最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

海上货物绑扎及系固

IT圈 admin 27浏览 0评论

2024年4月5日发(作者:丰方仪)

海上货物的绑扎及系固

Cargo’s lashing & securing

1 词语解释

1.1 B.S. Breaking Strength 破断强度 = 4 ~ 5 SWL (or WLL)

in CSS, mean the point at which the component, material or element can no longer support or

sustain the load.

1.2

1.3

1.4

1.5

1.6

NBL nominal breaking-load

SWL safe working load

WLL working load limit

PL proof load

破断负荷 = BS

安全工作负荷 (用于lifting gear)

工作负荷 = SWL (用于lifting gear)

试验负荷 = 2 x SWL (or WLL)

最大系固负荷 = PL = 2 x SWL (or WLL) is a term MSL maximum Securing Load

used to define the allowable load capacity for a device used to secure cargo to a ship.

1.7

1.8

CS Calculate strength 计算强度 = MSL / 1.5

MSL & BS

Materials 材料

Shackles, rings, deckeyes, turnbuckles of mild steel

低碳钢的卸扣、环、甲板眼及扣紧螺丝

Fibre rope 纤维绳

Wire rope (single use) 钢丝绳(一次性)

Web lashing (纤维网状绑扎件)

Wire rope re-useable 钢丝绳(重复使用)

Steel band (single use) 钢带(一次性)

Chains 链

Fibre straps with tensioners 带有张力器的纤维带

Special equipment for securing containers

系固集装箱的特殊设备

33% of breaking strength 50%的破断强度

80% of breaking strength 80%的破断强度

70% of breaking strength 70%的破断强度

30% of breaking strength 50%的破断强度

70% of breaking strength 50%的破断强度

50% of breaking strength 50%的破断强度

A permissible working load 允许的工作载荷

A permissible working load 允许的工作载荷

MSL

50% of breaking strength 50%的破断强度

2 起重设备 lifting facilities

2.1 起重设备的最小安全负荷(SWL)  1.05 Mg;

联合的起重设备的安全负荷之和应大于货重的1.5倍:(SWL1+SWL2)  1.5 Mg

2.2 吊索之间的夹角应不大于45度,超过45度应采用横挡(spreader),但不得直接触碰所吊

装的货物(加橡胶碰垫)

2.3

2.4

所有起重设备的证书应齐全并在有效期内,现实状况良好

上述的最小安全负荷,是指起货机、吊索、卸扣、横挡等中的最小安全负荷值计算。

3

局部强度 local intension

3.1

3.2

通常,因海水因数的影响,货物的重量取其重量的1.05倍,即增加5%。

P = 1.05  M  g / A (A = A1 + A2 + A3+ ……)

若没有相关的资料:

3.2.1 对于主甲板的强度约2.5吨/平方米;舱盖板的强度约1.3吨/平方米(长度大于100

米)、0.75吨/平方米(长度小于100米);舱底板的强度约1.75吨/平方米。

3.2.2 或使用下列中国船级社规范设计的船舶,其中d为夏季载重线吃水(米),H为甲板

间高度

位置

内底

货舱内货物甲板

货舱内舱口盖

露天甲板

露天舱口盖甲板

3.3

最大许用堆装负荷,吨/平方米

D

H/1.39

H/1.39

0.865

0.865

垫木的厚度通常25毫米以上(长度150x25 毫米),但是重货的垫木厚度要求50毫米以

上(长度150x50 毫米),对于厚度超过75毫米的垫木更欢迎,可是要注意木纹的方向。

3.4 两块垫木用铁钉连接起来,可以接受,只是要注意木纹的方向。

4

Rule of thumb method 经验法

4.1 Rule of thumb method

4.1.1 for cargo stowed under weather deck, Total breaking strength of lashing  2 x m x g

4.1.2 for roll periods more than 13 seconds, total breaking strength of lashing  3 x m x g

location Acceleration Angles Lashing used to secure cargo or vechicles should have a

breaking load of at least 3 times the design load, the design

load being the total weight of the cargo or cargo plus vehicle

subject to acceleration of

Athwartships

Longitudinally

Vertically

4.2

0.7 g

0.3 g

1.0 g

55

73

CSS & CSM

4.2.1 The total MSL value of the securing devices on each side of a unit of cargo (port as well as

starboard) should be equal the weight of the unit. Namely, for transverse, MSL  mg.

一宗货物每一侧(左舷或右舷)的绑扎装置MSL值的总和应等于该宗货物的重量。

4.2.2 This method, which implies a transverse acceleration of 1 g(9.81 m/sec2), applies to nearly

any size of ship regardless of the location of stowage, stability and loading condition,

season and area of operation. The method however, neither takes into account the

adverse effects of lashing angles and non-homogeneous distribution of force among the

securing devices nor favorable of friction.

这种方法等于假定横向加速度1g (9.81 m/s2), 并适用于任何季节和海域,任何稳性情

况和载况及任何积载位置的任意大小的船舶。然而本方法既没有考虑绑扎角和绑扎

设备之间的不均匀的不利作用,也没有考虑摩擦力的有效作用;

4.2.3 Transverse lashing angles to the deck should not be greater than 60 and it is important that

adequate friction is provided by the use of suitable materials. Additional lashings at

angles of greater than 60 may be desirable to prevent tipping but are not to be counted in

the number of lashing under the rule-of thumb. 相对甲板的绑扎角不得大于60,同时

用适当的材料保证有适当的摩擦力是很重要的。凭经验为防止货物倾斜可要求设置

大于60角的附加绑扎,但不得计入绑扎数。

5 Advanced calculate method(CSM chapter 1994/1995 and 1997 amendment)

5.1 MSL 最大系固负荷

5.1.1 Manufacturers of securing equipment should at least supply information on the nominal

breaking strength of the equipment in kilo – newtons (kN);

系固设备的生产厂家应至少提供该设备的名义破断强度值,以kN为单位;

5.1.2 “maximum securing load (MSL) is a term used to define the load capacity for a device

used to secure cargo to a ship; “最大系固载荷”(MSL)是用于定义船上系固货物的

设备承载能力的术语;

5.1.3 Maximum securing load is to securing devices as safe working load is to lifting tackle, the

MSL for different securing devices are given below (table 1 )if not given under 3. the MSL

of timber should be taken as 0.3 kN per cm2 normal to the grain.

系固设备的最大系固载荷就象起吊索具的安全工作载荷一样。各种系固设备的MSL

给出如下,如果没有在下表给出。顺纹理木材的MSL取0.3 Kn / cm2。

5.1.4 (table 1) 由破断强度确定MSL

Materials 材料

Shackles, rings, deckeyes, turnbuckles of mild steel

低碳钢的卸扣、环、甲板眼及扣紧螺丝

Fibre rope 纤维绳

Wire rope (single use) 钢丝绳(一次性)

Web lashing (纤维网状绑扎件)

Wire rope re-useable 钢丝绳(重复使用)

Steel band (single use) 钢带(一次性)

Chains 链

Fibre straps with tensioners 带有张力器的纤维带

Special equipment for securing containers

系固集装箱的特殊设备

5.1.5 For particular securing devices (e.g. fibre straps with tensioners or specials equipment for

securing containers) a permissible working load may be prescribed and marked by

authority. This should be taken as the MSL. MSL = SWL

对特定的系固设备(如带有张力器的纤维带或系固集装箱的特殊设备)其允许工作

载荷由主管机关给出和标记。该值可作为MSL。

5.1.6 When the components of a lashing device are connected in series, for example, a wire to a

shackle to a deck eyes, the minimum MSL in the series shall apply to that device.

当系固装置的部件以串联形式连接时,例如,由钢丝绳到卸扣和到甲板眼,则该系

33% of breaking strength 50%的破断强度

80% of breaking strength 80%的破断强度

70% of breaking strength 70%的破断强度

30% of breaking strength 50%的破断强度

70% of breaking strength 50%的破断强度

50% of breaking strength 50%的破断强度

A permissible working load 允许的工作载荷

A permissible working load 允许的工作载荷

MSL

50% of breaking strength 50%的破断强度

固装置的MSL为串联中的最小的MSL值。

5.2 Assumption external forces 作用在货物件上的纵横垂向外力应用下列公式确定

F

(x,y,z)

= m a

(x.y.z)

+ F

w

(x. y)

+ F

s(x.y)

F

(x,y,z)

longitudinal, transverse and vertical forces; 纵向、横向和垂向力;

M mass of the unit 货物件质量

a

(x.y.z)

longitudinal, transverse and vertical acceleration (see table 2) 纵向、横向和垂向加速

度;

a

y

= a

oy

x K

1

x K

2;

a

x

= a

ox

x K

1;

a

z

= a

oz

x K

1

K

1

船长及航速修正系数;K

2

船宽与初稳性高度比修正系数

F

w (x

.

y)

longitudinal and transverse force by wind pressure, force by wind pressure = 1 kN per

m

2

纵向、横向风压力(每平方米1千牛) F

w (x

.

y) =

P

w

x A

w =

A

w

F

s(x.y)

longitudinal and transverse force by sea sloshing, force by sea sloshing = 1 kN per m

2

,

F

s (x

.

y) =

P

s

x A

s =

As; however sea sloshing forces need only be applied to a height of deck cargo

up to 2 meters above the weather deck or hatch top. For voyage in restricted area sea sloshing

forces may be neglected.

由海浪晃动引起的纵、横向力;(每平方米1千牛顿)海浪的晃动引起的力可能比上述给

出的力大的多。该数值应视作为在采取了防止恶劣海况的适当措施之后剩余不可避免的

力。海浪的晃动力仅适用于舱口盖或风雨甲板上堆高2米的甲板货。对于限制航区的情况,

海浪晃动力可不计。

Basic acceleration data (table 2) 基本加速度参数

Transverse acceleration ao

y

in m/sec

2

横向加速度

On deck high

On deck low

Tween deck

Lower hold

7.1

6.5

5.9

5.5

6.9

6.3

5.6

5.3

6.8

6.1

5.5

5.1

6.7

6.1

5.4

5.0

6.7

6.1

5.4

5.0

6.8

6.1

5.5

5.1

6.9

6.3

5.6

5.3

7.1

6.5

5.9

5.5

7.4

6.7

6.2

5.9

Longitudinal acceleration

ao

x

in m/sec

2

纵向加速度

3.8

2.9

2.0

1.5

Vertical acceleration ao

z

in m/sec

2

垂向加速度

Distance fr stern

0.1

7.6

0.2

6.2

0.3

5.0

0.4

4.3

0.5

4.3

0.6

5.0

0.7

6.2

0.8

7.6

0.9

9.2

L

As above, on weather deck ao

x

≤0.38g m/sec

2

, ao

y

≤0.76g m/sec

2

, ao

z

≤0.94g m/sec

2

under deck ao

x

≤0.20g m/sec

2

, ao

y

≤0.64g m/sec

2

, ao

z

≤0.94g m/sec

2

Correction factor for length and speed (table 3) 用于船长和船速的修正系数

Length/speed

9 kn

12 kn

15 kn

18 kn

21 kn

24 kn

50 60 70 80 90 100 120 140 160 180 200

1.20 1.09 1.00 0.92

1.34 1.22 1.12 1.03

1.49 1.36 1.24 1.15

1.64 1.49 1.37 1.27

1.78 1.62 1.49 1.38

1.93 1.76 1.62 1.50

0.85 0.79 0.70 0.63 0.57 0.53 0.49

0.96 0.90 0.79 0.72 0.65 0.60 0.56

1.07 1.00 0.89 0.80 0.73 0.68 0.63

1.18 1.10 0.98 0.89 0.82 0.76 0.71

1.29 1.21 1.08 0.98 0.90 0.83 0.78

1.40 1.31 1.17 1.07 0.98 0.91 0.85

Correction factor for B/GM < 13 (Table 4) 用于船宽/初稳性高度小于13时的修正系数

B/GM

On deck high

On deck low

Tween deck

Lower hold

5.2.1 The following cautions should be observed: 应遵守如下注意事项

5.2.2 In the case of marked roll resonance with amplitudes above+/-30, the given figures of

transverse acceleration may exceeded. Effective measures should be taken to avoid this

condition.

如果明显的横摇谐振的幅度超过+/-30,则上面给出的横向加速度值可能超过。应采

取有效措施避免这种情况。

5.2.3 In the case of heading the seas at high speed with marked slamming shocks, the given

figures of longitudinal and vertical acceleration may be exceeded. An appropriate

reduction of speed should be considered.

当迎浪高速航行砰击严重时,则可能超过上面给出的纵向和垂向加速度。应考虑适

当降低航速。

5.2.4 In the case of running before large steer or aft quartering sea with a stability, which does

not amply exceed the accepted minimum requirements, large roll amplitudes must be

expected with transverse accelerations greater than the figures given. An appropriate

change of heading should be considered.

当航行于大的尾浪或尾横浪而稳性没有充分满足已接受的最小要求时,则一定会有

大的横摇幅度,同时横向加速度会超出给出的值。应考虑适当的改变航向。

5.3 Balance of forces and moments 平衡计算应满足如下状态(见图1)

7

1.56

1.42

1.26

1.15

8

1.40

1.30

1.19

1.12

9

1.27

1.21

1.14

1.09

10

1.19

1.14

1.09

1.06

11

1.11

1.09

1.06

1.04

12

1.05

1.04

1.03

1.02

13 or above

1.00

1.00

1.00

1.00

Transverse force 载荷假定的横向力

Longitudinal force 载荷假定的纵向力

Transverse tipping 横向翻到

A / 

0.3

0.1

0.0

5.4

N

F

y

F

x

F

z

m

g

CS

a

b

c

f

F

y

≤  m g + CS

1

f

1

+ CS

2

f

2

+ …… +CS

n

f

n

F

x

≤  (m g - F

z

)+ CS

1

f

1

+ CS

2

f

2

+ …… +CS

n

f

n

F

y

a ≤ b m g + CS

1

C

1

+ CS

2

C

2

+ …… +CS

n

C

n

is the number of lashing being calculated; 计算的绑扎数量

is the transverse force from load assumption (kN); 载荷假定的横向力

is longitudinal force from loading assumption (kN) = m a

z

载荷假定的纵向力

is vertical force from load assumption (kN) 载荷假定的垂向力

is friction coefficient 摩擦系数

 = 0.3 for steel –timber or steel –rubber 对钢——木材或钢——橡胶

 = 0.1 for steel – steel dry 对干燥状态下的钢——钢

 = 0.0 for steel – steel wet 对浸水状态下的钢——钢。

is mass of cargo unit (t); 货物件质量

is gravity acceleration of earth = 9.81 (m/s

2

); 地球的重力加速度=9。81 米/秒

2

is calculated strength of transverse securing device (kN); 绑扎装置的计算强度

is lever-arm of tipping (m) 翻到力臂 (米)

is lever-arm of stableness (m) 稳定力臂 (米)

is lever-arm of securing force (m) 绑扎力臂 (米)

is function or  and vertical securing angle a (See table 5)

f – values as function of a and  / remark: f =  sina + cosa 摩擦系数和垂向绑扎角的函数

-30

0.72

0.82

0.87

-20

0.84

0.91

0.94

-10

0.93

0.97

0.98

0

1.00

1.00

1.00

10

1.04

1.00

0.98

20

1.04

0.97

0.94

30

1.02

0.92

0.87

40

0.96

0.83

0.77

50

0.87

0.72

0.64

60

0.76

0.59

0.50

70

0.62

0.44

0.34

80

0.47

0.27

0.17

90

0.30

0.10

0.00

Remarks:

5.4.1 A vertical securing angle a great than 60 will reduce the effectiveness of this particular

securing device in respect to sliding of the unit. Discharging or such devices from the

balance of forces should be considered unless the necessary load is gained by the

imminent tendency to tipping or by a reliable pretensioning of the securing device which

includes maintaining the pretension throughout the voyage.

超过60度的垂向绑扎角会降低该绑扎装置防止货件滑动的有效性。除非由急迫的翻

到倾向或对绑扎装置进行可靠的预张力,并在航行中保持该预张力而获得必要的负

荷,否则这样的绑扎装置不应包括在力平衡之内。

5.4.2 Any horizontal securing angle, i.e. deviation from the transverse direction, should not

exceed 30 otherwise an exclusion of this securing device from the transverse sliding

balance should be considered.

任何水平的系固角,即与横向的偏差,不应小于30度,否则应考虑将该绑扎装置从

横向滑动平衡中除去。

5.4.3 Longitudinal components of transverse securing devices should not be assumed greater

than 0.5 CS.

横向绑扎装置的纵向分力不应大于0.5 计算强度。

6 绑扎设备检查及使用

6.1 设备检验及绑扎要求

常规的目视检查和保养应由船长负责组织船上人员进行。应对每一种设备进行检查,以

发现有损于精确、安全发挥其设计效用的损坏和磨损以及其它可能导致人身伤害的缺陷。

如需用于特殊目的,使用前应对其进行检查以确定其强度和功效是否适用。当发现有永

久性变形和破损,原则上该设备应报废。如果这种变形和破损是可以修复的,则应对其

尽早修理。船上应始终备有适当数量的系固设备备件。便携式系固设备在存放前必须由

“值班人员”进行损坏检查。

6.2

6.3

6.4

6.5

6.6

绑扎索具越短越好。

绑扎设备的角度应30—60 度之间,应使各道系索受力均匀。

每个生根地令上不能超过三根系索,且方向不能相同。

甲板货物用链条绑扎,车厢也建议用链条。

All securing of cargo units shall be completed before the ship leaves the berth and unlashed

after the ship safely berthed and prior to unloading operation,

所有绑扎设备需在船舶离泊前绑妥,并在开始卸货时解绑。

7 绑扎眼板与绑扎令环

7.1

7.2

7.3

应检查其与船体结构的焊接部位,如有缺陷和裂纹则应开槽后复焊;

如本体有裂纹出现,则应立即更换,而不能采用补焊的修理方法;

如甲板、舱底、舱盖、舱壁板、强肋骨、支柱及舷墙等支承结构严重变形使堆放面不平

整,则应采取最合适的修理方法;

7.4 应检查其磨损、变形和其它缺陷的情况,磨损应不超过10%。如有较严重的缺陷,则用

同等强度的设备进行更换。该设备的焊接应有经认可的电焊工进行,并严格按照焊接工

艺操作;

7.5

7.6

有锈蚀处,除绣并油漆。如有轻微腐蚀,但并不影响其功能,则无须进行修理。

眼板强度估计,旧眼板used eye plate, MSL= 0.12 h  t (KN);新眼板new eye plate, MSL =

0.18 h  t (KN) t: 眼板的厚度mm(毫米) h: 眼板的眼圈到外缘的最小距离mm(毫米)

L:焊缝的长度mm(毫米);t: 眼板的眼板根部焊接的焊缝厚度 MSL(KN) / 0.12 (L+t)

厚度mm(毫米)

7.7 地令强度估计,旧地令used eye plate, MSL= 0.094 D2 (KN);新眼板new eye plate, MSL= 0.141

D2 (KN) D: 地令的直径mm(毫米) MSL: 最大系固负荷(千牛顿)(KN) = 100 千克

地令根部焊接的焊缝厚度 MSL / 0.12 L L:焊缝的长度mm(毫米);MSL: 最大系固负荷(千

牛顿)(KN) = 100 千克

8 卸扣 shackles

8.1

8.2

8.3

应检查其外观状况,PIN 不可以用螺丝替代,磨损应不超过10%。

For shackle, grade scale 1:2:5, if minimum break load = 100%, proof load = 40%, SWL = 20%,

MSL = 50%

For D –shackle, reference as below, d = diameter of shackle pin, w = inside width across jaw

Size

inch

d

3/4

7/8

w

1

1.25

d

19.1

22.3

mm

w

25.4

31.8

87

125

Break load

kN Tonnef

8.89

12.70

Proof load (40%)

kN

17.45

50.00

Tonnef

3.56

5.08

SWL(T)

WLL

1.78

2.54

MSL(T)

50%

4.45

6.35

1

1.125

1.25

1.375

1.5

1.375

1.5

1.75

1.875

2.125

25.4

28.6

31.8

35.0

38.0

40.0

42.0

46.0

48.0

51

54

56

58

60

65

70

77

83

35.0

38.0

44.5

47.6

54.0

175

224

288

349

369

17.80

22.85

29.40

35.55

40.65

70.00

89.63

115.33

139.45

159.46

7.12

9.14

11.76

14.22

16.26

3.56

4.57

5.88

7.11

8.13

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

18.0

22.0

26.0

30.0

8.90

11.43

14.70

17.77

20.32

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

55.0

65.0

75.0

8.4 For bow –shackle, reference as below, d = diameter of shackle pin, w = inside width across jaw

Size Break load

mm

w

7/8

1 1/8

1 3/8

1 1/2

1 3/4

2

2 1/4

2 1/2

d

15.9

19.1

22.3

25.4

28.6

31.8

35.0

38.0

40

42

46

48

51

54

56

58

60

65

70

77

83

w

22.3

28.6

35.0

38.0

44.5

50.8

57.0

63.5

kN

Tonnef

5.10

7.60

11.60

15.25

20.30

25.40

31.75

36.85

Proof load (40%)

kN

Tonnef

2.04

3.04

4.64

6.10

8.12

10.16

12.70

14.74

SWL

WLL

1.02

1.52

2.32

3.05

4.06

5.08

6.35

7.37

7

8

9

10

11

12

13

14

15

18

22

26

30

MSL

50%

2.55

3.80

5.80

7.63

10.15

12.70

15.88

18.43

inch

d

5/8

3/4

7/8

1

1 1/8

1 1/4

1 3/8

1 1/2

9 绑扎钢丝

9.1 应检查其是否有永久性拧节、压扁、腐蚀、纤维芯干枯和外露,纽结变形、显著损伤、

严重生锈。一经发现,应视情况进行更换;

9.2 若发现钢丝绳在等于其直径10倍的任何长度内超过5%的钢丝断裂、磨损或腐蚀,或三

对直径的平均值与原来标准的直径之差,超过原来直径10%,则应予换新;

9.3

9.4

9.5

钢丝绳必须无涂层或橡胶套;

钢丝绳在切断时,端面处需用胶布包妥以防断丝,也可以在端面的两端用胶布包妥;

装卸作业时,钢丝绳的紧索夹,数量最少为6只;绑扎时,钢丝绳的紧索夹,数量最少

为3只;钢丝绳越粗个数越多,每只夹之间的间隔为钢丝绳直径的6倍。

Diameter of wire rope mm

Up to and including 19

Over 19, up to and including 32

Over 32, up to and including 38

Wire rope grips

3

4

5

9.6

Diar

(mm)

绑扎货物时,钢丝绳的夹头要求每只软眼环3只。

Wire rope – tonnef

(metric ton)

NBL

wire

of MSL 80%

Soft eye 3 bulldog

grips – tonnef (MT)

Slip

(NBL)

load MSL of

Half-double grommets 6

bulldog grip eye tonnef (MT)

Slip load

(NBL)

MSL of eye

(50%)

Slip

(NBL)

Single loop 6 bulldog grip eye

– tonnef (MT)

load MSL of eye

(50%)

Construction

strandxwires

eye (50%)

16

16

16

18

18

20

20

22

22

24

24

26

26

6 x 12

6 x 19

6 x 24

6 x 12

6 x 24

6 x 19

6 x 24

6 x19

6 x 24

6 x19

6 x 24

6 x19

6 x 24

7.75

11.40

10.40

9.80

13.20

17.80

16.20

21.60

19.70

32.20

28.00

36.60

30.70

6.20

9.12

8.32

7.84

10.56

14.24

12.96

17.28

15.52

25.76

22.40

29.28

24.56

5.43

7.98

7.28

6.86

9.24

12.46

11.34

15.12

13.79

2.72

3.99

3.64

3.43

4.62

6.23

5.67

7.56

6.90

11.63

17.10

15.60

14.70

19.80

26.70

24.30

32.40

29.55

5.82

8.55

7.80

7.35

9.90

13.35

12.15

16.20

14.78

10.85

15.96

14.56

13.72

18.48

24.92

22.68

30.24

27.58

5.43

7.98

7.28

6.86

9.24

12.46

11.34

15.12

13.79

10 绑扎链、绑扎钩、张紧器、车辆绑扎带

10.1 应检查其是否有永久性拧节、压扁。一经发现,应视情况进行更换。并检查其端部旋转

情况和销子活络情况;

10.2 如本体有裂纹出现,则应立即更换,而不能采取补焊的修理方法;

10.3 如有轻微磨损、腐蚀,但并不影响其功能,则不必进行更换;

10.4 若发现钢丝链发生严重蚀耗或损坏,则应予换新;

10.5 绑扎链的计算要素,Min break load = 100%, proof load = 50%, MSL= 50%, SWL = 25%, d =

diameter of the bar forming the chain link

10.6 钢链的强度估算MSL = 0.275 D2;D: 钢链的直径mm(毫米) MSL: 最大系固负荷(千

牛顿)(KN) = 100 千克

11 扭锁、花篮、绑扎杆、桥接件、连接板与拉压元件等

11.1 所有设备应在其再次使用前检查其变形与受损情况。如出现转不动的情况,检查其内部

情况,使其恢复活络;

11.2 如本体有裂纹出现,则应立即更换,而不能采用补焊的修理方法;

11.3 扭锁与桥接件的结构性损坏可能是由装卸港的野蛮装卸所引起的。这种野蛮装卸可能还

会导致其它部件的损坏。建议用适当的包或盒来收集这种部件,然后再放落到甲板上以

避免上述不当操作所引起的损失。

11.4 有锈蚀处,除绣并油漆。如有轻微腐蚀,但并不影响其功能,则无须进行修理。

11.5 对旋转活动部件应经常加油脂活络。

11.6 绑扎杆的强度估算:旧的杆MSL = 0.084 D2,新的杆MSL = 0.12 D2

D: 杆的直径mm(毫米)

11.7 花篮紧固器的强度估计

螺杆直径(毫米)

16

19

22

螺帽直径(毫米)

16

18

25

MSL(100千克)(KN)

147

186

175

MSL: 最大系固负荷(千牛顿)(KN) = 100 千克

12 焊接止移板的强度 welded stopper/ bucket

12.1 止移的强度按钢板断截面的面积,及每平方毫米24千克计算,强度 = 24 千克/平方毫

米  S

12.2 焊缝的最小厚度= MSL / 0.12 (L+H),L: 焊缝的长度(毫米),H:钢板的厚度(毫米)或

横向焊缝的长度,MSL:最大系固负荷(千牛顿)(KN)。

2024年4月5日发(作者:丰方仪)

海上货物的绑扎及系固

Cargo’s lashing & securing

1 词语解释

1.1 B.S. Breaking Strength 破断强度 = 4 ~ 5 SWL (or WLL)

in CSS, mean the point at which the component, material or element can no longer support or

sustain the load.

1.2

1.3

1.4

1.5

1.6

NBL nominal breaking-load

SWL safe working load

WLL working load limit

PL proof load

破断负荷 = BS

安全工作负荷 (用于lifting gear)

工作负荷 = SWL (用于lifting gear)

试验负荷 = 2 x SWL (or WLL)

最大系固负荷 = PL = 2 x SWL (or WLL) is a term MSL maximum Securing Load

used to define the allowable load capacity for a device used to secure cargo to a ship.

1.7

1.8

CS Calculate strength 计算强度 = MSL / 1.5

MSL & BS

Materials 材料

Shackles, rings, deckeyes, turnbuckles of mild steel

低碳钢的卸扣、环、甲板眼及扣紧螺丝

Fibre rope 纤维绳

Wire rope (single use) 钢丝绳(一次性)

Web lashing (纤维网状绑扎件)

Wire rope re-useable 钢丝绳(重复使用)

Steel band (single use) 钢带(一次性)

Chains 链

Fibre straps with tensioners 带有张力器的纤维带

Special equipment for securing containers

系固集装箱的特殊设备

33% of breaking strength 50%的破断强度

80% of breaking strength 80%的破断强度

70% of breaking strength 70%的破断强度

30% of breaking strength 50%的破断强度

70% of breaking strength 50%的破断强度

50% of breaking strength 50%的破断强度

A permissible working load 允许的工作载荷

A permissible working load 允许的工作载荷

MSL

50% of breaking strength 50%的破断强度

2 起重设备 lifting facilities

2.1 起重设备的最小安全负荷(SWL)  1.05 Mg;

联合的起重设备的安全负荷之和应大于货重的1.5倍:(SWL1+SWL2)  1.5 Mg

2.2 吊索之间的夹角应不大于45度,超过45度应采用横挡(spreader),但不得直接触碰所吊

装的货物(加橡胶碰垫)

2.3

2.4

所有起重设备的证书应齐全并在有效期内,现实状况良好

上述的最小安全负荷,是指起货机、吊索、卸扣、横挡等中的最小安全负荷值计算。

3

局部强度 local intension

3.1

3.2

通常,因海水因数的影响,货物的重量取其重量的1.05倍,即增加5%。

P = 1.05  M  g / A (A = A1 + A2 + A3+ ……)

若没有相关的资料:

3.2.1 对于主甲板的强度约2.5吨/平方米;舱盖板的强度约1.3吨/平方米(长度大于100

米)、0.75吨/平方米(长度小于100米);舱底板的强度约1.75吨/平方米。

3.2.2 或使用下列中国船级社规范设计的船舶,其中d为夏季载重线吃水(米),H为甲板

间高度

位置

内底

货舱内货物甲板

货舱内舱口盖

露天甲板

露天舱口盖甲板

3.3

最大许用堆装负荷,吨/平方米

D

H/1.39

H/1.39

0.865

0.865

垫木的厚度通常25毫米以上(长度150x25 毫米),但是重货的垫木厚度要求50毫米以

上(长度150x50 毫米),对于厚度超过75毫米的垫木更欢迎,可是要注意木纹的方向。

3.4 两块垫木用铁钉连接起来,可以接受,只是要注意木纹的方向。

4

Rule of thumb method 经验法

4.1 Rule of thumb method

4.1.1 for cargo stowed under weather deck, Total breaking strength of lashing  2 x m x g

4.1.2 for roll periods more than 13 seconds, total breaking strength of lashing  3 x m x g

location Acceleration Angles Lashing used to secure cargo or vechicles should have a

breaking load of at least 3 times the design load, the design

load being the total weight of the cargo or cargo plus vehicle

subject to acceleration of

Athwartships

Longitudinally

Vertically

4.2

0.7 g

0.3 g

1.0 g

55

73

CSS & CSM

4.2.1 The total MSL value of the securing devices on each side of a unit of cargo (port as well as

starboard) should be equal the weight of the unit. Namely, for transverse, MSL  mg.

一宗货物每一侧(左舷或右舷)的绑扎装置MSL值的总和应等于该宗货物的重量。

4.2.2 This method, which implies a transverse acceleration of 1 g(9.81 m/sec2), applies to nearly

any size of ship regardless of the location of stowage, stability and loading condition,

season and area of operation. The method however, neither takes into account the

adverse effects of lashing angles and non-homogeneous distribution of force among the

securing devices nor favorable of friction.

这种方法等于假定横向加速度1g (9.81 m/s2), 并适用于任何季节和海域,任何稳性情

况和载况及任何积载位置的任意大小的船舶。然而本方法既没有考虑绑扎角和绑扎

设备之间的不均匀的不利作用,也没有考虑摩擦力的有效作用;

4.2.3 Transverse lashing angles to the deck should not be greater than 60 and it is important that

adequate friction is provided by the use of suitable materials. Additional lashings at

angles of greater than 60 may be desirable to prevent tipping but are not to be counted in

the number of lashing under the rule-of thumb. 相对甲板的绑扎角不得大于60,同时

用适当的材料保证有适当的摩擦力是很重要的。凭经验为防止货物倾斜可要求设置

大于60角的附加绑扎,但不得计入绑扎数。

5 Advanced calculate method(CSM chapter 1994/1995 and 1997 amendment)

5.1 MSL 最大系固负荷

5.1.1 Manufacturers of securing equipment should at least supply information on the nominal

breaking strength of the equipment in kilo – newtons (kN);

系固设备的生产厂家应至少提供该设备的名义破断强度值,以kN为单位;

5.1.2 “maximum securing load (MSL) is a term used to define the load capacity for a device

used to secure cargo to a ship; “最大系固载荷”(MSL)是用于定义船上系固货物的

设备承载能力的术语;

5.1.3 Maximum securing load is to securing devices as safe working load is to lifting tackle, the

MSL for different securing devices are given below (table 1 )if not given under 3. the MSL

of timber should be taken as 0.3 kN per cm2 normal to the grain.

系固设备的最大系固载荷就象起吊索具的安全工作载荷一样。各种系固设备的MSL

给出如下,如果没有在下表给出。顺纹理木材的MSL取0.3 Kn / cm2。

5.1.4 (table 1) 由破断强度确定MSL

Materials 材料

Shackles, rings, deckeyes, turnbuckles of mild steel

低碳钢的卸扣、环、甲板眼及扣紧螺丝

Fibre rope 纤维绳

Wire rope (single use) 钢丝绳(一次性)

Web lashing (纤维网状绑扎件)

Wire rope re-useable 钢丝绳(重复使用)

Steel band (single use) 钢带(一次性)

Chains 链

Fibre straps with tensioners 带有张力器的纤维带

Special equipment for securing containers

系固集装箱的特殊设备

5.1.5 For particular securing devices (e.g. fibre straps with tensioners or specials equipment for

securing containers) a permissible working load may be prescribed and marked by

authority. This should be taken as the MSL. MSL = SWL

对特定的系固设备(如带有张力器的纤维带或系固集装箱的特殊设备)其允许工作

载荷由主管机关给出和标记。该值可作为MSL。

5.1.6 When the components of a lashing device are connected in series, for example, a wire to a

shackle to a deck eyes, the minimum MSL in the series shall apply to that device.

当系固装置的部件以串联形式连接时,例如,由钢丝绳到卸扣和到甲板眼,则该系

33% of breaking strength 50%的破断强度

80% of breaking strength 80%的破断强度

70% of breaking strength 70%的破断强度

30% of breaking strength 50%的破断强度

70% of breaking strength 50%的破断强度

50% of breaking strength 50%的破断强度

A permissible working load 允许的工作载荷

A permissible working load 允许的工作载荷

MSL

50% of breaking strength 50%的破断强度

固装置的MSL为串联中的最小的MSL值。

5.2 Assumption external forces 作用在货物件上的纵横垂向外力应用下列公式确定

F

(x,y,z)

= m a

(x.y.z)

+ F

w

(x. y)

+ F

s(x.y)

F

(x,y,z)

longitudinal, transverse and vertical forces; 纵向、横向和垂向力;

M mass of the unit 货物件质量

a

(x.y.z)

longitudinal, transverse and vertical acceleration (see table 2) 纵向、横向和垂向加速

度;

a

y

= a

oy

x K

1

x K

2;

a

x

= a

ox

x K

1;

a

z

= a

oz

x K

1

K

1

船长及航速修正系数;K

2

船宽与初稳性高度比修正系数

F

w (x

.

y)

longitudinal and transverse force by wind pressure, force by wind pressure = 1 kN per

m

2

纵向、横向风压力(每平方米1千牛) F

w (x

.

y) =

P

w

x A

w =

A

w

F

s(x.y)

longitudinal and transverse force by sea sloshing, force by sea sloshing = 1 kN per m

2

,

F

s (x

.

y) =

P

s

x A

s =

As; however sea sloshing forces need only be applied to a height of deck cargo

up to 2 meters above the weather deck or hatch top. For voyage in restricted area sea sloshing

forces may be neglected.

由海浪晃动引起的纵、横向力;(每平方米1千牛顿)海浪的晃动引起的力可能比上述给

出的力大的多。该数值应视作为在采取了防止恶劣海况的适当措施之后剩余不可避免的

力。海浪的晃动力仅适用于舱口盖或风雨甲板上堆高2米的甲板货。对于限制航区的情况,

海浪晃动力可不计。

Basic acceleration data (table 2) 基本加速度参数

Transverse acceleration ao

y

in m/sec

2

横向加速度

On deck high

On deck low

Tween deck

Lower hold

7.1

6.5

5.9

5.5

6.9

6.3

5.6

5.3

6.8

6.1

5.5

5.1

6.7

6.1

5.4

5.0

6.7

6.1

5.4

5.0

6.8

6.1

5.5

5.1

6.9

6.3

5.6

5.3

7.1

6.5

5.9

5.5

7.4

6.7

6.2

5.9

Longitudinal acceleration

ao

x

in m/sec

2

纵向加速度

3.8

2.9

2.0

1.5

Vertical acceleration ao

z

in m/sec

2

垂向加速度

Distance fr stern

0.1

7.6

0.2

6.2

0.3

5.0

0.4

4.3

0.5

4.3

0.6

5.0

0.7

6.2

0.8

7.6

0.9

9.2

L

As above, on weather deck ao

x

≤0.38g m/sec

2

, ao

y

≤0.76g m/sec

2

, ao

z

≤0.94g m/sec

2

under deck ao

x

≤0.20g m/sec

2

, ao

y

≤0.64g m/sec

2

, ao

z

≤0.94g m/sec

2

Correction factor for length and speed (table 3) 用于船长和船速的修正系数

Length/speed

9 kn

12 kn

15 kn

18 kn

21 kn

24 kn

50 60 70 80 90 100 120 140 160 180 200

1.20 1.09 1.00 0.92

1.34 1.22 1.12 1.03

1.49 1.36 1.24 1.15

1.64 1.49 1.37 1.27

1.78 1.62 1.49 1.38

1.93 1.76 1.62 1.50

0.85 0.79 0.70 0.63 0.57 0.53 0.49

0.96 0.90 0.79 0.72 0.65 0.60 0.56

1.07 1.00 0.89 0.80 0.73 0.68 0.63

1.18 1.10 0.98 0.89 0.82 0.76 0.71

1.29 1.21 1.08 0.98 0.90 0.83 0.78

1.40 1.31 1.17 1.07 0.98 0.91 0.85

Correction factor for B/GM < 13 (Table 4) 用于船宽/初稳性高度小于13时的修正系数

B/GM

On deck high

On deck low

Tween deck

Lower hold

5.2.1 The following cautions should be observed: 应遵守如下注意事项

5.2.2 In the case of marked roll resonance with amplitudes above+/-30, the given figures of

transverse acceleration may exceeded. Effective measures should be taken to avoid this

condition.

如果明显的横摇谐振的幅度超过+/-30,则上面给出的横向加速度值可能超过。应采

取有效措施避免这种情况。

5.2.3 In the case of heading the seas at high speed with marked slamming shocks, the given

figures of longitudinal and vertical acceleration may be exceeded. An appropriate

reduction of speed should be considered.

当迎浪高速航行砰击严重时,则可能超过上面给出的纵向和垂向加速度。应考虑适

当降低航速。

5.2.4 In the case of running before large steer or aft quartering sea with a stability, which does

not amply exceed the accepted minimum requirements, large roll amplitudes must be

expected with transverse accelerations greater than the figures given. An appropriate

change of heading should be considered.

当航行于大的尾浪或尾横浪而稳性没有充分满足已接受的最小要求时,则一定会有

大的横摇幅度,同时横向加速度会超出给出的值。应考虑适当的改变航向。

5.3 Balance of forces and moments 平衡计算应满足如下状态(见图1)

7

1.56

1.42

1.26

1.15

8

1.40

1.30

1.19

1.12

9

1.27

1.21

1.14

1.09

10

1.19

1.14

1.09

1.06

11

1.11

1.09

1.06

1.04

12

1.05

1.04

1.03

1.02

13 or above

1.00

1.00

1.00

1.00

Transverse force 载荷假定的横向力

Longitudinal force 载荷假定的纵向力

Transverse tipping 横向翻到

A / 

0.3

0.1

0.0

5.4

N

F

y

F

x

F

z

m

g

CS

a

b

c

f

F

y

≤  m g + CS

1

f

1

+ CS

2

f

2

+ …… +CS

n

f

n

F

x

≤  (m g - F

z

)+ CS

1

f

1

+ CS

2

f

2

+ …… +CS

n

f

n

F

y

a ≤ b m g + CS

1

C

1

+ CS

2

C

2

+ …… +CS

n

C

n

is the number of lashing being calculated; 计算的绑扎数量

is the transverse force from load assumption (kN); 载荷假定的横向力

is longitudinal force from loading assumption (kN) = m a

z

载荷假定的纵向力

is vertical force from load assumption (kN) 载荷假定的垂向力

is friction coefficient 摩擦系数

 = 0.3 for steel –timber or steel –rubber 对钢——木材或钢——橡胶

 = 0.1 for steel – steel dry 对干燥状态下的钢——钢

 = 0.0 for steel – steel wet 对浸水状态下的钢——钢。

is mass of cargo unit (t); 货物件质量

is gravity acceleration of earth = 9.81 (m/s

2

); 地球的重力加速度=9。81 米/秒

2

is calculated strength of transverse securing device (kN); 绑扎装置的计算强度

is lever-arm of tipping (m) 翻到力臂 (米)

is lever-arm of stableness (m) 稳定力臂 (米)

is lever-arm of securing force (m) 绑扎力臂 (米)

is function or  and vertical securing angle a (See table 5)

f – values as function of a and  / remark: f =  sina + cosa 摩擦系数和垂向绑扎角的函数

-30

0.72

0.82

0.87

-20

0.84

0.91

0.94

-10

0.93

0.97

0.98

0

1.00

1.00

1.00

10

1.04

1.00

0.98

20

1.04

0.97

0.94

30

1.02

0.92

0.87

40

0.96

0.83

0.77

50

0.87

0.72

0.64

60

0.76

0.59

0.50

70

0.62

0.44

0.34

80

0.47

0.27

0.17

90

0.30

0.10

0.00

Remarks:

5.4.1 A vertical securing angle a great than 60 will reduce the effectiveness of this particular

securing device in respect to sliding of the unit. Discharging or such devices from the

balance of forces should be considered unless the necessary load is gained by the

imminent tendency to tipping or by a reliable pretensioning of the securing device which

includes maintaining the pretension throughout the voyage.

超过60度的垂向绑扎角会降低该绑扎装置防止货件滑动的有效性。除非由急迫的翻

到倾向或对绑扎装置进行可靠的预张力,并在航行中保持该预张力而获得必要的负

荷,否则这样的绑扎装置不应包括在力平衡之内。

5.4.2 Any horizontal securing angle, i.e. deviation from the transverse direction, should not

exceed 30 otherwise an exclusion of this securing device from the transverse sliding

balance should be considered.

任何水平的系固角,即与横向的偏差,不应小于30度,否则应考虑将该绑扎装置从

横向滑动平衡中除去。

5.4.3 Longitudinal components of transverse securing devices should not be assumed greater

than 0.5 CS.

横向绑扎装置的纵向分力不应大于0.5 计算强度。

6 绑扎设备检查及使用

6.1 设备检验及绑扎要求

常规的目视检查和保养应由船长负责组织船上人员进行。应对每一种设备进行检查,以

发现有损于精确、安全发挥其设计效用的损坏和磨损以及其它可能导致人身伤害的缺陷。

如需用于特殊目的,使用前应对其进行检查以确定其强度和功效是否适用。当发现有永

久性变形和破损,原则上该设备应报废。如果这种变形和破损是可以修复的,则应对其

尽早修理。船上应始终备有适当数量的系固设备备件。便携式系固设备在存放前必须由

“值班人员”进行损坏检查。

6.2

6.3

6.4

6.5

6.6

绑扎索具越短越好。

绑扎设备的角度应30—60 度之间,应使各道系索受力均匀。

每个生根地令上不能超过三根系索,且方向不能相同。

甲板货物用链条绑扎,车厢也建议用链条。

All securing of cargo units shall be completed before the ship leaves the berth and unlashed

after the ship safely berthed and prior to unloading operation,

所有绑扎设备需在船舶离泊前绑妥,并在开始卸货时解绑。

7 绑扎眼板与绑扎令环

7.1

7.2

7.3

应检查其与船体结构的焊接部位,如有缺陷和裂纹则应开槽后复焊;

如本体有裂纹出现,则应立即更换,而不能采用补焊的修理方法;

如甲板、舱底、舱盖、舱壁板、强肋骨、支柱及舷墙等支承结构严重变形使堆放面不平

整,则应采取最合适的修理方法;

7.4 应检查其磨损、变形和其它缺陷的情况,磨损应不超过10%。如有较严重的缺陷,则用

同等强度的设备进行更换。该设备的焊接应有经认可的电焊工进行,并严格按照焊接工

艺操作;

7.5

7.6

有锈蚀处,除绣并油漆。如有轻微腐蚀,但并不影响其功能,则无须进行修理。

眼板强度估计,旧眼板used eye plate, MSL= 0.12 h  t (KN);新眼板new eye plate, MSL =

0.18 h  t (KN) t: 眼板的厚度mm(毫米) h: 眼板的眼圈到外缘的最小距离mm(毫米)

L:焊缝的长度mm(毫米);t: 眼板的眼板根部焊接的焊缝厚度 MSL(KN) / 0.12 (L+t)

厚度mm(毫米)

7.7 地令强度估计,旧地令used eye plate, MSL= 0.094 D2 (KN);新眼板new eye plate, MSL= 0.141

D2 (KN) D: 地令的直径mm(毫米) MSL: 最大系固负荷(千牛顿)(KN) = 100 千克

地令根部焊接的焊缝厚度 MSL / 0.12 L L:焊缝的长度mm(毫米);MSL: 最大系固负荷(千

牛顿)(KN) = 100 千克

8 卸扣 shackles

8.1

8.2

8.3

应检查其外观状况,PIN 不可以用螺丝替代,磨损应不超过10%。

For shackle, grade scale 1:2:5, if minimum break load = 100%, proof load = 40%, SWL = 20%,

MSL = 50%

For D –shackle, reference as below, d = diameter of shackle pin, w = inside width across jaw

Size

inch

d

3/4

7/8

w

1

1.25

d

19.1

22.3

mm

w

25.4

31.8

87

125

Break load

kN Tonnef

8.89

12.70

Proof load (40%)

kN

17.45

50.00

Tonnef

3.56

5.08

SWL(T)

WLL

1.78

2.54

MSL(T)

50%

4.45

6.35

1

1.125

1.25

1.375

1.5

1.375

1.5

1.75

1.875

2.125

25.4

28.6

31.8

35.0

38.0

40.0

42.0

46.0

48.0

51

54

56

58

60

65

70

77

83

35.0

38.0

44.5

47.6

54.0

175

224

288

349

369

17.80

22.85

29.40

35.55

40.65

70.00

89.63

115.33

139.45

159.46

7.12

9.14

11.76

14.22

16.26

3.56

4.57

5.88

7.11

8.13

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

18.0

22.0

26.0

30.0

8.90

11.43

14.70

17.77

20.32

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

55.0

65.0

75.0

8.4 For bow –shackle, reference as below, d = diameter of shackle pin, w = inside width across jaw

Size Break load

mm

w

7/8

1 1/8

1 3/8

1 1/2

1 3/4

2

2 1/4

2 1/2

d

15.9

19.1

22.3

25.4

28.6

31.8

35.0

38.0

40

42

46

48

51

54

56

58

60

65

70

77

83

w

22.3

28.6

35.0

38.0

44.5

50.8

57.0

63.5

kN

Tonnef

5.10

7.60

11.60

15.25

20.30

25.40

31.75

36.85

Proof load (40%)

kN

Tonnef

2.04

3.04

4.64

6.10

8.12

10.16

12.70

14.74

SWL

WLL

1.02

1.52

2.32

3.05

4.06

5.08

6.35

7.37

7

8

9

10

11

12

13

14

15

18

22

26

30

MSL

50%

2.55

3.80

5.80

7.63

10.15

12.70

15.88

18.43

inch

d

5/8

3/4

7/8

1

1 1/8

1 1/4

1 3/8

1 1/2

9 绑扎钢丝

9.1 应检查其是否有永久性拧节、压扁、腐蚀、纤维芯干枯和外露,纽结变形、显著损伤、

严重生锈。一经发现,应视情况进行更换;

9.2 若发现钢丝绳在等于其直径10倍的任何长度内超过5%的钢丝断裂、磨损或腐蚀,或三

对直径的平均值与原来标准的直径之差,超过原来直径10%,则应予换新;

9.3

9.4

9.5

钢丝绳必须无涂层或橡胶套;

钢丝绳在切断时,端面处需用胶布包妥以防断丝,也可以在端面的两端用胶布包妥;

装卸作业时,钢丝绳的紧索夹,数量最少为6只;绑扎时,钢丝绳的紧索夹,数量最少

为3只;钢丝绳越粗个数越多,每只夹之间的间隔为钢丝绳直径的6倍。

Diameter of wire rope mm

Up to and including 19

Over 19, up to and including 32

Over 32, up to and including 38

Wire rope grips

3

4

5

9.6

Diar

(mm)

绑扎货物时,钢丝绳的夹头要求每只软眼环3只。

Wire rope – tonnef

(metric ton)

NBL

wire

of MSL 80%

Soft eye 3 bulldog

grips – tonnef (MT)

Slip

(NBL)

load MSL of

Half-double grommets 6

bulldog grip eye tonnef (MT)

Slip load

(NBL)

MSL of eye

(50%)

Slip

(NBL)

Single loop 6 bulldog grip eye

– tonnef (MT)

load MSL of eye

(50%)

Construction

strandxwires

eye (50%)

16

16

16

18

18

20

20

22

22

24

24

26

26

6 x 12

6 x 19

6 x 24

6 x 12

6 x 24

6 x 19

6 x 24

6 x19

6 x 24

6 x19

6 x 24

6 x19

6 x 24

7.75

11.40

10.40

9.80

13.20

17.80

16.20

21.60

19.70

32.20

28.00

36.60

30.70

6.20

9.12

8.32

7.84

10.56

14.24

12.96

17.28

15.52

25.76

22.40

29.28

24.56

5.43

7.98

7.28

6.86

9.24

12.46

11.34

15.12

13.79

2.72

3.99

3.64

3.43

4.62

6.23

5.67

7.56

6.90

11.63

17.10

15.60

14.70

19.80

26.70

24.30

32.40

29.55

5.82

8.55

7.80

7.35

9.90

13.35

12.15

16.20

14.78

10.85

15.96

14.56

13.72

18.48

24.92

22.68

30.24

27.58

5.43

7.98

7.28

6.86

9.24

12.46

11.34

15.12

13.79

10 绑扎链、绑扎钩、张紧器、车辆绑扎带

10.1 应检查其是否有永久性拧节、压扁。一经发现,应视情况进行更换。并检查其端部旋转

情况和销子活络情况;

10.2 如本体有裂纹出现,则应立即更换,而不能采取补焊的修理方法;

10.3 如有轻微磨损、腐蚀,但并不影响其功能,则不必进行更换;

10.4 若发现钢丝链发生严重蚀耗或损坏,则应予换新;

10.5 绑扎链的计算要素,Min break load = 100%, proof load = 50%, MSL= 50%, SWL = 25%, d =

diameter of the bar forming the chain link

10.6 钢链的强度估算MSL = 0.275 D2;D: 钢链的直径mm(毫米) MSL: 最大系固负荷(千

牛顿)(KN) = 100 千克

11 扭锁、花篮、绑扎杆、桥接件、连接板与拉压元件等

11.1 所有设备应在其再次使用前检查其变形与受损情况。如出现转不动的情况,检查其内部

情况,使其恢复活络;

11.2 如本体有裂纹出现,则应立即更换,而不能采用补焊的修理方法;

11.3 扭锁与桥接件的结构性损坏可能是由装卸港的野蛮装卸所引起的。这种野蛮装卸可能还

会导致其它部件的损坏。建议用适当的包或盒来收集这种部件,然后再放落到甲板上以

避免上述不当操作所引起的损失。

11.4 有锈蚀处,除绣并油漆。如有轻微腐蚀,但并不影响其功能,则无须进行修理。

11.5 对旋转活动部件应经常加油脂活络。

11.6 绑扎杆的强度估算:旧的杆MSL = 0.084 D2,新的杆MSL = 0.12 D2

D: 杆的直径mm(毫米)

11.7 花篮紧固器的强度估计

螺杆直径(毫米)

16

19

22

螺帽直径(毫米)

16

18

25

MSL(100千克)(KN)

147

186

175

MSL: 最大系固负荷(千牛顿)(KN) = 100 千克

12 焊接止移板的强度 welded stopper/ bucket

12.1 止移的强度按钢板断截面的面积,及每平方毫米24千克计算,强度 = 24 千克/平方毫

米  S

12.2 焊缝的最小厚度= MSL / 0.12 (L+H),L: 焊缝的长度(毫米),H:钢板的厚度(毫米)或

横向焊缝的长度,MSL:最大系固负荷(千牛顿)(KN)。

发布评论

评论列表 (0)

  1. 暂无评论