最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天

IT圈 admin 27浏览 0评论

2024年3月22日发(作者:练天亦)

第4课时 万有引力与航天

考纲解读1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第

二和第三宇宙速度.

1.[对开普勒三定律的理解]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运

动定律可知( )

A.太阳位于木星运行轨道的中心

B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积

答案 C

解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此

B错;太阳在这些椭圆的一个焦点上,因此A错; 在相同时间内,某个确定的行星与

太阳连线在相同时间内扫过的面积相等,因此D错,本题答案为C.

m

1

m

2

2.[对万有引力定律的理解]关于万有引力公式F=G

2

,以下说法中正确的是( )

r

A.公式只适用于星球之间的引力计算,不适用于质量较小的物体

B.当两物体间的距离趋近于0时,万有引力趋近于无穷大

C.两物体间的万有引力也符合牛顿第三定律

D.公式中引力常量G的值是牛顿规定的

答案 C

m

1

m

2

解析 万有引力公式F=G

,虽然是牛顿由天体的运动规律得出的,但牛顿又将它

r

推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离

趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引

力也符合牛顿第三定律.公式中引力常量G的值是卡文迪许在实验室里用实验测定的,

而不是人为规定的.故正确答案为C.

3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗

第 1 页 共 22 页

类似地球的、可适合居住的行星——“开普勒—22b”,其直径约为地球的2.4倍.至

今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估

算该行星的第一宇宙速度等于( )

A.3.3×10

3

m/s B.7.9×10

3

m/s

C.1.2×10

4

m/s D.1.9×10

4

m/s

答案 D

M

1

M

2

解析 由该行星的密度和地球相当可得

3

3

,地球第一宇宙速度v

1

R

1

R

2

行星的第一宇宙速度v

2

GM

1

,该

R

1

GM

2

,联立解得v

2

=2.4v

1

=1.9×10

4

m/s,选项D正确.

R

2

4.[对人造卫星及卫星轨道的考查]a、b、c、d是在地球大气层外的圆形轨道上运行的四颗

人造卫星.其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面

上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )

图1

A.a、c的加速度大小相等,且大于b的加速度

B.b、c的角速度大小相等,且小于a的角速度

C.a、c的线速度大小相等,且小于d的线速度

D.a、c存在在P点相撞的危险

答案 A

v

2

Mm

2

2

解析 由G

2

=m=mrω=mr

2

=ma,可知B、C、D错误,A正确.

rrT

一、万有引力定律及其应用

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与

物体的质量m

1

和m

2

的乘积成正比、与它们之间距离r的二次方成反比.

Gm

1

m

2

2.表达式:F=

2

,G为引力常量:G=6.67×10

11

N·m

2

/kg

2

.

r

3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物

体可视为质点.

第 2 页 共 22 页

(2)质量分布均匀的球体可视为质点,r是两球心间的距离.

二、环绕速度

1.第一宇宙速度又叫环绕速度.

mv

2

1

GMm

推导过程为:由mg==

2

得:

RR

v

1

GM

=gR=7.9 km/s.

R

2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度.

3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.

特别提醒 1.两种周期——自转周期和公转周期的不同

2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度

3.两个半径——天体半径R和卫星轨道半径r的不同

三、第二宇宙速度和第三宇宙速度

1.第二宇宙速度(脱离速度):v

2

=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度.

2.第三宇宙速度(逃逸速度):v

3

=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度.

考点一 天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

v

2

Mm

2

r

2

G

2

=ma

n

=m

=mω

r=m

2

rrT

Mm

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G

2

=mg(g表示天体表

R

面的重力加速度).

2.天体质量和密度的计算

(1)利用天体表面的重力加速度g和天体半径R.

MmgR

2

由于G

2

=mg,故天体质量M=,

RG

MM3g

天体密度ρ===

.

V4

3

4πGR

πR

3

(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.

第 3 页 共 22 页

Mm

2

2

r

3

①由万有引力等于向心力,即G

2

=m

2

r,得出中心天体质量M=

2

rTGT

②若已知天体半径R,则天体的平均密度

MM

3πr

3

ρ=

==;

V4

3

GT

2

R

3

πR

3

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,

则天体密度ρ=

2

.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心

GT

天体的密度.

例1 1798年,英国物理学家卡文迪许测出万有引力常量G,因此卡文迪许被人们称为能称

出地球质量的人.若已知万有引力常量G,地球表面处的重力加速度g,地球半径R,

地球上一个昼夜的时间T

1

(地球自转周期),一年的时间T

2

(地球公转周期),地球中心到

月球中心的距离L

1

,地球中心到太阳中心的距离L

2

.你能计算出( )

gR

2

A.地球的质量m

G

3

2

L

2

B.太阳的质量m

2

GT

2

3

2

L

1

C.月球的质量m

2

GT

1

D.可求月球、地球及太阳的密度

Gm

m

0

gR

2

解析 对地球表面的一个物体m

0

来说,应有m

0

g=

,所以地球质量m

=,

R

2

G

Gm

m

2

2

L

3

2

选项A正确.对地球绕太阳运动来说,有=m

2

L

2

,则m

=,B项正

22

L

2

T

2

GT

2

确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动

参量,无法求出它的质量和密度,C、D项错误.

答案 AB

突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为

v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,

弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为( )

mv

2

mv

4

Nv

2

Nv

4

A. B. C. D.

GNGNGmGm

答案 B

解析 设卫星的质量为m′

第 4 页 共 22 页

Mm′

v

2

由万有引力提供向心力,得G

2

=m′

RR

v

2

m′

=m′g②

R

由已知条件:m的重力为N得N=mg③

mv

2

N

由③得g=,代入②得:R=

mN

mv

4

代入①得M=,故B项正确.

GN

考点二 卫星运行参量的比较与运算

1.卫星的各物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可

近似认为等于地球的半径,其运行线速度约为7.9 km/s.

(3)两种卫星的轨道平面一定通过地球的球心.

深化拓展 (1)卫星的a、v、ω、T是相互联系的,如果一个量发生变化,其他量也随之

发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.

(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,

机械能越大.

例2 “嫦娥四号”,专家称“四号星”,计划在2017年发射升空,它是嫦娥探月工程计

划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球

地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R,月球表面的重力

加速度为g,月球的平均密度为ρ,“嫦娥四号”离月球中心的距离为r,绕月周期为

T.根据以上信息下列说法正确的是( )

A.月球的第一宇宙速度为gr

第 5 页 共 22 页

B.“嫦娥四号”绕月运行的速度为

3πr

3

C.万有引力常量可表示为

23

ρT

R

gr

2

R

D.“嫦娥四号”必须减速运动才能返回地球

v

2

v

2

Mm

解析 根据第一宇宙速度的定义有:mg=m

,v=gR,A错误;根据G

2

=m和

Rrr

Mm

G

2

=mg可以得到“嫦娥四号”绕月运行的速度为v=

R

R

2

gMm

,B错误;根据G

2

rr

2

4

3

3πr

3

m

2

r和M=ρ

πR

可以知道万有引力常量可表示为

23

,C正确;“嫦娥四号”必须

T3

ρT

R

先加速离开月球,再减速运动才能返回地球,D错误.

答案 C

突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州

十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G,下列说法正确

的是( )

A.由神州十号运行的周期和轨道半径可以求出地球的质量

B.由神州十号运行的周期可以求出它离地面的高度

C.若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小

D.漂浮在天宫一号内的宇航员处于平衡状态

答案 A

例3 如图2所示,同步卫星与地心的距离为r,运行速率为v

1

,向心加速度为a

1

;地球赤

道上的物体随地球自转的向心加速度为a

2

,第一宇宙速度为v

2

,地球半径为R,则下列

比值正确的是( )

图2

v

1

r

v

1

a

1

ra

1

R

A.= B.=()

2

C.= D.=

a

2

Ra

2

r

v

2

R

v

2

R

r

解析 本题中涉及三个物体,其已知量排列如下:

地球同步卫星:轨道半径r,运行速率v

1

,向心加速度a

1

地球赤道上的物体:轨道半径R,随地球自转的向心加速度a

2

近地卫星:轨道半径R,运行速率v

2

.

第 6 页 共 22 页

v

2

v

1

Mm

对于卫星,其共同特点是万有引力提供向心力,有G

2

=m,故=

rr

v

2

R

.

r

a

1

r

对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a=ω

2

r,故

.

a

2

R

答案 AD

同步卫星的六个“一定”

突破训练3 已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力

常量为G.有关同步卫星,下列表述正确的是( )

3

GMT

2

A.卫星距地面的高度为

2

B.卫星的运行速度小于第一宇宙速度

Mm

C.卫星运行时受到的向心力大小为G

2

R

D.卫星运行的向心加速度小于地球表面的重力加速度

答案 BD

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆

v

2

2

mrGMm

周运动,即F

=F

=m=

2

.当卫星在地表运行时,F

2

=mg(R为地球半

rTR

GMm

径),设同步卫星离地面高度为h,则F

==F

=ma

2

R+h

mv

2

GMm

正确.由=得,v=

R+h

2

R+h

GM

<

R+h

2

GMGMm

mR+h

,B正确.由=,

RT

2

R+h

2

3

GMT

2

3

GMT

2

得R+h= ,即h= -R,A错误.

2

2

考点三 卫星变轨问题分析

第 7 页 共 22 页

当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不

再等于向心力,卫星将变轨运行:

Mm

v

2

(1)当卫星的速度突然增大时,G

2

,即万有引力不足以提供向心力,卫星将做离

rr

心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=

GM

可知其运行速度比原轨道时减小.

r

Mm

v

2

(2)当卫星的速度突然减小时,G

2

>m

,即万有引力大于所需要的向心力,卫星将做

rr

近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=

GM

可知其运行速度比原轨道时增大.

r

卫星的发射和回收就是利用这一原理.

例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图3所示是绕地

飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A点是2轨道

的近地点,B点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s,则下列说法

中正确的是( )

图3

A.卫星在2轨道经过A点时的速率一定大于7.7 km/s

B.卫星在2轨道经过B点时的速率一定小于7.7 km/s

C.卫星在3轨道所具有的机械能小于在2轨道所具有的机械能

D.卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率

v

2

Mm

1

解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G

2

=m,

rr

Mm

v

2

2A

卫星在2轨道A点做离心运动,则有G

2

,故v

1

2A

,选项A正确;卫星在2

rr

Mm

v

2

Mm

2B

轨道B点做近心运动,则有G

2

>m

,若卫星在经过B点的圆轨道上运动,则G

2

r

B

r

B

r

B

2

v

B

=m,由于r

B

,所以v

1

>v

B

,故v

2B

B

1

=7.7 km/s,选项B正确;3轨道的高度大

r

B

于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项

第 8 页 共 22 页

C错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A点时重力势

能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具

有的最大速率,选项D错误.

答案 AB

突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落

事件.如图4所示,一块陨石从外太空飞向地球,到A点刚好进入大气层,之后由于

受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是

( )

图4

A.陨石正减速飞向A处

B.陨石绕地球运转时角速度渐渐变小

C.陨石绕地球运转时速度渐渐变大

D.进入大气层后,陨石的机械能渐渐变大

答案 C

解析 由于万有引力做功,陨石正加速飞向A处,选项A错误.陨石绕地球运转时,

因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B错误,C正确.进

入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D错误.

考点四 重力加速度和宇宙速度的求解

1.第一宇宙速度v

1

=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大

环绕速度.

2.第一宇宙速度的求法:

v

2

GMm

1

(1)

2

=m,所以v

1

RR

2

mv

1

(2)mg=

,所以v

1

=gR.

R

GM

.

R

3.第二、第三宇宙速度也都是指发射速度.

例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,

终于到达木星周围.此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后

第 9 页 共 22 页

坠入木星大气层烧毁.设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探

测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:

图5

(1)木星探测器在上述圆形轨道上运行时的轨道半径;

(2)木星的第一宇宙速度.

2πr

解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r,由v=

T

vT

可得:r=

t

由题意,T=

N

vt

联立解得r=

2πN

(2)探测器在圆形轨道上运行时,万有引力提供向心力,

v

2

mM

G

2

=m

.

rr

2

m′M

v

0

设木星的第一宇宙速度为v

0

,有,G

2

=m′

RR

联立解得:v

0

r

v

R

v

θ

sin

2

.

θ

由题意可知R=rsin ,解得:v

0

2

vt

答案 (1) (2)

2πN

v

θ

sin

2

突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员

登上月球并在月球表面附近以初速度v

0

竖直向上抛出一个小球,经时间t后回到出发

点.已知月球的半径为R,万有引力常量为G,则下列说法正确的是( )

v

0

A.月球表面的重力加速度为

t

2v

0

R

2

B.月球的质量为

Gt

第 10 页 共 22 页

C.宇航员在月球表面获得

v

0

R

的速度就可能离开月球表面围绕月球做圆周运动

t

Rt

v

0

D.宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为

答案 B

2v

0

2v

0

v

2

GMm

解析 根据竖直上抛运动可得t=

,g=,A项错误;由

2

=mg=m=m(

)

2

R

gtRRT

2v

0

R

2

可得:M=,v=

Gt

2v

0

R

,T=2π

t

Rt

,故B项正确,C、D项错误.

2v

0

20.双星系统模型问题的分析与计算

绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统

模型有以下特点:

图6

(1)各自需要的向心力由彼此间的万有引力相互提供,即

Gm

1

m

2

Gm

1

m

2

2

r,

=m

ω

=m

2

ω

2

1112

r

2

L

2

L

2

(2)两颗星的周期及角速度都相同,即

T

1

=T

2

,ω

1

=ω

2

(3)两颗星的半径与它们之间的距离关系为:r

1

+r

2

=L

(4)两颗星到圆心的距离r

1

、r

2

与星体质量成反比,即

(5)双星的运动周期T=2π

L

3

Gm

1

+m

2

m

1

r

2

m

2

r

1

2

L

3

(6)双星的总质量公式m

1

+m

2

2

TG

例6 冥王星与其附近的星体卡戎可视为双星系统,它们的质量比约为7∶1,同时绕它们连

线上某点O做匀速圆周运动.由此可知卡戎绕O点运动的( )

第 11 页 共 22 页

A.角速度大小约为冥王星的7倍

B.向心力大小约为冥王星的1/7

C.轨道半径约为冥王星的7倍

D.周期与冥王星周期相同

答案 CD

解析 对于双星系统,任意时刻均在同一条直线上,故转动的周期、角速度都相同.彼

r

2

m

1

此给对方的万有引力提供向心力,故向心力大小相同,由m

1

ω

2

r

1

=m

2

ω

2

r

2

,得

==

r

1

m

2

7,故C、D项正确.

高考题组

1.(2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线

上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质

量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一

段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时

圆周运动的周期为( )

A.

n

3

T B.

k

2

n

3

T C.

k

n

2

T D.

k

n

T

k

答案 B

解析 双星靠彼此的万有引力提供向心力,则有

m

1

m

2

2

G

2

=m

1

r

1

2

LT

m

1

m

2

2

G

2

=m

2

r

2

2

LT

并且r

1

+r

2

=L

解得T=2π

L

3

Gm

1

+m

2

n

3

L

3

Gkm

1

+m

2

当双星总质量变为原来的k倍,两星之间距离变为原来的n倍时T′=2π

n

3

·T

k

故选项B正确.

第 12 页 共 22 页

2.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343

km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在

极其稀薄的大气,下面说法正确的是( )

A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间

B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加

C.如不加干预,天宫一号的轨道高度将缓慢降低

D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用

答案 BC

解析 地球所有卫星的运行速度都小于第一宇宙速度,故A错误.轨道处的稀薄大气

会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的

重力势能一部分转化为动能,故天宫一号的动能可能会增加,B、C正确;航天员受到

地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D错误.

3.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨

道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地

球引力和稀薄气体阻力的作用,则下列判断正确的是( )

A.卫星的动能逐渐减小

B.由于地球引力做正功,引力势能一定减小

C.由于气体阻力做负功,地球引力做正功,机械能保持不变

D.卫星克服气体阻力做的功小于引力势能的减小

答案 BD

解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力

做负功,机械能逐渐转化为内能,机械能减小,选项B正确,C错误.卫星的运动近

v

2

Mm

似看作是匀速圆周运动,根据G

2

=m得v=

rr

GM

,所以卫星的速度逐渐增大,

r

动能增大,选项A错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来

增加动能,故D正确.

模拟题组

4.我校某同学在学习中记录了一些与地球月球有关的数据资料如表中所示,利用这些数据

计算地球表面与月球表面之间的距离s,则下列运算公式中不正确的是( )

地球半径

月球半径

第 13 页 共 22 页

R=6 400 km

r=1 740 km

地球表面重力加速度

月球表面重力加速度

月球绕地球转动的线速度

月球绕地球转动的周期

光速

g

0

=9.80 m/s

2

g′=1.56 m/s

2

v=1 km/s

T=27.3天

c=2.998×10

8

m/s

用激光器向月球表面发射激光光束,经过约t=

2.565 s接收到从月球表面反射回的激光信号

v

2

vT

A.-R-r B.-R-r

g′

3

g

0

R

2

T

2

ct

C. -R-r D.

2

2

答案 A

5.为了探测X星球,某探测飞船先在以该星球中心为圆心,高度为h的圆轨道上运动,随

后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T.引力常量G已知.则

( )

A.变轨过程中必须向运动的反方向喷气

B.变轨后与变轨前相比,飞船的机械能增大

C.可以确定该星球的质量

D.可以确定该星球的平均密度

答案 D

6.据报道,嫦娥三号将于近期发射.嫦娥三号接近月球表面的过程可简化为三个阶段:距

离月球表面15 km时打开反推发动机减速,下降到距月球表面H=100 m高度时悬停,

寻找合适落月点;找到落月点后继续下降,距月球表面h=4 m时速度再次减为0;此

后,关闭所有发动机,使它做自由落体运动落到月球表面.已知嫦娥三号质量为140 kg,

月球表面重力加速度g′约为1.6 m/s

2

,月球半径为R,引力常量G.求:

(1)月球的质量;(用题给字母表示)

(2)嫦娥三号悬停在离月球表面100 m处时发动机对嫦娥三号的作用力;

(3)嫦娥三号从悬停在100 m处到落至月球表面,发动机对嫦娥三号做的功.

g′R

2

答案 (1) (2)224 N (3)-21 504 J

G

Mm

解析 (1)在月球表面G

2

=mg′

R

g′R

2

解得:M=

G

(2)因受力平衡,有F=mg′

第 14 页 共 22 页

解得:F=224 N

(3)从悬停在高100 m处到达高4 m处过程由动能定理

mg′(H-h)+W

1

=0

从高4 m处释放后嫦娥三号机械能守恒,发动机不做功.W

2

=0

解得:W=W

1

+W

2

=-21 504 J

(限时:30分钟)

►题组1 万有引力定律及应用

1.(2012·新课标全国·21)假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已

知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之

比为( )

R-d

2

ddR

2

A.1- B.1+ C.() D.()

RRR

R-d

答案 A

解析 设地球的密度为ρ,地球的质量为M,根据万有引力定律可知,地球表面的重力

GM4

加速度g=

2

.地球质量可表示为M=

πR

3

ρ.因质量分布均匀的球壳对壳内物体的引力

R3

4

为零,所以矿井下以(R-d)为半径的地球的质量为M′=

π(R-d)

3

ρ,解得M′=

3

R-d

GM′

()

3

M,则矿井底部的重力加速度g′=

,则矿井底部的重力加速度和地面处

R

R-d

2

g′

d

的重力加速度大小之比为=1-,选项A正确.

gR

2.(2013·浙江·18)如图1所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆

轨道上,设地球质量为M、半径为R.下列说法正确的是( )

图1

第 15 页 共 22 页

GMm

A.地球对一颗卫星的引力大小为

r-R

2

GMm

B.一颗卫星对地球的引力大小为

2

r

Gm

2

C.两颗卫星之间的引力大小为

2

3r

3GMm

D.三颗卫星对地球引力的合力大小为

2

r

答案 BC

解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为

GMm

,故A错误,B正确;任意两颗卫星之间的距离L=3r,则两颗卫星之间的引力

r

2

Gm

2

大小为

2

,C正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为

3r

0,故D选项错误.

3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是

指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地

面上A点发射升空,目标是攻击红军基地B点,导弹升空后,红军反导预警系统立刻

发现目标,从C点发射拦截导弹,并在弹道导弹飞行中段的最高点D将其击毁.下列

说法中正确的是( )

图2

A.图中E到D过程,弹道导弹机械能不断增大

B.图中E到D过程,弹道导弹的加速度不断减小

C.弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆

D.弹道导弹飞行至D点时速度大于7.9 km/s

答案 BC

解析 弹道导弹从E到D靠惯性飞行,只受地球的引力作用,机械能守恒,选项A错

M

m

误;弹道导弹从E到D,与地心的距离R增大,万有引力F=G

2

减小,弹道导弹的

R

F

加速度a=减小,选项B正确;由开普勒第一定律知,选项C正确;D点在远地点,

m

第 16 页 共 22 页

弹道导弹的速度最小,由v=

所以弹道导弹的速度v=

误.

►题组2 天体质量和密度的计算

GM

可知,D点到地心的距离r大于地球的半径R

0

r

GM

=7.9 km/s,选项D错

R

0

GM

小于第一宇宙速度v

r

4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v贴近行星表面匀速飞行,

测出运动的周期为T,已知引力常量为G,则可得( )

vT

A.该行星的半径为

B.该行星的平均密度为

2

GT

C.无法求出该行星的质量

2

v

2

D.该行星表面的重力加速度为

2

T

答案 AB

vTv

2

v

3

T

2πR

GMm

解析 由T=

v

可得:R=,A正确;由

2

=m可得:M=,C错误;由M

RR

2πG

2πv

4

GMm

πR

3

ρ得:ρ=

2

,B正确;由

2

=mg得:g=,D错误.

3GTRT

5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某

星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处,已知该星

球的半径与地球半径之比R

∶R

=1∶4,地球表面重力加速度为g,设该星球表面重

力加速度为g′,地球的质量为M

,该星球的质量为M

星.

空气阻力不计.则( )

A.g′∶g=5∶1 B.g′∶g=1∶5

C.M

∶M

=1∶20 D.M

∶M

=1∶80

答案 BD

5t

解析 小球以相同的初速度在星球和地球表面做竖直上抛运动,星球上:v

0

=g′·

得,

2

2v

0

2v

0

g′=

,同理地球上的重力加速度g=;则有g′∶g=1∶5,所以A错误,B正

5tt

确.由星球表面的物重近似等于万有引力可得,在星球上取一质量为m

0

的物体,则有

M

m

0

g′R

2

g·R

2

星地

m

0

g′=G

2

,得M

=,同理得:M

=,所以M

∶M

=1∶80,故

GG

R

C错误,D正确.

►题组3 卫星运行参量的分析与计算

第 17 页 共 22 页

6.已知金星绕太阳公转的周期小于木星绕太阳公转的周期,它们绕太阳的公转均可看做匀

速圆周运动,则可判定( )

A.金星到太阳的距离大于木星到太阳的距离

B.金星运动的速度小于木星运动的速度

C.金星的向心加速度大于木星的向心加速度

D.金星的角速度小于木星的角速度

答案 C

3

GMT

2

v

2

GMm

2

R

2

解析 由F=

2

=m=mω

R=m

2

得:R=,所以周期大的轨道半径大,

RRT

2

因此A错;v=

GMGM

,所以半径小的线速度大,因此B错;向心加速度a=

2

,半

RR

径小的向心加速度大,因此C正确;ω=,周期小的角速度大,因此D错.

T

7.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速

圆周运动,运行的周期为T.若以R表示月球的半径,则( )

A.卫星运行时的线速度为

2πR

T

2

R+h

B.卫星运行时的向心加速度为

T

2

2πRR+h

3

C.月球的第一宇宙速度为

TR

2

R

D.物体在月球表面自由下落的加速度为

2

T

答案 BC

2πR+h

解析 卫星运行时的线速度为v=

,选项A错误;卫星运行时的向心加速度为

T

a=ω

2

(R+h)=

2

R+h

GMm

2

(R+h),ω=

,v

,选项B正确;由=mω

1

2

TT

R+h

2

GM

R

联立解得月球的第一宇宙速度为v

1

RR+h

3

GMmGMm

,选项C正确;由

2

=mg,

TRR

R+h

2

=mω

2

(R+h),ω=

选项D错误.

2

R+h

3

,联立解得物体在月球表面自由下落的加速度为g=,

TT

2

R

2

8.如图3所示,北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长

征三号丙”运载火箭,成功将第16颗北斗导航卫星发射升空并送入预定转移轨道.第

第 18 页 共 22 页

16颗北斗导航卫星是一颗地球静止轨道卫星,它将与先期发射的15颗北斗导航卫星组

网运行,形成区域服务能力.根据计划,北斗卫星导航系统将于2013年初向亚太大部

分地区提供服务.下列关于这颗卫星的说法正确的是( )

图3

A.该卫星正常运行时一定处于赤道正上方,角速度小于地球自转角速度

B.该卫星正常运行时轨道也可以经过地球两极

C.该卫星的速度小于第一宇宙速度

D.如果知道该卫星的周期与轨道半径可以计算出其质量

答案 C

解析 由题意知这是一颗地球同步卫星,所以其轨道一定处于赤道正上方,角速度与地

球自转角速度相同,选项A、B错误;该卫星高度很大,不是贴近地球表面运行,所以

其速度远小于第一宇宙速度,选项C正确;如果知道该卫星的周期与轨道半径,根据

Mm

2

G

2

=mr

2

可以计算出地球质量M,但不能计算出卫星质量,选项D错误.

rT

►题组4 卫星变轨问题的分析

9.如图4所示,“嫦娥二号”卫星由地面发射后,进入地月转移轨道,经多次变轨最终进

入半径为100 km、周期为118 min的工作轨道,开始对月球进行探测,则( )

图4

A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小

B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大

C.卫星在轨道Ⅲ上运动的周期比在轨道Ⅰ上短

D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大

答案 ACD

第 19 页 共 22 页

解析 由题图知,r

>r

>r

>r

,由万有引力定律、牛顿第二定律得,v=

GM

,T

r

2

r

3

,卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小,选项A正确;卫

GM

星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时小,选项B错误;卫星在轨道

Ⅲ上运动周期比在轨道Ⅰ上短,选项C正确;卫星从轨道Ⅰ运动到轨道Ⅱ要靠人为控

制减速实现,故卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大,选项D正确.

10.2011年9月29日,中国首个空间实验室“天宫一号”在酒泉卫星发射中心发射升空,

由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面高度

为h,地球的中心位于椭圆的一个焦点上.“天宫一号”飞行几周后进行变轨,进入预

定圆轨道,如图5所示.已知“天宫一号”在预定圆轨道上飞行n圈所用时间为t,万

有引力常量为G,地球半径为R.则下列说法正确的是( )

图5

A.“天宫一号”在椭圆轨道的B点的向心加速度大于在预定圆轨道的B点的向心加速

B.“天宫一号”从A点开始沿椭圆轨道向B点运行的过程中,机械能守恒

C.“天宫一号”从A点开始沿椭圆轨道向B点运行的过程中,动能先减小后增大

2

n

2

R+h

3

D.由题中给出的信息可以计算出地球的质量M=

Gt

2

答案 BD

GMm

解析 在B点,由

2

=ma知,无论在哪个轨道上的B点,其向心加速度相同,A项

r

错;“天宫一号”在椭圆轨道上运行时,其机械能守恒,B项对;“天宫一号”从A

点开始沿椭圆轨道向B点运行的过程中,动能一直减小,C项错;对“天宫一号”在预

2

n

2

R+h

3

Mm

2

t

定圆轨道上运行,有G=m(R+h)

2

,而T=,故M=,D项对.

TnGt

2

R+h

2

►题组5 双星问题

11.天文学家如果观察到一个星球独自做圆周运动,那么就想到在这个星球附近存在着一个

看不见的星体黑洞.星球与黑洞通过万有引力的作用组成双星,以两者连线上某点为圆

第 20 页 共 22 页

2024年3月22日发(作者:练天亦)

第4课时 万有引力与航天

考纲解读1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第

二和第三宇宙速度.

1.[对开普勒三定律的理解]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运

动定律可知( )

A.太阳位于木星运行轨道的中心

B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积

答案 C

解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此

B错;太阳在这些椭圆的一个焦点上,因此A错; 在相同时间内,某个确定的行星与

太阳连线在相同时间内扫过的面积相等,因此D错,本题答案为C.

m

1

m

2

2.[对万有引力定律的理解]关于万有引力公式F=G

2

,以下说法中正确的是( )

r

A.公式只适用于星球之间的引力计算,不适用于质量较小的物体

B.当两物体间的距离趋近于0时,万有引力趋近于无穷大

C.两物体间的万有引力也符合牛顿第三定律

D.公式中引力常量G的值是牛顿规定的

答案 C

m

1

m

2

解析 万有引力公式F=G

,虽然是牛顿由天体的运动规律得出的,但牛顿又将它

r

推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离

趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引

力也符合牛顿第三定律.公式中引力常量G的值是卡文迪许在实验室里用实验测定的,

而不是人为规定的.故正确答案为C.

3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗

第 1 页 共 22 页

类似地球的、可适合居住的行星——“开普勒—22b”,其直径约为地球的2.4倍.至

今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估

算该行星的第一宇宙速度等于( )

A.3.3×10

3

m/s B.7.9×10

3

m/s

C.1.2×10

4

m/s D.1.9×10

4

m/s

答案 D

M

1

M

2

解析 由该行星的密度和地球相当可得

3

3

,地球第一宇宙速度v

1

R

1

R

2

行星的第一宇宙速度v

2

GM

1

,该

R

1

GM

2

,联立解得v

2

=2.4v

1

=1.9×10

4

m/s,选项D正确.

R

2

4.[对人造卫星及卫星轨道的考查]a、b、c、d是在地球大气层外的圆形轨道上运行的四颗

人造卫星.其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面

上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )

图1

A.a、c的加速度大小相等,且大于b的加速度

B.b、c的角速度大小相等,且小于a的角速度

C.a、c的线速度大小相等,且小于d的线速度

D.a、c存在在P点相撞的危险

答案 A

v

2

Mm

2

2

解析 由G

2

=m=mrω=mr

2

=ma,可知B、C、D错误,A正确.

rrT

一、万有引力定律及其应用

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与

物体的质量m

1

和m

2

的乘积成正比、与它们之间距离r的二次方成反比.

Gm

1

m

2

2.表达式:F=

2

,G为引力常量:G=6.67×10

11

N·m

2

/kg

2

.

r

3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物

体可视为质点.

第 2 页 共 22 页

(2)质量分布均匀的球体可视为质点,r是两球心间的距离.

二、环绕速度

1.第一宇宙速度又叫环绕速度.

mv

2

1

GMm

推导过程为:由mg==

2

得:

RR

v

1

GM

=gR=7.9 km/s.

R

2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度.

3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.

特别提醒 1.两种周期——自转周期和公转周期的不同

2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度

3.两个半径——天体半径R和卫星轨道半径r的不同

三、第二宇宙速度和第三宇宙速度

1.第二宇宙速度(脱离速度):v

2

=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度.

2.第三宇宙速度(逃逸速度):v

3

=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度.

考点一 天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

v

2

Mm

2

r

2

G

2

=ma

n

=m

=mω

r=m

2

rrT

Mm

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G

2

=mg(g表示天体表

R

面的重力加速度).

2.天体质量和密度的计算

(1)利用天体表面的重力加速度g和天体半径R.

MmgR

2

由于G

2

=mg,故天体质量M=,

RG

MM3g

天体密度ρ===

.

V4

3

4πGR

πR

3

(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.

第 3 页 共 22 页

Mm

2

2

r

3

①由万有引力等于向心力,即G

2

=m

2

r,得出中心天体质量M=

2

rTGT

②若已知天体半径R,则天体的平均密度

MM

3πr

3

ρ=

==;

V4

3

GT

2

R

3

πR

3

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,

则天体密度ρ=

2

.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心

GT

天体的密度.

例1 1798年,英国物理学家卡文迪许测出万有引力常量G,因此卡文迪许被人们称为能称

出地球质量的人.若已知万有引力常量G,地球表面处的重力加速度g,地球半径R,

地球上一个昼夜的时间T

1

(地球自转周期),一年的时间T

2

(地球公转周期),地球中心到

月球中心的距离L

1

,地球中心到太阳中心的距离L

2

.你能计算出( )

gR

2

A.地球的质量m

G

3

2

L

2

B.太阳的质量m

2

GT

2

3

2

L

1

C.月球的质量m

2

GT

1

D.可求月球、地球及太阳的密度

Gm

m

0

gR

2

解析 对地球表面的一个物体m

0

来说,应有m

0

g=

,所以地球质量m

=,

R

2

G

Gm

m

2

2

L

3

2

选项A正确.对地球绕太阳运动来说,有=m

2

L

2

,则m

=,B项正

22

L

2

T

2

GT

2

确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动

参量,无法求出它的质量和密度,C、D项错误.

答案 AB

突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为

v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,

弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为( )

mv

2

mv

4

Nv

2

Nv

4

A. B. C. D.

GNGNGmGm

答案 B

解析 设卫星的质量为m′

第 4 页 共 22 页

Mm′

v

2

由万有引力提供向心力,得G

2

=m′

RR

v

2

m′

=m′g②

R

由已知条件:m的重力为N得N=mg③

mv

2

N

由③得g=,代入②得:R=

mN

mv

4

代入①得M=,故B项正确.

GN

考点二 卫星运行参量的比较与运算

1.卫星的各物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可

近似认为等于地球的半径,其运行线速度约为7.9 km/s.

(3)两种卫星的轨道平面一定通过地球的球心.

深化拓展 (1)卫星的a、v、ω、T是相互联系的,如果一个量发生变化,其他量也随之

发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.

(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,

机械能越大.

例2 “嫦娥四号”,专家称“四号星”,计划在2017年发射升空,它是嫦娥探月工程计

划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球

地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R,月球表面的重力

加速度为g,月球的平均密度为ρ,“嫦娥四号”离月球中心的距离为r,绕月周期为

T.根据以上信息下列说法正确的是( )

A.月球的第一宇宙速度为gr

第 5 页 共 22 页

B.“嫦娥四号”绕月运行的速度为

3πr

3

C.万有引力常量可表示为

23

ρT

R

gr

2

R

D.“嫦娥四号”必须减速运动才能返回地球

v

2

v

2

Mm

解析 根据第一宇宙速度的定义有:mg=m

,v=gR,A错误;根据G

2

=m和

Rrr

Mm

G

2

=mg可以得到“嫦娥四号”绕月运行的速度为v=

R

R

2

gMm

,B错误;根据G

2

rr

2

4

3

3πr

3

m

2

r和M=ρ

πR

可以知道万有引力常量可表示为

23

,C正确;“嫦娥四号”必须

T3

ρT

R

先加速离开月球,再减速运动才能返回地球,D错误.

答案 C

突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州

十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G,下列说法正确

的是( )

A.由神州十号运行的周期和轨道半径可以求出地球的质量

B.由神州十号运行的周期可以求出它离地面的高度

C.若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小

D.漂浮在天宫一号内的宇航员处于平衡状态

答案 A

例3 如图2所示,同步卫星与地心的距离为r,运行速率为v

1

,向心加速度为a

1

;地球赤

道上的物体随地球自转的向心加速度为a

2

,第一宇宙速度为v

2

,地球半径为R,则下列

比值正确的是( )

图2

v

1

r

v

1

a

1

ra

1

R

A.= B.=()

2

C.= D.=

a

2

Ra

2

r

v

2

R

v

2

R

r

解析 本题中涉及三个物体,其已知量排列如下:

地球同步卫星:轨道半径r,运行速率v

1

,向心加速度a

1

地球赤道上的物体:轨道半径R,随地球自转的向心加速度a

2

近地卫星:轨道半径R,运行速率v

2

.

第 6 页 共 22 页

v

2

v

1

Mm

对于卫星,其共同特点是万有引力提供向心力,有G

2

=m,故=

rr

v

2

R

.

r

a

1

r

对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a=ω

2

r,故

.

a

2

R

答案 AD

同步卫星的六个“一定”

突破训练3 已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力

常量为G.有关同步卫星,下列表述正确的是( )

3

GMT

2

A.卫星距地面的高度为

2

B.卫星的运行速度小于第一宇宙速度

Mm

C.卫星运行时受到的向心力大小为G

2

R

D.卫星运行的向心加速度小于地球表面的重力加速度

答案 BD

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆

v

2

2

mrGMm

周运动,即F

=F

=m=

2

.当卫星在地表运行时,F

2

=mg(R为地球半

rTR

GMm

径),设同步卫星离地面高度为h,则F

==F

=ma

2

R+h

mv

2

GMm

正确.由=得,v=

R+h

2

R+h

GM

<

R+h

2

GMGMm

mR+h

,B正确.由=,

RT

2

R+h

2

3

GMT

2

3

GMT

2

得R+h= ,即h= -R,A错误.

2

2

考点三 卫星变轨问题分析

第 7 页 共 22 页

当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不

再等于向心力,卫星将变轨运行:

Mm

v

2

(1)当卫星的速度突然增大时,G

2

,即万有引力不足以提供向心力,卫星将做离

rr

心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=

GM

可知其运行速度比原轨道时减小.

r

Mm

v

2

(2)当卫星的速度突然减小时,G

2

>m

,即万有引力大于所需要的向心力,卫星将做

rr

近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=

GM

可知其运行速度比原轨道时增大.

r

卫星的发射和回收就是利用这一原理.

例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图3所示是绕地

飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A点是2轨道

的近地点,B点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s,则下列说法

中正确的是( )

图3

A.卫星在2轨道经过A点时的速率一定大于7.7 km/s

B.卫星在2轨道经过B点时的速率一定小于7.7 km/s

C.卫星在3轨道所具有的机械能小于在2轨道所具有的机械能

D.卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率

v

2

Mm

1

解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G

2

=m,

rr

Mm

v

2

2A

卫星在2轨道A点做离心运动,则有G

2

,故v

1

2A

,选项A正确;卫星在2

rr

Mm

v

2

Mm

2B

轨道B点做近心运动,则有G

2

>m

,若卫星在经过B点的圆轨道上运动,则G

2

r

B

r

B

r

B

2

v

B

=m,由于r

B

,所以v

1

>v

B

,故v

2B

B

1

=7.7 km/s,选项B正确;3轨道的高度大

r

B

于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项

第 8 页 共 22 页

C错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A点时重力势

能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具

有的最大速率,选项D错误.

答案 AB

突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落

事件.如图4所示,一块陨石从外太空飞向地球,到A点刚好进入大气层,之后由于

受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是

( )

图4

A.陨石正减速飞向A处

B.陨石绕地球运转时角速度渐渐变小

C.陨石绕地球运转时速度渐渐变大

D.进入大气层后,陨石的机械能渐渐变大

答案 C

解析 由于万有引力做功,陨石正加速飞向A处,选项A错误.陨石绕地球运转时,

因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B错误,C正确.进

入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D错误.

考点四 重力加速度和宇宙速度的求解

1.第一宇宙速度v

1

=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大

环绕速度.

2.第一宇宙速度的求法:

v

2

GMm

1

(1)

2

=m,所以v

1

RR

2

mv

1

(2)mg=

,所以v

1

=gR.

R

GM

.

R

3.第二、第三宇宙速度也都是指发射速度.

例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,

终于到达木星周围.此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后

第 9 页 共 22 页

坠入木星大气层烧毁.设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探

测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:

图5

(1)木星探测器在上述圆形轨道上运行时的轨道半径;

(2)木星的第一宇宙速度.

2πr

解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r,由v=

T

vT

可得:r=

t

由题意,T=

N

vt

联立解得r=

2πN

(2)探测器在圆形轨道上运行时,万有引力提供向心力,

v

2

mM

G

2

=m

.

rr

2

m′M

v

0

设木星的第一宇宙速度为v

0

,有,G

2

=m′

RR

联立解得:v

0

r

v

R

v

θ

sin

2

.

θ

由题意可知R=rsin ,解得:v

0

2

vt

答案 (1) (2)

2πN

v

θ

sin

2

突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员

登上月球并在月球表面附近以初速度v

0

竖直向上抛出一个小球,经时间t后回到出发

点.已知月球的半径为R,万有引力常量为G,则下列说法正确的是( )

v

0

A.月球表面的重力加速度为

t

2v

0

R

2

B.月球的质量为

Gt

第 10 页 共 22 页

C.宇航员在月球表面获得

v

0

R

的速度就可能离开月球表面围绕月球做圆周运动

t

Rt

v

0

D.宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为

答案 B

2v

0

2v

0

v

2

GMm

解析 根据竖直上抛运动可得t=

,g=,A项错误;由

2

=mg=m=m(

)

2

R

gtRRT

2v

0

R

2

可得:M=,v=

Gt

2v

0

R

,T=2π

t

Rt

,故B项正确,C、D项错误.

2v

0

20.双星系统模型问题的分析与计算

绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统

模型有以下特点:

图6

(1)各自需要的向心力由彼此间的万有引力相互提供,即

Gm

1

m

2

Gm

1

m

2

2

r,

=m

ω

=m

2

ω

2

1112

r

2

L

2

L

2

(2)两颗星的周期及角速度都相同,即

T

1

=T

2

,ω

1

=ω

2

(3)两颗星的半径与它们之间的距离关系为:r

1

+r

2

=L

(4)两颗星到圆心的距离r

1

、r

2

与星体质量成反比,即

(5)双星的运动周期T=2π

L

3

Gm

1

+m

2

m

1

r

2

m

2

r

1

2

L

3

(6)双星的总质量公式m

1

+m

2

2

TG

例6 冥王星与其附近的星体卡戎可视为双星系统,它们的质量比约为7∶1,同时绕它们连

线上某点O做匀速圆周运动.由此可知卡戎绕O点运动的( )

第 11 页 共 22 页

A.角速度大小约为冥王星的7倍

B.向心力大小约为冥王星的1/7

C.轨道半径约为冥王星的7倍

D.周期与冥王星周期相同

答案 CD

解析 对于双星系统,任意时刻均在同一条直线上,故转动的周期、角速度都相同.彼

r

2

m

1

此给对方的万有引力提供向心力,故向心力大小相同,由m

1

ω

2

r

1

=m

2

ω

2

r

2

,得

==

r

1

m

2

7,故C、D项正确.

高考题组

1.(2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线

上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质

量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一

段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时

圆周运动的周期为( )

A.

n

3

T B.

k

2

n

3

T C.

k

n

2

T D.

k

n

T

k

答案 B

解析 双星靠彼此的万有引力提供向心力,则有

m

1

m

2

2

G

2

=m

1

r

1

2

LT

m

1

m

2

2

G

2

=m

2

r

2

2

LT

并且r

1

+r

2

=L

解得T=2π

L

3

Gm

1

+m

2

n

3

L

3

Gkm

1

+m

2

当双星总质量变为原来的k倍,两星之间距离变为原来的n倍时T′=2π

n

3

·T

k

故选项B正确.

第 12 页 共 22 页

2.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343

km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在

极其稀薄的大气,下面说法正确的是( )

A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间

B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加

C.如不加干预,天宫一号的轨道高度将缓慢降低

D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用

答案 BC

解析 地球所有卫星的运行速度都小于第一宇宙速度,故A错误.轨道处的稀薄大气

会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的

重力势能一部分转化为动能,故天宫一号的动能可能会增加,B、C正确;航天员受到

地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D错误.

3.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨

道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地

球引力和稀薄气体阻力的作用,则下列判断正确的是( )

A.卫星的动能逐渐减小

B.由于地球引力做正功,引力势能一定减小

C.由于气体阻力做负功,地球引力做正功,机械能保持不变

D.卫星克服气体阻力做的功小于引力势能的减小

答案 BD

解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力

做负功,机械能逐渐转化为内能,机械能减小,选项B正确,C错误.卫星的运动近

v

2

Mm

似看作是匀速圆周运动,根据G

2

=m得v=

rr

GM

,所以卫星的速度逐渐增大,

r

动能增大,选项A错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来

增加动能,故D正确.

模拟题组

4.我校某同学在学习中记录了一些与地球月球有关的数据资料如表中所示,利用这些数据

计算地球表面与月球表面之间的距离s,则下列运算公式中不正确的是( )

地球半径

月球半径

第 13 页 共 22 页

R=6 400 km

r=1 740 km

地球表面重力加速度

月球表面重力加速度

月球绕地球转动的线速度

月球绕地球转动的周期

光速

g

0

=9.80 m/s

2

g′=1.56 m/s

2

v=1 km/s

T=27.3天

c=2.998×10

8

m/s

用激光器向月球表面发射激光光束,经过约t=

2.565 s接收到从月球表面反射回的激光信号

v

2

vT

A.-R-r B.-R-r

g′

3

g

0

R

2

T

2

ct

C. -R-r D.

2

2

答案 A

5.为了探测X星球,某探测飞船先在以该星球中心为圆心,高度为h的圆轨道上运动,随

后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T.引力常量G已知.则

( )

A.变轨过程中必须向运动的反方向喷气

B.变轨后与变轨前相比,飞船的机械能增大

C.可以确定该星球的质量

D.可以确定该星球的平均密度

答案 D

6.据报道,嫦娥三号将于近期发射.嫦娥三号接近月球表面的过程可简化为三个阶段:距

离月球表面15 km时打开反推发动机减速,下降到距月球表面H=100 m高度时悬停,

寻找合适落月点;找到落月点后继续下降,距月球表面h=4 m时速度再次减为0;此

后,关闭所有发动机,使它做自由落体运动落到月球表面.已知嫦娥三号质量为140 kg,

月球表面重力加速度g′约为1.6 m/s

2

,月球半径为R,引力常量G.求:

(1)月球的质量;(用题给字母表示)

(2)嫦娥三号悬停在离月球表面100 m处时发动机对嫦娥三号的作用力;

(3)嫦娥三号从悬停在100 m处到落至月球表面,发动机对嫦娥三号做的功.

g′R

2

答案 (1) (2)224 N (3)-21 504 J

G

Mm

解析 (1)在月球表面G

2

=mg′

R

g′R

2

解得:M=

G

(2)因受力平衡,有F=mg′

第 14 页 共 22 页

解得:F=224 N

(3)从悬停在高100 m处到达高4 m处过程由动能定理

mg′(H-h)+W

1

=0

从高4 m处释放后嫦娥三号机械能守恒,发动机不做功.W

2

=0

解得:W=W

1

+W

2

=-21 504 J

(限时:30分钟)

►题组1 万有引力定律及应用

1.(2012·新课标全国·21)假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已

知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之

比为( )

R-d

2

ddR

2

A.1- B.1+ C.() D.()

RRR

R-d

答案 A

解析 设地球的密度为ρ,地球的质量为M,根据万有引力定律可知,地球表面的重力

GM4

加速度g=

2

.地球质量可表示为M=

πR

3

ρ.因质量分布均匀的球壳对壳内物体的引力

R3

4

为零,所以矿井下以(R-d)为半径的地球的质量为M′=

π(R-d)

3

ρ,解得M′=

3

R-d

GM′

()

3

M,则矿井底部的重力加速度g′=

,则矿井底部的重力加速度和地面处

R

R-d

2

g′

d

的重力加速度大小之比为=1-,选项A正确.

gR

2.(2013·浙江·18)如图1所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆

轨道上,设地球质量为M、半径为R.下列说法正确的是( )

图1

第 15 页 共 22 页

GMm

A.地球对一颗卫星的引力大小为

r-R

2

GMm

B.一颗卫星对地球的引力大小为

2

r

Gm

2

C.两颗卫星之间的引力大小为

2

3r

3GMm

D.三颗卫星对地球引力的合力大小为

2

r

答案 BC

解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为

GMm

,故A错误,B正确;任意两颗卫星之间的距离L=3r,则两颗卫星之间的引力

r

2

Gm

2

大小为

2

,C正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为

3r

0,故D选项错误.

3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是

指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地

面上A点发射升空,目标是攻击红军基地B点,导弹升空后,红军反导预警系统立刻

发现目标,从C点发射拦截导弹,并在弹道导弹飞行中段的最高点D将其击毁.下列

说法中正确的是( )

图2

A.图中E到D过程,弹道导弹机械能不断增大

B.图中E到D过程,弹道导弹的加速度不断减小

C.弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆

D.弹道导弹飞行至D点时速度大于7.9 km/s

答案 BC

解析 弹道导弹从E到D靠惯性飞行,只受地球的引力作用,机械能守恒,选项A错

M

m

误;弹道导弹从E到D,与地心的距离R增大,万有引力F=G

2

减小,弹道导弹的

R

F

加速度a=减小,选项B正确;由开普勒第一定律知,选项C正确;D点在远地点,

m

第 16 页 共 22 页

弹道导弹的速度最小,由v=

所以弹道导弹的速度v=

误.

►题组2 天体质量和密度的计算

GM

可知,D点到地心的距离r大于地球的半径R

0

r

GM

=7.9 km/s,选项D错

R

0

GM

小于第一宇宙速度v

r

4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v贴近行星表面匀速飞行,

测出运动的周期为T,已知引力常量为G,则可得( )

vT

A.该行星的半径为

B.该行星的平均密度为

2

GT

C.无法求出该行星的质量

2

v

2

D.该行星表面的重力加速度为

2

T

答案 AB

vTv

2

v

3

T

2πR

GMm

解析 由T=

v

可得:R=,A正确;由

2

=m可得:M=,C错误;由M

RR

2πG

2πv

4

GMm

πR

3

ρ得:ρ=

2

,B正确;由

2

=mg得:g=,D错误.

3GTRT

5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某

星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处,已知该星

球的半径与地球半径之比R

∶R

=1∶4,地球表面重力加速度为g,设该星球表面重

力加速度为g′,地球的质量为M

,该星球的质量为M

星.

空气阻力不计.则( )

A.g′∶g=5∶1 B.g′∶g=1∶5

C.M

∶M

=1∶20 D.M

∶M

=1∶80

答案 BD

5t

解析 小球以相同的初速度在星球和地球表面做竖直上抛运动,星球上:v

0

=g′·

得,

2

2v

0

2v

0

g′=

,同理地球上的重力加速度g=;则有g′∶g=1∶5,所以A错误,B正

5tt

确.由星球表面的物重近似等于万有引力可得,在星球上取一质量为m

0

的物体,则有

M

m

0

g′R

2

g·R

2

星地

m

0

g′=G

2

,得M

=,同理得:M

=,所以M

∶M

=1∶80,故

GG

R

C错误,D正确.

►题组3 卫星运行参量的分析与计算

第 17 页 共 22 页

6.已知金星绕太阳公转的周期小于木星绕太阳公转的周期,它们绕太阳的公转均可看做匀

速圆周运动,则可判定( )

A.金星到太阳的距离大于木星到太阳的距离

B.金星运动的速度小于木星运动的速度

C.金星的向心加速度大于木星的向心加速度

D.金星的角速度小于木星的角速度

答案 C

3

GMT

2

v

2

GMm

2

R

2

解析 由F=

2

=m=mω

R=m

2

得:R=,所以周期大的轨道半径大,

RRT

2

因此A错;v=

GMGM

,所以半径小的线速度大,因此B错;向心加速度a=

2

,半

RR

径小的向心加速度大,因此C正确;ω=,周期小的角速度大,因此D错.

T

7.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速

圆周运动,运行的周期为T.若以R表示月球的半径,则( )

A.卫星运行时的线速度为

2πR

T

2

R+h

B.卫星运行时的向心加速度为

T

2

2πRR+h

3

C.月球的第一宇宙速度为

TR

2

R

D.物体在月球表面自由下落的加速度为

2

T

答案 BC

2πR+h

解析 卫星运行时的线速度为v=

,选项A错误;卫星运行时的向心加速度为

T

a=ω

2

(R+h)=

2

R+h

GMm

2

(R+h),ω=

,v

,选项B正确;由=mω

1

2

TT

R+h

2

GM

R

联立解得月球的第一宇宙速度为v

1

RR+h

3

GMmGMm

,选项C正确;由

2

=mg,

TRR

R+h

2

=mω

2

(R+h),ω=

选项D错误.

2

R+h

3

,联立解得物体在月球表面自由下落的加速度为g=,

TT

2

R

2

8.如图3所示,北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长

征三号丙”运载火箭,成功将第16颗北斗导航卫星发射升空并送入预定转移轨道.第

第 18 页 共 22 页

16颗北斗导航卫星是一颗地球静止轨道卫星,它将与先期发射的15颗北斗导航卫星组

网运行,形成区域服务能力.根据计划,北斗卫星导航系统将于2013年初向亚太大部

分地区提供服务.下列关于这颗卫星的说法正确的是( )

图3

A.该卫星正常运行时一定处于赤道正上方,角速度小于地球自转角速度

B.该卫星正常运行时轨道也可以经过地球两极

C.该卫星的速度小于第一宇宙速度

D.如果知道该卫星的周期与轨道半径可以计算出其质量

答案 C

解析 由题意知这是一颗地球同步卫星,所以其轨道一定处于赤道正上方,角速度与地

球自转角速度相同,选项A、B错误;该卫星高度很大,不是贴近地球表面运行,所以

其速度远小于第一宇宙速度,选项C正确;如果知道该卫星的周期与轨道半径,根据

Mm

2

G

2

=mr

2

可以计算出地球质量M,但不能计算出卫星质量,选项D错误.

rT

►题组4 卫星变轨问题的分析

9.如图4所示,“嫦娥二号”卫星由地面发射后,进入地月转移轨道,经多次变轨最终进

入半径为100 km、周期为118 min的工作轨道,开始对月球进行探测,则( )

图4

A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小

B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大

C.卫星在轨道Ⅲ上运动的周期比在轨道Ⅰ上短

D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大

答案 ACD

第 19 页 共 22 页

解析 由题图知,r

>r

>r

>r

,由万有引力定律、牛顿第二定律得,v=

GM

,T

r

2

r

3

,卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小,选项A正确;卫

GM

星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时小,选项B错误;卫星在轨道

Ⅲ上运动周期比在轨道Ⅰ上短,选项C正确;卫星从轨道Ⅰ运动到轨道Ⅱ要靠人为控

制减速实现,故卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大,选项D正确.

10.2011年9月29日,中国首个空间实验室“天宫一号”在酒泉卫星发射中心发射升空,

由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面高度

为h,地球的中心位于椭圆的一个焦点上.“天宫一号”飞行几周后进行变轨,进入预

定圆轨道,如图5所示.已知“天宫一号”在预定圆轨道上飞行n圈所用时间为t,万

有引力常量为G,地球半径为R.则下列说法正确的是( )

图5

A.“天宫一号”在椭圆轨道的B点的向心加速度大于在预定圆轨道的B点的向心加速

B.“天宫一号”从A点开始沿椭圆轨道向B点运行的过程中,机械能守恒

C.“天宫一号”从A点开始沿椭圆轨道向B点运行的过程中,动能先减小后增大

2

n

2

R+h

3

D.由题中给出的信息可以计算出地球的质量M=

Gt

2

答案 BD

GMm

解析 在B点,由

2

=ma知,无论在哪个轨道上的B点,其向心加速度相同,A项

r

错;“天宫一号”在椭圆轨道上运行时,其机械能守恒,B项对;“天宫一号”从A

点开始沿椭圆轨道向B点运行的过程中,动能一直减小,C项错;对“天宫一号”在预

2

n

2

R+h

3

Mm

2

t

定圆轨道上运行,有G=m(R+h)

2

,而T=,故M=,D项对.

TnGt

2

R+h

2

►题组5 双星问题

11.天文学家如果观察到一个星球独自做圆周运动,那么就想到在这个星球附近存在着一个

看不见的星体黑洞.星球与黑洞通过万有引力的作用组成双星,以两者连线上某点为圆

第 20 页 共 22 页

发布评论

评论列表 (0)

  1. 暂无评论