetricstrain,aswellasfrommechanicalvolumetricstrain.

Groundwaterflowcanalsoinfluenceheattransfer;anadvectionmodelthattakesthetransportof

ectionmodelcanalsosimulatetemperature-

dependentfluiddensityandthermaladvectioninthefluid.

FLAC

3D

Version4.0

1-8User’sGuide

Aswithmechanicalproperties,groundwaterpropertiescanbemadeafunctionoftemperature

changebyaccessingtemperatureandpropertyvaluesviaFISH.

FLAC

3D

Version4.0

INTRODUCTION1-9

1.4SummaryofUpdatesfromVersion3.1

FLAC

3D

4.0containsseveralimprovements;thenewfeaturesaresummarizedinthefollowing

ngdatafilescreatedforVersion3.1shouldstilloperateasbefore,withtheexception

3D

4.0willnotbeabletorestorefiles

savedbypreviousversions.

1.4.1AllNewUserInterface

AcompletelynewgraphicaluserinterfacehasbeendevelopedforFLAC

3D

uresgraphics

hardware-accelerated3Drendering(usingOpenGL),abuilt-ineditorwithsyntaxhighlightingand

datafilevalidation,andaprojectinterfacetohelpkeeptrackofthevariousfilesassociatedwitha

ultofthesechanges,PLOTcommandsarenotbackwardscompatible,norareany

ofthevariouscommands(MAINWIN,etc)thatinteracteddirectlywiththeprevioususerinterface.

Alongwithanewplottingimplementation,manynewplottingfeaturesareavailableinFLAC

3D

4.0,includingthefollowing:

•interactiveclippingbox

•iso-surfaces

•lineprofiles

•equalanglestereonets

•DXFfileimport

•FISHplotting

•exportingplotstoDXFfiles

•transparency

1.4.2FISHImprovements

ManyimprovementshavebeenmadetoFISH,includingthefollowing:

•localvariables

•functionarguments

•command-linedebugging

•improvederrormessages

•vectorsassymboltypes,alongwithreal,integer,etc.

FLAC

3D

Version4.0

1-10User’sGuide

•dynamicarrays–arraylengthisnolongerfixedatcreation

•zonefielddatafunctions–readmodelvariablesefficientlyatarbitrarylocationsinspace

•user-definedC++FISHintrinsicplug-ins

1.4.3Multi-threadingUsingNodalMixedDiscretization

ficiencygained

isnotashighaswithtraditionalmixed-discretization,butanincreaseinspeedofafactorofthree

ispossibleoncurrenthardware.

1.4.4MiscellaneousImprovements

OtherimprovementstoFLAC

3D

4.0includethefollowing:

•AnimprovedC++interfaceismoreeffi-

cientatruntime,andkeepsbettertrackofchangesthatbreakcompatibility.

•necanbeassignedagroupinoneofmany

berofavailablegroupslotsisdeterminedwithaCONFIGcommand.

•nctionscannowbewrittenandconnectedtotheRANGE

logic,allowingfilteringbasedonanyuser-definedcriteria.

•Anewconstitutivemodelhasbeenadded–tion2.5.9in

TheoryandBackground.

FLAC

3D

Version4.0

INTRODUCTION1-11

1.5FieldsofApplication

FLAC

3D

n6containsa

bibliographyofpublicationsontheapplicationofFLAC

3D

togeotechnicalproblemsinthefields

ofmining,undergroundengineering,rockmechanicsandresearch.

SomepossibleapplicationsofFLAC

3D

eFLAC

3D

nowhasessentially

thesamecapabilitiesofFLAC,manyoftheFLACapplicationscannowbeextendedintothree

dimensionswithFLAC

3D

:

•mechanicalloadingcapacityanddeformations–inslopestabilityandfoundationdesign;

•evolutionofprogressivefailureandcollapse–inhardrockmineandtunneldesign;

•factor-of-safetycalculation–instabilityanalysesforearthstructures,embankmentsand

slopes;

•evaluationoftheinfluenceoffaultstructures–inminedesign;

•restraintprovidedbycablesupportongeologicmaterials–inrockbolting,tiebacksand

soilnailing;

•fullyandpartiallysaturatedfluidflow,andpore-pressurebuild-upanddissipationfor

undrainedanddrainedloading–ingroundwaterflowandconsolidationstudiesofearth-

retainingstructures;

•time-dependentcreepbehaviorofviscousmaterials–insaltandpotashminedesign;

•dynamicloadingonslip-pronegeologicstructures–inearthquakeengineeringandmine

rockburststudies;

•dynamiceffectsofexplosiveloadingandvibrations–intunneldrivingorinmining

operations;

•seismicexcitationofstructures–inearthdamdesign;

•deformationandmechanicalinstabilityresultingfromthermal-inducedloads–inper-

formanceassessmentofundergroundrepositoriesofhigh-levelradioactivewaste;and

•analysisofhighlydeformablematerials–inbulkflowofmaterialsinbinsandmine

caving.

FLAC

3D

Version4.0

1-12User’sGuide

1.6GuidetotheFLAC

3D

Manual

TheFLAC

3D

cument,theUser’sGuide,

isthemainguidetousingFLAC

3D

andcontainsdescriptionsofthefeaturesandcapabilitiesof

theprogram,alongwithrecommendationsonthebestuseofFLAC

3D

remainingdocumentscovervariousaspectsofFLAC

3D

,includingtheoreticalbackgroundinforma-

tion,verifipletemanualisavailableinelectronic

formatontheFLAC

3D

CD-ROM(viewedwithAcrobatReader),fic

topicsorkeywordscanbefoundacrossallvolumesbyimplementingthesearchfacilityavailable

inAcrobat.

Theorganizationofthetwelvedocuments,andbriefsummariesofthecontentsofeachsection,

notethatifyouareviewingthemanualintheAcrobatReader,double-clickingon

asectionnumbergivenbelowwillimmediatelyopenthatsectionforviewing.

User’sGuide

Section1Introduction

ThissectionintroducesyoutoFLAC

3D

view

ofthenewfeaturesinthelatestversionofFLAC

3D

isalsoprovided.

Section2GettingStarted

IfyouarejustbeginningtouseFLAC

3D

,oruseitonlyoccasionally,werecommend

ctionprovidesinstructionsoninstallationandop-

erationoftheprogram,aswellasrecommendedproceduresforrunningFLAC

3D

analyses.

Section3ProblemSolvingwithFLAC

3D

thissectiononceyouare

epinaFLAC

3D

analysisisdiscussedin

detail,andadviceisgivenonthemosteffectiveprocedurestofollowwhencreating,

solvingandinterpretingaFLAC

3D

modelsimulation.

Section4FISHBeginner’sGuide

Section4providesthenewuserwithanintroductiontotheFISHprogramming

languageinFLAC

3D

.ThisincludesatutorialontheuseoftheFISHlanguage.

FISHisdescribedindetailinSection2intheFISHvolume.

FLAC

3D

Version4.0

INTRODUCTION1-13

Section5Miscellaneous

Variousinformationiscontainedinthissection,includingtheFLAC

3D

runtime

benchmarkandproceduresforreportingerrorsandrequestingtechnicalsupport.

DescriptionsofutilityfilestoassistwithFLAC

3D

operationarealsogiven.

Section6Bibliography

Thissectioncontainsabibliographyofpublishedpapersdescribingsomeusesof

FLAC

3D

.

CommandReference

Section1CommandReference

Allthecommandsthatcanbeenteredinthecommand-drivenmodeinFLAC

3D

(exceptthePLOTcommand,whichhasitsownvolume)aredescribedinSection1

intheCommandReference.

PlotCommandReference

Section1PlotCommandReference

ThePLOTcommandisdescribedinSection1inthePlotCommandReference.

FISHinFLAC

3D

Section1FISHBeginner’sGuide

Section1intheFISHvolumeprovidesthenewuserwithanintroductiontothe

FISHprogramminglanguageinFLAC

3D

.Thisincludesatutorialontheuseofthe

FISHlanguage.

Section2FISHReference

Section2intheFISHvolumecontainsadetailedreferencetotheFISHlanguage.

AllFISHstatements,variablesandfunctionsareexplainedandexamplesgiven.

Section3LibraryofFISHFunctions

AlibraryofcommonandgeneralpurposeFISHfunctionsisgiveninSection3inthe

unctionscanassistwithvariousaspectsofFLAC

3D

model

generationandsolution.

Section4C++FISHIntrinsicPlug-ins

InstructionsonhowtocompileandinputcustomFISHintrinsicswritteninC++are

providedinSection4intheFISHvolume.

FLAC

3D

Version4.0

1-14User’sGuide

TheoryandBackground

Section1TheoreticalBackground

ThetheoreticalformulationforFLAC

3D

isdescribedindetailinSection1inTheory

cludesboththedescriptionofthemathematicalmodel

thatdescribesthemechanicsofasystemandthenumericalimplementation.

Section2ConstitutiveModels:TheoryandImplementation

Thetheoreticalformulationandimplementationofthevariousbuilt-inconstitutive

modelsaredescribedinSection2inTheoryandBackground.

Section3WritingNewConstitutiveModels

UserscanwritetheirownconstitutivemodelsforincorporationintoFLAC

3D

.The

modelsarewritteninC++,andcompiledasaDLLfile(dynamiclinklibrary)thatcan

ceduretocreatenewmodelsisdescribed

inSection3inTheoryandBackground.

Section4Interfaces

TheinterfacelogicisdescribedandexampleapplicationsaregiveninSection4in

ssiononinterfacepropertiesisalsoprovided.

Fluid-MechanicalInteraction

Section1Fluid-MechanicalInteraction–SinglePhaseFluid

Theformulationforthefluid-flowmodelisdescribed,andthevariouswaystomodel

fluidflow,bothwithandwithoutsolidinteraction,areillustratedinSection1in

Fluid-MechanicalInteraction.

StructuralElements

Section1StructuralElements

Section1inStructuralElementsdescribesthevariousstructuralelementmodels

availableinFLAC

3D

.Theseincludebeams,cables,piles,shells,linersandgeogrids.

ThermalAnalysis

Section1ThermalOption

Section1inThermalAnalysisdescribesthethermalmodeloption,andpresents

severalverificationproblemsthatillustrateitsapplicationbothwithandwithout

interactionwithmechanicalstressandporepressure.

FLAC

3D

Version4.0

INTRODUCTION1-15

Section2Hydration

,

thesettingofconcrete).Twoexampleproblemsareprovided.

CreepMaterialModels

Section1CreepMaterialModels

ThedifferentcreepmaterialmodelsavailableasanoptioninFLAC

3D

aredescribed,

andverificationandexampleproblemsareprovidedinSection1inCreepMaterial

Models.

DynamicAnalysis

Section1DynamicAnalysis

Thedynamicanalysisoptionisdescribed,andconsiderationsforrunningadynamic

lverificationexamples

arealsoincludedinthissection.

VerificationProblems

ThisvolumecontainsacollectionofFLAC

3D

verifiretests

inwhichaFLAC

3D

,closed-form)

le1intheVerificationsvolumeforalistoftheverification

problems.

ExampleApplications

ThisvolumecontainsexampleapplicationsofFLAC

3D

thatdemonstratethevarious

classesofproblemstowhichFLAC

3D

le1intheExamples

volumeforalistoftheexampleapplications.

FLAC

3D

Version4.0

1-16User’sGuide

1.7ItascaConsultingGroupInc.

thanadeveloperanddistributorofengineeringsoftware.

Itascaisaconsultingandresearchfirmconsistingofaspecializedteamofcivil,geotechnicaland

miningengineerswithanestablishedrecordinsolvingproblemsintheareasof:

CivilEngineering

MiningEngineeringandEnergyResourceRecovery

NuclearWasteIsolationandUndergroundSpace

DefenseResearch

SoftwareEngineering

GroundwaterAnalysisandDewatering

Itascawasestablishedin1981toprovideadvancedrockmechanicsservicestotheminingindustry.

Today,Itascaisamultidisciplinarygeotechnicalfirmwith80professionalsinofficesworldwide.

ThecorporateheadquartersforItascaislocatedinMinneapolis,ideofficesof

Itascaare:ItascaDenver(Denver,Colorado);ItascaGeomekanikAB(Stockholm,Sweden);Itasca

ConsultantsS.A.S.(Ecully,France);ItascaConsultantsGmbH(Gelsenkirchen,Germany);Itasca

ConsultoresS.L.(Llanera,Spain);ItascaS.A.(Santiago,Chile);ItascaAfricaLtd.(Johannesburg,

SouthAfrica);ItascaConsultingCanadaInc.(Sudbury,Canada);ItascaConsultingChinaLtd.

(Wuhan,China);ItascaHoustonInc.(Houston,Texas);andItascaAustraliaLtd.(Melbourne,

Australia).

Itasca’sstaffmembersareinternationallyrecognizedfortheiraccomplishmentsingeological,min-

staffconsistsofgeological,mining,hydrologicaland

civilengineerswhoprovidearangeofcomprehensiveservicessuchas(1)computationalanal-

ysisinsupportofgeo-engineeringdesigns,(2)designandperformanceoffieldexperimentsand

demonstrations,(3)laboratorycharacterizationofrockproperties,(4)dataacquisition,analysis

andsystemidentification,(5)groundwatermodeling,and(6)shortcoursesandinstructioninthe

houldneedassistanceinanyofthese

areas,wewouldbegladtoofferourservices.

FLAC

3D

Version4.0

INTRODUCTION1-17

1.8UserSupport

WebelievethatthesupportItascaprovidestocodeusersisamajorreasonforthepopularityofour

provide

atimelyresponseviatelephone,lassistanceintheinstallationof

FLAC

3D

onyourcomputer,plusanswerstoquestionsconcerningcapabilitiesofthevariousfeatures

ofthecode,calassistanceforspecificuser-definedproblems

canbepurchasedonanas-neededbasis.

Ifyouhaveaquestion,ordesiretechnicalsupport,pleasecontactusat:

ItascaConsultingGroupInc.

MillPlace

111ThirdAvenueSouth,Suite450

Minneapolis,Minnesota55401USA

Phone:

Fax:

Email:

Web:

(+1)612-371-4711

(+1)612·371·4717

software@

Wealsohs

maybeobtainedfromItasca.

FLAC

3D

Version4.0

1-18User’sGuide

1.9References

Byrne,P.“ACyclicShear-VolumeCouplingandPore-PressureModelforSand,”inProceedings:

SecondInternationalConferenceonRecentAdvancesinGeotechnicalEarthquakeEngineering

andSoilDynamics(,Missouri,March,1991),PaperNo.1.24,47-55.

Marti,J.,l.“MixedDiscretizationProcedureforAccurateSolutionofPlasticity

Problems,”sinGeomech.,6,129-139,1982.

FLAC

3D

Version4.0

发布评论

评论列表 (0)

  1. 暂无评论