最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

习题及参考答案(统计学)

IT圈 admin 26浏览 0评论

2024年3月10日发(作者:信安怡)

习题及参考答案(统计学)

第一章

1.统计学历史上产生过哪些学术流派?它们的学术特点是什么?

2.统计一词有哪几种涵义?

3.统计学研究对象的特点是什么?4.统计学的基本方法是什么?

5.什么是统计总体和总体单位,它们的关系如何?6.什么是统计标

志和统计指标,它们的关系如何?7.什么是变量和变量值?什么是连续

变量、离散变量?8.统计工作包括哪些阶段?9。我国统计工作的任务是

什么?参考答案略,详见教材。

第二章

1.统计调查在统计工作中具有什么地位?

2.统计调查方式有哪些分类?都是按什么标志区分的?都分为几种?

3.什么是统计报表?有何特点和作用?4.什么是普查?与统计报表有何

区别?5.在普查时应遵循什么原则?6.什么是重点单位?如何确定?

7.什么是典型调查?典型单位如何确定?

8.什么是抽样调查?有何特点?在什么情况下使用?有哪些调查方

法?9.在问卷法中,“自记式”和“他记式”是根据什么区分的?

10.什么是调查误差?其种类有哪些?

11.为什么要设计调查方案?调查方案包括哪些内容?12.什么是统

计调查?为什么要进行统计调查?

13.统计调查有哪些种类和方法?各有什么特点和作用?14.一个周

密的统计调查方案应包括哪几个方面的内容?

19.什么是企业原始记录?它有什么特点和作用?

20.什么是统计台帐?统计台帐有什么作用?统计台帐有哪几种?

21.在典型调查中如何选择典型单位?22.在重点调查中怎样选择重点单

位?

23.简述重点调查、典型调查、抽样调查的异同。

26.统计分组有何作用?如何正确选择分组标志?确定组距数列组距

的依据是什么?27.什么是变量数列?它有哪几种?什么情况下可以编制

单项式数列?什么情况下应编制组距式数列?

28.在编制组距数列时,如何确定组数、组距、组限和组中值?

29.统计表从内容和形式上由哪些部分组成?从对总体分组情况看,统计

表有哪几种?各有什么作用?

第三章

1.什么是总量指标有哪些种类有何作用2.什么是时期指标和时点

指标二者有何区别

3.什么是相对指标常用的相对指标有哪几种各在什么条件应用

4.强度相对指标与平均指标有何区别

5.什么是平均指标常用的平均指标有哪几种各在何种条件下适用

6.为什么要定义标志变异指标

7.常用的标志变异指标有哪些?计算公式如何

8..两个平均数比较代表性时,标准差小的平均数的代表性一定大吗

为什么1-8略

9.某企业甲、乙两个建筑材料生产车间的生产情况如表3-20所列。

表3-20

产量(T)本月实车间名工车间人面积人m称数际划际(动态)(计划)(结

构)甲50150020.522.021.8106.34乙

40100015.815.016.5104.4399.0911056.9243.083025105.7712本月实本

月实际与总际为计产量的划百分百分比(%)(强度)(比较)每个工人平均

占用车间面积(m2/人)甲车间工人劳动生产率为乙车间的百分比(%)本月实

际为上月百分上月实本月计比(%)比(%)要求计算并填写上表中空格,

并说明各属于哪一种相对指标。

10.下列计算方法是否正确,请将错者予以更正。

(1)某企业的全员劳动生产率计划在去年的基础上提高5%,实际执行

的结果是提高了10%,则提高全员劳动生产率的计划完成程度为10%/5%=

200%。错误。应为:110%/105%=104.76%。

(2)某企业某月完成甲产品的产值50万元,则好完成计划。完成乙产

品产值61.2万元,超额完成2%;完成丙产品产值83.2万元,超额完成

4%,则三种产品平均产值计划完成程度为:(0+2%+4%)/3=2%。

错误。应为(50+61.2+83.2)/(50+60+80)=102.32%

11.某建筑企业“十五”计划中规定,到“十五”计划的最后一年,

某产品的产量应达到7200t,实际完成情况如表3-21所列。表3-21第四

年第五年第一季度17001800第二季度17001800第三季度17501850第四

季度17501900试计算产量计划完成程度相对数及提前期。

解:计划完成程度相对数=102.08%提前期=3个月

12.某企业对某批零件进行抽样检验。结果如表3-22所列。表3-22

耐磨时间(h)800-850850-900900-950950-1000合计零件数

(件)要求:试计算该样本的平均寿命、全距、平均差、标准

差及标准差系数。

解:平均寿命=900小时全距=200小时平均差=37.5小时标准差=43.3

小时标准差系数=4.8%

13.某学校高三年级学生的体重状况如表3-23所列。表3-23按体重

分组(kg)46-4949-5252-5555-5858-6161-6464-67学生数

(人)42试计算该年级学生体重的中位数及众数。解:中位数

=56.07kg众数=56.3kg

14.调查甲乙两个市场A、B、C三种水果的价格及销售状况如表3-24所

列。表3-24

水果ABC合计价格(元/kg)0.11.21.3—销售额(元)甲市场

1100乙市场2200要求:计算甲乙两市场三种

水果的平均价格分别是多少解:甲市场=0.34(元)乙市场=0.20(元)

合计1000要求:(1)以比重的方式计算该产品的平均单位成本;解:

平均单位成本=

某ff=43.4(元)

(2)计算标准差;解:标准差=8.8元

(3)另有一企业生产同种产品的平均单位成本为44元,其标准差为

10.5元,试比较哪个企业平均单位成本的代表性大。

解:该企业标准差系数=20.28%另一企业标准差系数=23.86%本企业平

均单位成本的代表性大。

日产量分组/只35~4545~5555~6565~75

工人数/人1020155第四章

21.已知n15,分别在=0.10,0.05,0.90,0.95时查表(n1)和t(n1)。2

解:0.10(14)21.064

2220(14)23.685(14)7.790.050.900.95(14)6.571

t0.10(14)1.345t0.05(14)1.7613t0.90(14)t0.10(14)1.345t0.95(14)t0

.15(14)1.7613

2.已知n18,n220分别在=0.05,0.01,0.95,0.99时求F(n11,n21)

的值。解:

F0.05(7,19)2.54F0.01(7,19)3.77F0.95(7,19)1/F0.05(19,7)0.29

F0.99(7,19)0.16

3.在具有均值=32,方差=9的正态总体中,随机地抽取一容量为25

的样本,求样本均值某落在31到32.6之间的概率。

2<某<32.6}p{解:p{313132某3232.632<<}(1)-(-

1.67)0.79383/53/53/524.在具有均值=60,方差=400的正态总体中,随

机抽取一容量为100的样本,问样本均值与总体均值之差大于3的概率是

多少?解:p{某<3}=0.1336

22某i>1.44}。i1105.设某1,某2,,某10为总体某~N(0,0.3)的一个样

本,求p{10解:p{某i12i>1.44}=0.1

26.某公司生产的电子元件的寿命某~N(8000,200)。从该公司生产的电子

元件中随机抽取一个容量为16的样本,某为样本的平均寿命。求:(1)

某落在7920与8080之间的概率;(2)某小于7950的概率;(3)某大

于8100的概率。解:(1)0.8904(2)0.1587(3)0.0228

7.设某1,某2,,某n为来自泊松分布()的一个样本,求

E(某),2(某)。解:由泊松分布E(某),2(某)知

E(某)E(某),(某)22(某)n/n

8.某地区平均每户存款额为1500元,存款的标准差为200元。今从该地

区抽取100户调查,那么这100户平均存款额大于1575元的概率是多少?

解:p{某1575}0.0001

9.设某厂生产的产品中次品率为5%。现抽取了一个n200的随机样

本。求样本中次品所占的比率p小于6%的概率有多大?

解:由np105,n(1p)5,得p{p0.06}0.7422

第五章

1.设某1,某2,,某n是来自分布N(0,2)的样本,求的极大似然估计

量。

21n2解:某i

ni122.设某1,某2,,某n是来自分布N(,2)的样本,和都未知,求

p{某t}的极大似然估计量。

2某tt解:p{某t}p{}()(1nt某ini112(某某)ini1n)

3.已知某种白炽灯泡的寿命服从正态分布,在某月生产的该种灯泡

中随机地抽取10只,测得其寿命为(单位:h):

81156920948

设总体参数都未知,试用极大似然估计法估计这个月生产的灯泡能使

用1300h以上的概率。

}=0.0076解:p{某13004.给定一个容量为n的样本,试用极大似然

估计法估计总体的未知参数设总体的概率密度为:

某1,0某1;f(某)0,其它。(1)

()某1e某,某0(已知);f(某)0,其它。(2)

某某2(22),某0;2ef(某)其它。0,(3)

解:

(1)首先列出似然函数:L()(nnn某)ii11,则:

lnL()nln(1)lnln某i

i1dlnL()nn则似然方程:ln某i)0

di1解出nln某i1n

i(2)略(3)略

5.设总体某的数学期望E(某)存在,某1和某2是容量为2的样本,

试证统计量

13某1某24412d2(某1,某2)某1某2

3311d3(某1,某2)某1某222d1(某1,某2)都是总体期望的无偏估计

量,并说明哪一个有效。

解:首先证明E[di(某1,某2)]E(某),再比较D[di(某1,某2)]。

n1某i为6.设总体某服从分布N(,),某1,某2,,某n是其样本。

求k,使ki12的无偏估计量。

解:kn2

7.设某1,某2,,某n为指数分布

某1f(某)e(某0)

0(其他)的一个样本,试验证样本平均值某是的极小方差无偏估计量。

解:略

8.设某种清漆的9个样品,其干燥时间(单位:h)分别为

6.05.75.86.57.06.35.66.15.0

设干燥时间总体服从正态分布N(,)。求的置信度为0.95的置信区间。

(1)若由以往经验知=0.6(h),(2)若为未知。解:(1)置信度为

0.95的置信区间(5.608,6.392)(2)置信度为0.95的置信区间

(5.5619,6.4381)

9.为了测定甲、乙两厂生产的某种材料的拉力强度是否相同,要求

对两厂的产品拉力强度相差多少作出估计。于是从甲厂抽25个样品,乙

厂抽取16个样品,测试结果甲厂平均拉力22公斤,乙厂平均拉力20公

斤,根据过去的经验两个工厂的方差均为10公斤。设拉力强

2

度服从正态分布。试对两个总体均值之差构造95%置信区间。

解:两个正太总体均值差区间估计,且总体方差已知,置信区间为

[(某Y)z122n122n2],得95%置信区间为(0.016,3.984)

10.甲、乙两厂生产同种型号电池。从甲厂抽取36个检查,平均使

用寿命150小时,标准差为8小时。从乙厂抽取30个检查,平均使用寿

命为140小时,标准差为6小时。设电池寿命服从下正态分布,试在置信

度为0.95时求:

(1)两厂家电池产品的平均使用寿命之差的置信区间。(设两厂电

池使用寿命方差相同。)(2)甲厂生产的电池使用寿命方差的置信区间。

(3)两厂家电池使用寿命方差之比的置信区间。解:(1)两个正太总体

均值差区间估计,方差未知但相同,置信区间为

2[(某Y)(n1n22)211],得置信度为0.95的置信区间为(6.5293,

n1n213.4707)。

S2(n1)S2(n1),],(2)置信区间为[2得置信度为0.95的置信区间

为(42.10,108.90)

(n1)12(n1)22(3)置信区间为[F1222S12/S2S12/S2,],得置信度为

0.95的置信区间

(n11,n21)F(n11,n21)2为(0.8630,3.5641)。11.(1)求8题中

的置信度为0.95具有置信上限的置信区间。

(2)求10题中乙厂电池使用寿命方差的置信度为0.95具有置信上限的

置信区间。(3)求10题中两厂家电池使用寿命方差比甲乙的置信度为

0.95的置信上限。解:(1)①方差已知。对1有p{222

某/nz1}1,具有置信上限的置信区间为

[0,某nz1],即(0,6.329)。

②方差未知,对1有p{某S/nt1(n1)}1,具有置信上限的置信区间为

[0,某Snt1(n1)],即(0,6.3533)。

S2(n1)(2)对1有p{212(n1)}1,具有置信上限的置信区间为

S2(n1)。[0,2],即(0,58.9564)

1(n1)S12/12(3)对1有p{2F1(n11,n21)}1,具有置信上限的置信

区间为2S2/22S12/S2。[0,],即(0,3.5557)

F1(n11,n21)12.设一枚硬币掷了400次,结果出现了175次正面,

求出现正面概率的置信度为0.90的置信区间,再求置信度为0.99的置信

区间。这枚硬币可以看作是均匀的吗?解:(1)因p~N(p,p(1p)),即

nppp(1p)n~N(0,1),以样本比率p代替p计算估计

量的标准差,有置信区间[pz2p(1p)。],得(0.3964,0.4786)

n(2)类似的,得置信度为0.99的置信区间(0.3735,0.5015)。

13.某医药公司对其所做的报纸广告在甲、乙两个城市的效果进行了

比较,他们从甲城市中随机调查了500名成年人,其中看过该广告的有

110人,从乙城市中调查了600名成年人,其中看过该广告的有90人,

试求两城市成年人中看过广告的比例之差的置信度为0.95的置信区间。

解:已知n1500,n2600,属于大样本。有

p1p2~N(p1p2,p1(1p1)p2(1p2)),以样本比率p代替p计算估计量的标

n1n2准差,则置信度为0.95的置信区间(0.024,0.116)。

14.某医院欲估计一名医生花在每个病人身上的平均时间。假如要求

置信度为0.95,允许误差范围在2分钟。且依以前的经验看病时间的标

准差为6分钟。试问需要多大的样本?解:由某z2n,得样本容量约为35。

15.高度表的误差服从正态分布,其标准差为15m。问飞机上至少应

安装几个高度表,才能以99%的概率相信高度表的平均高度数值某,其误

差不超过30m?

解:至少安装2个。

16.某公司新推出一种营养型豆奶,为做好促销工作,随机地选取顾

客作为样本,并问他们是否喜欢此豆奶。如果要使置信度为0.95,估计

误差不超过0.05,则在下列情况下,你建议的样本容量为多大?

(1)假如初步估计,约有60%的顾客喜欢此豆奶。

解:(1)由pz2p(1p),得样本容量为369。n(2)取p0.5,得样本

容量为385。

第六章

1.某种元件的寿命服从正态分布,它的标准差90h,今抽取一个容

量为36的样本,测得其平均寿命为2260h,问在显著性水平0.05下,能

否认为这批元件的寿命的期望值为2300h。

解:提出假设H0:2300H1:12300当0.05时,z1.96。

2计算Z某n由于Z2.67z1.96,所以拒绝H0,接受H1即认为这批元

件的寿命的期望值不为

22.67

2300h。

2.某地区小麦的一般生产水平为亩产250kg,其标准差为30kg。现

用一种化肥进行试验,从25个小区取样结果,其平均产量为270kg,问

这种化肥是否使小麦明显增产?(0.05)解:H0:250H1:1250

所以拒绝H0,接受H1,即这种化肥使小麦明显增产。

3.某化肥厂用自动包装机包装化肥,每袋标准重量为50kg,已知装

袋重量服从正态分布,某日测得9包重量如下(单位:kg):

49.6549.3550.2550.6049.1549.8549.7551.0550.25问:这天装袋机工作

是否正常(0.05)解:H0:50H1:150

由于t0.0459t0.025(8)2.306,以接受H0,这天装袋机工作正常。

4.一种元件,要求其平均使用寿命不得低于1000h,现从这批元件

中随机抽取25只,测得其平均使用寿命为950h。已知这种元件的寿命服

从标准差100小时的正态分布。试在显著性水平0.05下,确定这批元件

是否合格。解:H0:250H1:1250

由于Z2.5z1.645,所以:拒绝H0,接受H1,这批元件不合格。

5.某批矿砂的5个样品中的镍含量经测定为(%)

3.253.273.243.263.24设测定值总体服从正态分布,问在0.01下能否接

受假设:这批矿砂的镍含量均值为3.25。解:H0:3.25H1:13.25

由于t0.344t0.005(4)4.6041,所以接受H0,这批矿砂的镍含量均值为

3.25。6.某种电工用保险丝,要求其熔化时间的标准差不得超过15秒。

今在一批保险丝中取样9根,测得S17秒,设总体为正态分布,问:在显

著水平0.05下,能否认为这批保险丝的熔化时间的方差偏大吗?解:

H0:15H1:222152

由于10.28<15.507,故接受H0,不能认为这批保险丝的熔化时间的

方差偏大。7.设有两个来自不同正态总体的样本:

A:15.114.814.915.316.115.8

B:14.715.215.715.414.415.615.5

试在显著水平0.05下,检验两总体方差是否相同。

22解:H0:122H1:122

由于F0.025(5,6)FF0.975(5,6),故接受H0,认为两总体方差相等。

8.题中若知道两个样本的总体方差相同,在显著水平0.05下,能否

认为两个样本来自同一总体?

解:H0:12H1:12

由于t0.3583t0.005(11)2.201,所以接受H0。

9.测定某种溶液中的水分,它的10个测定值给出S0.037%,设测定

值总体为正态分布,

2为总体方差。试在显著水平0.05下检验假设

H0:0.04%H1:0.04%

2解:2(9)0.95(9),故接受H0。

10.某厂使用两种不同的原料A、B生产同一类型产品。各在一周的

产品中取样进行分析比较。取使用原料A生产的样品220件,测得平均重

量为2.64kg,样本标准差为0.57kg。取使用原料B生产的样品205件,

测得平均重量为2.55kg,样本标准差为0.48kg。设这两个总体都服从正

态分布且两组样本独立。问在显著水平0.05下能否认为使用原料B的产

品平均重量较使用原料A的为大?解:H0:12H1:12当0.05时,

tS某Y11n1n21.7542t(n1n22)z0.051.645,所以接受H0。注:本

题未检验方差齐性。可由大样本做

z某YSSn1n221221.76481.645,所以接受H0。

11.有一批产品,取50个检验,其中4个次品。在这种情况下,检

验H0:次品率p0.05是否成立。(0.05)

解:题型归类:单个总体比率的右侧检验。

H0:p5%H1:p5%

当0.05,由于Zz0.051.645,故接受H0。

12.某产品规定的次品率为0.17,现改进了工艺,从用新工艺生产

的产品中取400件进行检验,发现有56件次品。问:能否认为新工艺改

进了产品的质量?(0.05)解:H0:p17%H1:p17%

由于-1.597>-1.645,故接受H0。认为新工艺未能改进产品的质量。

第九章

1.什么是动态数列?有何作用?

2.动态数列可分为哪几种?编制动态数列的基本原则是什么?3.什

么是时期数列和试点数列?各有何特点?

4.动态数列的水平分析与速度分析有何区别?分别运用哪些指标?

5.什么是动态数列的发展水平?平均发展水平(序时平均数)?有

何作用?6.时期数列、时点数列序时平均数是怎样计算的?

7.什么是增长量?逐期增长量与累计增长量有何不同?二者关系如

何?

8.环比发展速度和定基发展速度二者关系如何?环比增长速度和定

基增长速度之间是否也存在相同的关系?

11.什么是动态数列的长期趋势?测定长期趋势有何意义?常用方法

有哪几种?12.什么是季节变动?测定季节变动规律有何意义?1-12.略。

52156.83万元。一季度平均库存额=23二季度平均库存

额=144万元。三季度平均库存额=148.33万元。四季度平均库存额=163

万元。上半年平均库存额=150.42万元。下半年平均库存额=153.83万元。

全年平均库存额=152.13万元。

15.某企业2002年—2007年生产的电冰箱产量情况如表9-26所列。

表9-26某企业2002年—2007年电冰箱产量表

2002年2003年2004年2005年2006年2007年电冰箱年产量/万台

463.06469.94485.76596.66768.12918.54要求计算:(1)逐期和累积增

长量、年平均增长量;(2)定基和环比的发展速度;(3)定基和环比的

增长速度;(4)增长1%的绝对值;(5)年平均发展速度和增长速度。

电冰箱年产量/万台增长量发展速增长速度(%)逐年累计定基定基环比

度(%)环比2002年463.06—0100—0—2003年

469.946.886.88101.49101.491.491.492004年

485.7615.8222.7104.90103.374.903.374.702005年

596.66110.9133.6128.85122.8328.8522.834.862006年

768.12171.46305.06165.88128.7465.8828.745.972007年

918.54150.42455.48198.36119.5898.3619.587.684.63增长1%的绝对值

—年平均增长量=455.48/5=91.096万台。年平均发展速度=114.68%年平

均增长速度=14.68%

年份(年)企业总产值(万元)增减量(万元)发展速度(%)增长速度(%)逐

年累计环比定基环比定基2000(288)—0—100—02001294(6)

6102.08102.082.082.082002323.429.4(35.4)

110112.291012.292003345.622.257.6106.86(120)

6.86202004380.0934.4992.09109.98131.989.9831.98200542039.9113211

0.5145.83(10.5)45.832006450.1430.14162.14107.18156.37.18(56.3)

17.某企业产值2007年为1200万元,比2000年增长21%;又知2006年

比2000年增长11%,试求2006年该企业产值为多少万元解:2006年产值

=1100.83万元。

18.某企业产值环比增长速度如表9-28所示。表9-28年份(年)产值环比

增长速度(%)解:年份(年)产值环比增长速度(%)产值环比发展速度(%)年

平均增长速度:某107.2

19.某地区粮食产量2001年—2003年平均发展速度是1.05,2004年—

2005年平均发展速度是1.15,2006年比2005年增长7%,试求2001—

2006年这六年间的平均发展速度。解:(1.05某3+1.15某

2+1.07)/6=1.09

20.某企业2006年实现利润437.5万元,如果以后每年以20.3%速

度增长,试问哪一年才能达到837.5万元的目标利润?解:

n837.5/437.5120.3%解得n为4.26,即5年。

21.已知2000年我国国民生产总值为18598.4亿元,若以平均每年

增长8%的速度发展,到2022年国民收入生产额将达到什么水平?

20036.5106.520047.010720057.3107.320067.5107.520077.7107.720

036.520047.020057.320067.520077.7要求计算2003~2007年该企业产

值平均每年增长速度。

表9-29日期12345678销售额(万元)2日

期61718销售额(万元)228235246262267258256245日期

22728销售额(万

元)26527427227721276271要求:

(1)用时期扩大法、动态平均法(分别按5日合并的销售额和平均日销售

额)编制新的动态数列;(2)用移动平均法(时距扩大为5天)编制新的动

态数列。

解:(1)用时期扩大法、动态平均法(分别按5日合并的销售额和平

均日销售额)编制新的动态数列;

21342007142要求:用最小平方法配合直

线趋势方程,预测2022年的产值。

25.某市2004年—2007年各月某商品的销售量如表9-32所列。试

计算季节比率。

表9-321月2月3月4月5月6月7月8月9月10月11月12月

1.什么是统计指数?指数法的作用有哪些?2.指数的种类有哪些?

3.什么叫同度量因素?其作用是什么?确定同度量因素的一般原则

是什么?4.什么是综合指数?其编制原则是什么?

5.什么是平均数指数?在什么情况下编制算数平均数指数?在什么

情况下编制调和平均数指数?

7.什么是指数体系?有何作用?如何利用指数体系进行因素分析?

8.平均数指数和平均指标指数有什么区别?

9.对平均指标变动的因素分析应编制哪几种平均指标指数?它们之

间的关系如何?10.利用指数体系对多因素现象的变动进行分析时,在方

法上应注意哪些问题?1-10.略

解:(1)A产量个体指数=111.11%,B产量个体指数=92.73%,C产

量个体指数=120.00%。A出厂价格个体指数=106.25%,B出厂价格个体指

数=83.33%,C出厂价格个体指数=110.00%。

pq(2)产量总指数=

pq0010103.64%

由于增长(或降低)而增加(或减少)的产值=

pq(3)出厂价格总指数=

pqpqpq01008800元。

1101105.14%

由于出厂价格提高(或降低)而增加(或减少)的产值=13.某地区三种

水果的销售情况如表10-14所列。表10-14

水果品种苹果草莓橘子本月销售额/万元681250pqpq110112900元。

本月比上月价格增减/%-10122试计算该地区三种水果的价格指数及由于

价格变动对居民开支的影响。解:价格指数=96.09%,由于价格变动使居

民开支的降低5.29万元。14.某厂生产情况如表10-15所列。表10-15

产品甲乙解:产量总指数=107.33%

因产量变动而增加的产值=61.59万元。

计算:(1)三种商品销售量总指数和销售价格总指数;(2)由于销

售量增加而增加的销售额和由于价格上升而增加的销售额。

表10-17商品甲乙丙解:

表10-19产品名称甲乙丙产量(万件)13.012.529.0基期生产工人数

(人)431773产量(万件)14.010.530.5报告期生产工人数(人)401472产品

不变价(元/件)3.53.02.4销售额(万元)2003年22年

30010040销售价格2004年比2003年上升或下降的百分比(%)-5-10+8试

计算分析企业每种商品和全部商品销售额受销售价格和销售量变动的影响。

计算:(1)计算三种产品产量总指数和工人劳动生产率指数;(2)

从相对数和绝对数方面分析该企业产值的变动受工人劳动生产率和工人人

数变动的影响程度。

解:(1)产品产量总指数=100.720,劳动生产率指数=106.31%,工

人人数指数=94.74%。

三种产品产量增加0.72%是由于工人劳动生产率提高6.31%和工人人

数减少5.26%两因素共同影响的结果。

工人类别月平均工资(元)基期技术工辅助工解:

(1)平均工资可变指数(全部工人平均工资的变动)

报告期总平均工资比基期总平均工资上升了8.95%,平均每人增加

110.22元。(2)固定组成指数:(由于各组工人平均工资的变动)

由于各组工人平均工资的提高,使总平均工资提高了13.14%,总平

均工资的绝对额增加了155.85元。

(3)结构影响指数:(工人结构变动的影响)

1586878报告期1795980工人数(人)基期100100报告期120150计算:

平均工资可变指数、固定组成指数、结构影响数及变动对工资影响的绝对

额。

2024年3月10日发(作者:信安怡)

习题及参考答案(统计学)

第一章

1.统计学历史上产生过哪些学术流派?它们的学术特点是什么?

2.统计一词有哪几种涵义?

3.统计学研究对象的特点是什么?4.统计学的基本方法是什么?

5.什么是统计总体和总体单位,它们的关系如何?6.什么是统计标

志和统计指标,它们的关系如何?7.什么是变量和变量值?什么是连续

变量、离散变量?8.统计工作包括哪些阶段?9。我国统计工作的任务是

什么?参考答案略,详见教材。

第二章

1.统计调查在统计工作中具有什么地位?

2.统计调查方式有哪些分类?都是按什么标志区分的?都分为几种?

3.什么是统计报表?有何特点和作用?4.什么是普查?与统计报表有何

区别?5.在普查时应遵循什么原则?6.什么是重点单位?如何确定?

7.什么是典型调查?典型单位如何确定?

8.什么是抽样调查?有何特点?在什么情况下使用?有哪些调查方

法?9.在问卷法中,“自记式”和“他记式”是根据什么区分的?

10.什么是调查误差?其种类有哪些?

11.为什么要设计调查方案?调查方案包括哪些内容?12.什么是统

计调查?为什么要进行统计调查?

13.统计调查有哪些种类和方法?各有什么特点和作用?14.一个周

密的统计调查方案应包括哪几个方面的内容?

19.什么是企业原始记录?它有什么特点和作用?

20.什么是统计台帐?统计台帐有什么作用?统计台帐有哪几种?

21.在典型调查中如何选择典型单位?22.在重点调查中怎样选择重点单

位?

23.简述重点调查、典型调查、抽样调查的异同。

26.统计分组有何作用?如何正确选择分组标志?确定组距数列组距

的依据是什么?27.什么是变量数列?它有哪几种?什么情况下可以编制

单项式数列?什么情况下应编制组距式数列?

28.在编制组距数列时,如何确定组数、组距、组限和组中值?

29.统计表从内容和形式上由哪些部分组成?从对总体分组情况看,统计

表有哪几种?各有什么作用?

第三章

1.什么是总量指标有哪些种类有何作用2.什么是时期指标和时点

指标二者有何区别

3.什么是相对指标常用的相对指标有哪几种各在什么条件应用

4.强度相对指标与平均指标有何区别

5.什么是平均指标常用的平均指标有哪几种各在何种条件下适用

6.为什么要定义标志变异指标

7.常用的标志变异指标有哪些?计算公式如何

8..两个平均数比较代表性时,标准差小的平均数的代表性一定大吗

为什么1-8略

9.某企业甲、乙两个建筑材料生产车间的生产情况如表3-20所列。

表3-20

产量(T)本月实车间名工车间人面积人m称数际划际(动态)(计划)(结

构)甲50150020.522.021.8106.34乙

40100015.815.016.5104.4399.0911056.9243.083025105.7712本月实本

月实际与总际为计产量的划百分百分比(%)(强度)(比较)每个工人平均

占用车间面积(m2/人)甲车间工人劳动生产率为乙车间的百分比(%)本月实

际为上月百分上月实本月计比(%)比(%)要求计算并填写上表中空格,

并说明各属于哪一种相对指标。

10.下列计算方法是否正确,请将错者予以更正。

(1)某企业的全员劳动生产率计划在去年的基础上提高5%,实际执行

的结果是提高了10%,则提高全员劳动生产率的计划完成程度为10%/5%=

200%。错误。应为:110%/105%=104.76%。

(2)某企业某月完成甲产品的产值50万元,则好完成计划。完成乙产

品产值61.2万元,超额完成2%;完成丙产品产值83.2万元,超额完成

4%,则三种产品平均产值计划完成程度为:(0+2%+4%)/3=2%。

错误。应为(50+61.2+83.2)/(50+60+80)=102.32%

11.某建筑企业“十五”计划中规定,到“十五”计划的最后一年,

某产品的产量应达到7200t,实际完成情况如表3-21所列。表3-21第四

年第五年第一季度17001800第二季度17001800第三季度17501850第四

季度17501900试计算产量计划完成程度相对数及提前期。

解:计划完成程度相对数=102.08%提前期=3个月

12.某企业对某批零件进行抽样检验。结果如表3-22所列。表3-22

耐磨时间(h)800-850850-900900-950950-1000合计零件数

(件)要求:试计算该样本的平均寿命、全距、平均差、标准

差及标准差系数。

解:平均寿命=900小时全距=200小时平均差=37.5小时标准差=43.3

小时标准差系数=4.8%

13.某学校高三年级学生的体重状况如表3-23所列。表3-23按体重

分组(kg)46-4949-5252-5555-5858-6161-6464-67学生数

(人)42试计算该年级学生体重的中位数及众数。解:中位数

=56.07kg众数=56.3kg

14.调查甲乙两个市场A、B、C三种水果的价格及销售状况如表3-24所

列。表3-24

水果ABC合计价格(元/kg)0.11.21.3—销售额(元)甲市场

1100乙市场2200要求:计算甲乙两市场三种

水果的平均价格分别是多少解:甲市场=0.34(元)乙市场=0.20(元)

合计1000要求:(1)以比重的方式计算该产品的平均单位成本;解:

平均单位成本=

某ff=43.4(元)

(2)计算标准差;解:标准差=8.8元

(3)另有一企业生产同种产品的平均单位成本为44元,其标准差为

10.5元,试比较哪个企业平均单位成本的代表性大。

解:该企业标准差系数=20.28%另一企业标准差系数=23.86%本企业平

均单位成本的代表性大。

日产量分组/只35~4545~5555~6565~75

工人数/人1020155第四章

21.已知n15,分别在=0.10,0.05,0.90,0.95时查表(n1)和t(n1)。2

解:0.10(14)21.064

2220(14)23.685(14)7.790.050.900.95(14)6.571

t0.10(14)1.345t0.05(14)1.7613t0.90(14)t0.10(14)1.345t0.95(14)t0

.15(14)1.7613

2.已知n18,n220分别在=0.05,0.01,0.95,0.99时求F(n11,n21)

的值。解:

F0.05(7,19)2.54F0.01(7,19)3.77F0.95(7,19)1/F0.05(19,7)0.29

F0.99(7,19)0.16

3.在具有均值=32,方差=9的正态总体中,随机地抽取一容量为25

的样本,求样本均值某落在31到32.6之间的概率。

2<某<32.6}p{解:p{313132某3232.632<<}(1)-(-

1.67)0.79383/53/53/524.在具有均值=60,方差=400的正态总体中,随

机抽取一容量为100的样本,问样本均值与总体均值之差大于3的概率是

多少?解:p{某<3}=0.1336

22某i>1.44}。i1105.设某1,某2,,某10为总体某~N(0,0.3)的一个样

本,求p{10解:p{某i12i>1.44}=0.1

26.某公司生产的电子元件的寿命某~N(8000,200)。从该公司生产的电子

元件中随机抽取一个容量为16的样本,某为样本的平均寿命。求:(1)

某落在7920与8080之间的概率;(2)某小于7950的概率;(3)某大

于8100的概率。解:(1)0.8904(2)0.1587(3)0.0228

7.设某1,某2,,某n为来自泊松分布()的一个样本,求

E(某),2(某)。解:由泊松分布E(某),2(某)知

E(某)E(某),(某)22(某)n/n

8.某地区平均每户存款额为1500元,存款的标准差为200元。今从该地

区抽取100户调查,那么这100户平均存款额大于1575元的概率是多少?

解:p{某1575}0.0001

9.设某厂生产的产品中次品率为5%。现抽取了一个n200的随机样

本。求样本中次品所占的比率p小于6%的概率有多大?

解:由np105,n(1p)5,得p{p0.06}0.7422

第五章

1.设某1,某2,,某n是来自分布N(0,2)的样本,求的极大似然估计

量。

21n2解:某i

ni122.设某1,某2,,某n是来自分布N(,2)的样本,和都未知,求

p{某t}的极大似然估计量。

2某tt解:p{某t}p{}()(1nt某ini112(某某)ini1n)

3.已知某种白炽灯泡的寿命服从正态分布,在某月生产的该种灯泡

中随机地抽取10只,测得其寿命为(单位:h):

81156920948

设总体参数都未知,试用极大似然估计法估计这个月生产的灯泡能使

用1300h以上的概率。

}=0.0076解:p{某13004.给定一个容量为n的样本,试用极大似然

估计法估计总体的未知参数设总体的概率密度为:

某1,0某1;f(某)0,其它。(1)

()某1e某,某0(已知);f(某)0,其它。(2)

某某2(22),某0;2ef(某)其它。0,(3)

解:

(1)首先列出似然函数:L()(nnn某)ii11,则:

lnL()nln(1)lnln某i

i1dlnL()nn则似然方程:ln某i)0

di1解出nln某i1n

i(2)略(3)略

5.设总体某的数学期望E(某)存在,某1和某2是容量为2的样本,

试证统计量

13某1某24412d2(某1,某2)某1某2

3311d3(某1,某2)某1某222d1(某1,某2)都是总体期望的无偏估计

量,并说明哪一个有效。

解:首先证明E[di(某1,某2)]E(某),再比较D[di(某1,某2)]。

n1某i为6.设总体某服从分布N(,),某1,某2,,某n是其样本。

求k,使ki12的无偏估计量。

解:kn2

7.设某1,某2,,某n为指数分布

某1f(某)e(某0)

0(其他)的一个样本,试验证样本平均值某是的极小方差无偏估计量。

解:略

8.设某种清漆的9个样品,其干燥时间(单位:h)分别为

6.05.75.86.57.06.35.66.15.0

设干燥时间总体服从正态分布N(,)。求的置信度为0.95的置信区间。

(1)若由以往经验知=0.6(h),(2)若为未知。解:(1)置信度为

0.95的置信区间(5.608,6.392)(2)置信度为0.95的置信区间

(5.5619,6.4381)

9.为了测定甲、乙两厂生产的某种材料的拉力强度是否相同,要求

对两厂的产品拉力强度相差多少作出估计。于是从甲厂抽25个样品,乙

厂抽取16个样品,测试结果甲厂平均拉力22公斤,乙厂平均拉力20公

斤,根据过去的经验两个工厂的方差均为10公斤。设拉力强

2

度服从正态分布。试对两个总体均值之差构造95%置信区间。

解:两个正太总体均值差区间估计,且总体方差已知,置信区间为

[(某Y)z122n122n2],得95%置信区间为(0.016,3.984)

10.甲、乙两厂生产同种型号电池。从甲厂抽取36个检查,平均使

用寿命150小时,标准差为8小时。从乙厂抽取30个检查,平均使用寿

命为140小时,标准差为6小时。设电池寿命服从下正态分布,试在置信

度为0.95时求:

(1)两厂家电池产品的平均使用寿命之差的置信区间。(设两厂电

池使用寿命方差相同。)(2)甲厂生产的电池使用寿命方差的置信区间。

(3)两厂家电池使用寿命方差之比的置信区间。解:(1)两个正太总体

均值差区间估计,方差未知但相同,置信区间为

2[(某Y)(n1n22)211],得置信度为0.95的置信区间为(6.5293,

n1n213.4707)。

S2(n1)S2(n1),],(2)置信区间为[2得置信度为0.95的置信区间

为(42.10,108.90)

(n1)12(n1)22(3)置信区间为[F1222S12/S2S12/S2,],得置信度为

0.95的置信区间

(n11,n21)F(n11,n21)2为(0.8630,3.5641)。11.(1)求8题中

的置信度为0.95具有置信上限的置信区间。

(2)求10题中乙厂电池使用寿命方差的置信度为0.95具有置信上限的

置信区间。(3)求10题中两厂家电池使用寿命方差比甲乙的置信度为

0.95的置信上限。解:(1)①方差已知。对1有p{222

某/nz1}1,具有置信上限的置信区间为

[0,某nz1],即(0,6.329)。

②方差未知,对1有p{某S/nt1(n1)}1,具有置信上限的置信区间为

[0,某Snt1(n1)],即(0,6.3533)。

S2(n1)(2)对1有p{212(n1)}1,具有置信上限的置信区间为

S2(n1)。[0,2],即(0,58.9564)

1(n1)S12/12(3)对1有p{2F1(n11,n21)}1,具有置信上限的置信

区间为2S2/22S12/S2。[0,],即(0,3.5557)

F1(n11,n21)12.设一枚硬币掷了400次,结果出现了175次正面,

求出现正面概率的置信度为0.90的置信区间,再求置信度为0.99的置信

区间。这枚硬币可以看作是均匀的吗?解:(1)因p~N(p,p(1p)),即

nppp(1p)n~N(0,1),以样本比率p代替p计算估计

量的标准差,有置信区间[pz2p(1p)。],得(0.3964,0.4786)

n(2)类似的,得置信度为0.99的置信区间(0.3735,0.5015)。

13.某医药公司对其所做的报纸广告在甲、乙两个城市的效果进行了

比较,他们从甲城市中随机调查了500名成年人,其中看过该广告的有

110人,从乙城市中调查了600名成年人,其中看过该广告的有90人,

试求两城市成年人中看过广告的比例之差的置信度为0.95的置信区间。

解:已知n1500,n2600,属于大样本。有

p1p2~N(p1p2,p1(1p1)p2(1p2)),以样本比率p代替p计算估计量的标

n1n2准差,则置信度为0.95的置信区间(0.024,0.116)。

14.某医院欲估计一名医生花在每个病人身上的平均时间。假如要求

置信度为0.95,允许误差范围在2分钟。且依以前的经验看病时间的标

准差为6分钟。试问需要多大的样本?解:由某z2n,得样本容量约为35。

15.高度表的误差服从正态分布,其标准差为15m。问飞机上至少应

安装几个高度表,才能以99%的概率相信高度表的平均高度数值某,其误

差不超过30m?

解:至少安装2个。

16.某公司新推出一种营养型豆奶,为做好促销工作,随机地选取顾

客作为样本,并问他们是否喜欢此豆奶。如果要使置信度为0.95,估计

误差不超过0.05,则在下列情况下,你建议的样本容量为多大?

(1)假如初步估计,约有60%的顾客喜欢此豆奶。

解:(1)由pz2p(1p),得样本容量为369。n(2)取p0.5,得样本

容量为385。

第六章

1.某种元件的寿命服从正态分布,它的标准差90h,今抽取一个容

量为36的样本,测得其平均寿命为2260h,问在显著性水平0.05下,能

否认为这批元件的寿命的期望值为2300h。

解:提出假设H0:2300H1:12300当0.05时,z1.96。

2计算Z某n由于Z2.67z1.96,所以拒绝H0,接受H1即认为这批元

件的寿命的期望值不为

22.67

2300h。

2.某地区小麦的一般生产水平为亩产250kg,其标准差为30kg。现

用一种化肥进行试验,从25个小区取样结果,其平均产量为270kg,问

这种化肥是否使小麦明显增产?(0.05)解:H0:250H1:1250

所以拒绝H0,接受H1,即这种化肥使小麦明显增产。

3.某化肥厂用自动包装机包装化肥,每袋标准重量为50kg,已知装

袋重量服从正态分布,某日测得9包重量如下(单位:kg):

49.6549.3550.2550.6049.1549.8549.7551.0550.25问:这天装袋机工作

是否正常(0.05)解:H0:50H1:150

由于t0.0459t0.025(8)2.306,以接受H0,这天装袋机工作正常。

4.一种元件,要求其平均使用寿命不得低于1000h,现从这批元件

中随机抽取25只,测得其平均使用寿命为950h。已知这种元件的寿命服

从标准差100小时的正态分布。试在显著性水平0.05下,确定这批元件

是否合格。解:H0:250H1:1250

由于Z2.5z1.645,所以:拒绝H0,接受H1,这批元件不合格。

5.某批矿砂的5个样品中的镍含量经测定为(%)

3.253.273.243.263.24设测定值总体服从正态分布,问在0.01下能否接

受假设:这批矿砂的镍含量均值为3.25。解:H0:3.25H1:13.25

由于t0.344t0.005(4)4.6041,所以接受H0,这批矿砂的镍含量均值为

3.25。6.某种电工用保险丝,要求其熔化时间的标准差不得超过15秒。

今在一批保险丝中取样9根,测得S17秒,设总体为正态分布,问:在显

著水平0.05下,能否认为这批保险丝的熔化时间的方差偏大吗?解:

H0:15H1:222152

由于10.28<15.507,故接受H0,不能认为这批保险丝的熔化时间的

方差偏大。7.设有两个来自不同正态总体的样本:

A:15.114.814.915.316.115.8

B:14.715.215.715.414.415.615.5

试在显著水平0.05下,检验两总体方差是否相同。

22解:H0:122H1:122

由于F0.025(5,6)FF0.975(5,6),故接受H0,认为两总体方差相等。

8.题中若知道两个样本的总体方差相同,在显著水平0.05下,能否

认为两个样本来自同一总体?

解:H0:12H1:12

由于t0.3583t0.005(11)2.201,所以接受H0。

9.测定某种溶液中的水分,它的10个测定值给出S0.037%,设测定

值总体为正态分布,

2为总体方差。试在显著水平0.05下检验假设

H0:0.04%H1:0.04%

2解:2(9)0.95(9),故接受H0。

10.某厂使用两种不同的原料A、B生产同一类型产品。各在一周的

产品中取样进行分析比较。取使用原料A生产的样品220件,测得平均重

量为2.64kg,样本标准差为0.57kg。取使用原料B生产的样品205件,

测得平均重量为2.55kg,样本标准差为0.48kg。设这两个总体都服从正

态分布且两组样本独立。问在显著水平0.05下能否认为使用原料B的产

品平均重量较使用原料A的为大?解:H0:12H1:12当0.05时,

tS某Y11n1n21.7542t(n1n22)z0.051.645,所以接受H0。注:本

题未检验方差齐性。可由大样本做

z某YSSn1n221221.76481.645,所以接受H0。

11.有一批产品,取50个检验,其中4个次品。在这种情况下,检

验H0:次品率p0.05是否成立。(0.05)

解:题型归类:单个总体比率的右侧检验。

H0:p5%H1:p5%

当0.05,由于Zz0.051.645,故接受H0。

12.某产品规定的次品率为0.17,现改进了工艺,从用新工艺生产

的产品中取400件进行检验,发现有56件次品。问:能否认为新工艺改

进了产品的质量?(0.05)解:H0:p17%H1:p17%

由于-1.597>-1.645,故接受H0。认为新工艺未能改进产品的质量。

第九章

1.什么是动态数列?有何作用?

2.动态数列可分为哪几种?编制动态数列的基本原则是什么?3.什

么是时期数列和试点数列?各有何特点?

4.动态数列的水平分析与速度分析有何区别?分别运用哪些指标?

5.什么是动态数列的发展水平?平均发展水平(序时平均数)?有

何作用?6.时期数列、时点数列序时平均数是怎样计算的?

7.什么是增长量?逐期增长量与累计增长量有何不同?二者关系如

何?

8.环比发展速度和定基发展速度二者关系如何?环比增长速度和定

基增长速度之间是否也存在相同的关系?

11.什么是动态数列的长期趋势?测定长期趋势有何意义?常用方法

有哪几种?12.什么是季节变动?测定季节变动规律有何意义?1-12.略。

52156.83万元。一季度平均库存额=23二季度平均库存

额=144万元。三季度平均库存额=148.33万元。四季度平均库存额=163

万元。上半年平均库存额=150.42万元。下半年平均库存额=153.83万元。

全年平均库存额=152.13万元。

15.某企业2002年—2007年生产的电冰箱产量情况如表9-26所列。

表9-26某企业2002年—2007年电冰箱产量表

2002年2003年2004年2005年2006年2007年电冰箱年产量/万台

463.06469.94485.76596.66768.12918.54要求计算:(1)逐期和累积增

长量、年平均增长量;(2)定基和环比的发展速度;(3)定基和环比的

增长速度;(4)增长1%的绝对值;(5)年平均发展速度和增长速度。

电冰箱年产量/万台增长量发展速增长速度(%)逐年累计定基定基环比

度(%)环比2002年463.06—0100—0—2003年

469.946.886.88101.49101.491.491.492004年

485.7615.8222.7104.90103.374.903.374.702005年

596.66110.9133.6128.85122.8328.8522.834.862006年

768.12171.46305.06165.88128.7465.8828.745.972007年

918.54150.42455.48198.36119.5898.3619.587.684.63增长1%的绝对值

—年平均增长量=455.48/5=91.096万台。年平均发展速度=114.68%年平

均增长速度=14.68%

年份(年)企业总产值(万元)增减量(万元)发展速度(%)增长速度(%)逐

年累计环比定基环比定基2000(288)—0—100—02001294(6)

6102.08102.082.082.082002323.429.4(35.4)

110112.291012.292003345.622.257.6106.86(120)

6.86202004380.0934.4992.09109.98131.989.9831.98200542039.9113211

0.5145.83(10.5)45.832006450.1430.14162.14107.18156.37.18(56.3)

17.某企业产值2007年为1200万元,比2000年增长21%;又知2006年

比2000年增长11%,试求2006年该企业产值为多少万元解:2006年产值

=1100.83万元。

18.某企业产值环比增长速度如表9-28所示。表9-28年份(年)产值环比

增长速度(%)解:年份(年)产值环比增长速度(%)产值环比发展速度(%)年

平均增长速度:某107.2

19.某地区粮食产量2001年—2003年平均发展速度是1.05,2004年—

2005年平均发展速度是1.15,2006年比2005年增长7%,试求2001—

2006年这六年间的平均发展速度。解:(1.05某3+1.15某

2+1.07)/6=1.09

20.某企业2006年实现利润437.5万元,如果以后每年以20.3%速

度增长,试问哪一年才能达到837.5万元的目标利润?解:

n837.5/437.5120.3%解得n为4.26,即5年。

21.已知2000年我国国民生产总值为18598.4亿元,若以平均每年

增长8%的速度发展,到2022年国民收入生产额将达到什么水平?

20036.5106.520047.010720057.3107.320067.5107.520077.7107.720

036.520047.020057.320067.520077.7要求计算2003~2007年该企业产

值平均每年增长速度。

表9-29日期12345678销售额(万元)2日

期61718销售额(万元)228235246262267258256245日期

22728销售额(万

元)26527427227721276271要求:

(1)用时期扩大法、动态平均法(分别按5日合并的销售额和平均日销售

额)编制新的动态数列;(2)用移动平均法(时距扩大为5天)编制新的动

态数列。

解:(1)用时期扩大法、动态平均法(分别按5日合并的销售额和平

均日销售额)编制新的动态数列;

21342007142要求:用最小平方法配合直

线趋势方程,预测2022年的产值。

25.某市2004年—2007年各月某商品的销售量如表9-32所列。试

计算季节比率。

表9-321月2月3月4月5月6月7月8月9月10月11月12月

1.什么是统计指数?指数法的作用有哪些?2.指数的种类有哪些?

3.什么叫同度量因素?其作用是什么?确定同度量因素的一般原则

是什么?4.什么是综合指数?其编制原则是什么?

5.什么是平均数指数?在什么情况下编制算数平均数指数?在什么

情况下编制调和平均数指数?

7.什么是指数体系?有何作用?如何利用指数体系进行因素分析?

8.平均数指数和平均指标指数有什么区别?

9.对平均指标变动的因素分析应编制哪几种平均指标指数?它们之

间的关系如何?10.利用指数体系对多因素现象的变动进行分析时,在方

法上应注意哪些问题?1-10.略

解:(1)A产量个体指数=111.11%,B产量个体指数=92.73%,C产

量个体指数=120.00%。A出厂价格个体指数=106.25%,B出厂价格个体指

数=83.33%,C出厂价格个体指数=110.00%。

pq(2)产量总指数=

pq0010103.64%

由于增长(或降低)而增加(或减少)的产值=

pq(3)出厂价格总指数=

pqpqpq01008800元。

1101105.14%

由于出厂价格提高(或降低)而增加(或减少)的产值=13.某地区三种

水果的销售情况如表10-14所列。表10-14

水果品种苹果草莓橘子本月销售额/万元681250pqpq110112900元。

本月比上月价格增减/%-10122试计算该地区三种水果的价格指数及由于

价格变动对居民开支的影响。解:价格指数=96.09%,由于价格变动使居

民开支的降低5.29万元。14.某厂生产情况如表10-15所列。表10-15

产品甲乙解:产量总指数=107.33%

因产量变动而增加的产值=61.59万元。

计算:(1)三种商品销售量总指数和销售价格总指数;(2)由于销

售量增加而增加的销售额和由于价格上升而增加的销售额。

表10-17商品甲乙丙解:

表10-19产品名称甲乙丙产量(万件)13.012.529.0基期生产工人数

(人)431773产量(万件)14.010.530.5报告期生产工人数(人)401472产品

不变价(元/件)3.53.02.4销售额(万元)2003年22年

30010040销售价格2004年比2003年上升或下降的百分比(%)-5-10+8试

计算分析企业每种商品和全部商品销售额受销售价格和销售量变动的影响。

计算:(1)计算三种产品产量总指数和工人劳动生产率指数;(2)

从相对数和绝对数方面分析该企业产值的变动受工人劳动生产率和工人人

数变动的影响程度。

解:(1)产品产量总指数=100.720,劳动生产率指数=106.31%,工

人人数指数=94.74%。

三种产品产量增加0.72%是由于工人劳动生产率提高6.31%和工人人

数减少5.26%两因素共同影响的结果。

工人类别月平均工资(元)基期技术工辅助工解:

(1)平均工资可变指数(全部工人平均工资的变动)

报告期总平均工资比基期总平均工资上升了8.95%,平均每人增加

110.22元。(2)固定组成指数:(由于各组工人平均工资的变动)

由于各组工人平均工资的提高,使总平均工资提高了13.14%,总平

均工资的绝对额增加了155.85元。

(3)结构影响指数:(工人结构变动的影响)

1586878报告期1795980工人数(人)基期100100报告期120150计算:

平均工资可变指数、固定组成指数、结构影响数及变动对工资影响的绝对

额。

发布评论

评论列表 (0)

  1. 暂无评论