最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

Mplus——精选推荐

IT圈 admin 37浏览 0评论

2024年2月15日发(作者:鲁苒苒)

以著名的精神病测量量表《简明症状问卷18》(Brief Symptoms Inventory 18,

BSI-18)为例。BSI-18量表的各条目的测量采用Likert量表的5级评分法:

0——无;1——轻度;2——中度;3——偏重;4——严重。

尽管Likert量表的测量实际上是次序测量(ordinal measure),但在CFA以及其他统计模型分析中,有时会将5个以及更多点的次序测量作为连续变量分析。

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

ANALYSIS: ESTIMATOR = ML; TYPE=GENERAL;

MODEL=NOMEANSTRUCTURE; INFORMATION=EXPECTED;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

程序说明:

LISTWISE=ON; 设定了缺失值的删除方法:如果一个个案涉及的任何变量有缺失值,则该个案将整个从分析过程中提出。

MISSING= ALL (-9); 设定数据中的缺失值。

TECH4:输出潜变量的方差、协方差和相关系数。

程序输出:

DEP BY

X5 0.831 0.025 32.905 0.000

X2 0.760 0.031 24.343 0.000

X8 0.881 0.021 41.994 0.000

X11 0.751 0.033 23.008 0.000

X14 0.573 0.047 12.136 0.000

X17 0.384 0.058 6.625 0.000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.074

90 Percent C.I. 0.063 0.085

Probability RMSEA <= .05 0.000

条目的可靠度(item reliability):反映与具体题目相应的因子能够解释该条目变异的百分比。

R-SQUARE

Observed Two-Tailed

Variable Estimate S.E. Est./S.E. P-Value

X1 0.496 0.053 9.343 0.000

X2 0.578 0.048 12.172 0.000

X3 0.486 0.053 9.210 0.000

X4 0.369 0.056 6.624 0.000

X5 0.691 0.042 16.452 0.000

X6 0.518 0.052 9.965 0.000

X7 0.554 0.051 10.838 0.000

X8 0.776 0.037 20.997 0.000

X9 0.469 0.054 8.679 0.000

X10 0.505 0.053 9.487 0.000

X11 0.564 0.049 11.504 0.000

X12 0.503 0.053 9.483 0.000

X13 0.333 0.055 6.020 0.000

X14 0.329 0.054 6.068 0.000

X15 0.457 0.054 8.530 0.000

X16 0.575 0.050 11.402 0.000

X17 0.148 0.045 3.313 0.001

X18 0.422 0.054 7.790 0.000

量表可靠性(scale reliability):当测量误差不相关时,对于标准化结果,有

(i)2i(i)i2ii

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables

regressed on covariates may not be included. To include these, request

MODINDICES (ALL).

Minimum M.I. value for printing the modification index 10.000

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

SOM BY X8 10.717 -0.398

WITH Statements

X3 WITH X1 14.089 0.167

X8 WITH X5 64.074 0.392

X10 WITH X4 25.443 0.249

X12 WITH X9 33.178 0.273

X14 WITH X5 16.098 -0.225

X14 WITH X11 14.209 0.220

X16 WITH X13 11.891 0.221

X17 WITH X9 11.945 0.103

X17 WITH X14 11.101 0.123

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

X5 with X8;

X9 with X12;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

-0.272 -0.220

0.167 0.273 0.392 0.927 0.249 0.374 0.273 0.435

-0.225 -0.307

0.220 0.269 0.221 0.262 0.103 0.236

0.123 0.221

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.054

90 Percent C.I. 0.041 0.066

Probability RMSEA <= .05 0.297

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

ANALYSIS: TYPE=MISSING;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

TITLE: Testing nonnormality;

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES ARE X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES ARE X1-X18;

CLASSES=C(1);

ANALYSIS: TYPE = MIXTURE;

MODEL: %Overall%

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH13;

TECH13:数据的非正态性检验,需要同CLASSES=C(1)和TYPE = MIXTURE一起使用。

TECHNICAL 13 OUTPUT

SKEW AND KURTOSIS TESTS OF MODEL FIT

TWO-SIDED MULTIVARIATE SKEW TEST OF FIT

Sample Value

Mean

Standard Deviation

P-Value

TWO-SIDED MULTIVARIATE KURTOSIS TEST OF FIT

Sample Value

Mean

Standard Deviation

P-Value

TITLE: CFA with indicators treated as ordinal.

DATA: FILE = BSI_;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

CATEGORICAL = X1-X18;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

85.942

27.779

1.219

0.0000

481.889

357.265

3.174

0.0000

2024年2月15日发(作者:鲁苒苒)

以著名的精神病测量量表《简明症状问卷18》(Brief Symptoms Inventory 18,

BSI-18)为例。BSI-18量表的各条目的测量采用Likert量表的5级评分法:

0——无;1——轻度;2——中度;3——偏重;4——严重。

尽管Likert量表的测量实际上是次序测量(ordinal measure),但在CFA以及其他统计模型分析中,有时会将5个以及更多点的次序测量作为连续变量分析。

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

ANALYSIS: ESTIMATOR = ML; TYPE=GENERAL;

MODEL=NOMEANSTRUCTURE; INFORMATION=EXPECTED;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

程序说明:

LISTWISE=ON; 设定了缺失值的删除方法:如果一个个案涉及的任何变量有缺失值,则该个案将整个从分析过程中提出。

MISSING= ALL (-9); 设定数据中的缺失值。

TECH4:输出潜变量的方差、协方差和相关系数。

程序输出:

DEP BY

X5 0.831 0.025 32.905 0.000

X2 0.760 0.031 24.343 0.000

X8 0.881 0.021 41.994 0.000

X11 0.751 0.033 23.008 0.000

X14 0.573 0.047 12.136 0.000

X17 0.384 0.058 6.625 0.000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.074

90 Percent C.I. 0.063 0.085

Probability RMSEA <= .05 0.000

条目的可靠度(item reliability):反映与具体题目相应的因子能够解释该条目变异的百分比。

R-SQUARE

Observed Two-Tailed

Variable Estimate S.E. Est./S.E. P-Value

X1 0.496 0.053 9.343 0.000

X2 0.578 0.048 12.172 0.000

X3 0.486 0.053 9.210 0.000

X4 0.369 0.056 6.624 0.000

X5 0.691 0.042 16.452 0.000

X6 0.518 0.052 9.965 0.000

X7 0.554 0.051 10.838 0.000

X8 0.776 0.037 20.997 0.000

X9 0.469 0.054 8.679 0.000

X10 0.505 0.053 9.487 0.000

X11 0.564 0.049 11.504 0.000

X12 0.503 0.053 9.483 0.000

X13 0.333 0.055 6.020 0.000

X14 0.329 0.054 6.068 0.000

X15 0.457 0.054 8.530 0.000

X16 0.575 0.050 11.402 0.000

X17 0.148 0.045 3.313 0.001

X18 0.422 0.054 7.790 0.000

量表可靠性(scale reliability):当测量误差不相关时,对于标准化结果,有

(i)2i(i)i2ii

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables

regressed on covariates may not be included. To include these, request

MODINDICES (ALL).

Minimum M.I. value for printing the modification index 10.000

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

SOM BY X8 10.717 -0.398

WITH Statements

X3 WITH X1 14.089 0.167

X8 WITH X5 64.074 0.392

X10 WITH X4 25.443 0.249

X12 WITH X9 33.178 0.273

X14 WITH X5 16.098 -0.225

X14 WITH X11 14.209 0.220

X16 WITH X13 11.891 0.221

X17 WITH X9 11.945 0.103

X17 WITH X14 11.101 0.123

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

X5 with X8;

X9 with X12;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

-0.272 -0.220

0.167 0.273 0.392 0.927 0.249 0.374 0.273 0.435

-0.225 -0.307

0.220 0.269 0.221 0.262 0.103 0.236

0.123 0.221

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.054

90 Percent C.I. 0.041 0.066

Probability RMSEA <= .05 0.297

TITLE: CFA with indicators treated as continuous.

DATA: FILE = BSI_;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

ANALYSIS: TYPE=MISSING;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

TITLE: Testing nonnormality;

DATA: FILE = BSI_;

LISTWISE=ON;

VARIABLE:

NAMES ARE X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES ARE X1-X18;

CLASSES=C(1);

ANALYSIS: TYPE = MIXTURE;

MODEL: %Overall%

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH13;

TECH13:数据的非正态性检验,需要同CLASSES=C(1)和TYPE = MIXTURE一起使用。

TECHNICAL 13 OUTPUT

SKEW AND KURTOSIS TESTS OF MODEL FIT

TWO-SIDED MULTIVARIATE SKEW TEST OF FIT

Sample Value

Mean

Standard Deviation

P-Value

TWO-SIDED MULTIVARIATE KURTOSIS TEST OF FIT

Sample Value

Mean

Standard Deviation

P-Value

TITLE: CFA with indicators treated as ordinal.

DATA: FILE = BSI_;

VARIABLE:

NAMES = X1-X18 gender white age edu crack id;

MISSING= ALL (-9);

USEVARIABLES = X1-X18;

CATEGORICAL = X1-X18;

MODEL:

SOM BY X1 X4 X7 X10 X13 X16; !Somatization;

DEP BY X5 X2 X8 X11 X14 X17; !Depression;

ANX BY X3 X6 X9 X12 X15 X18; !Anxiety;

OUTPUT: SAMPSTAT TECH1 TECH4 STDYX MOD;

85.942

27.779

1.219

0.0000

481.889

357.265

3.174

0.0000

发布评论

评论列表 (0)

  1. 暂无评论