2024年5月13日发(作者:衷棠华)
试卷类型:A
2023年临沂市初中学业水平考试试题
数学
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分
钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答
题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.
2.答题注意事项见答题卡,答在本试卷上不得分.
第I卷(选择题共36分)
一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有
一项是符合题目要求的.
1.计算
(7)(5)
的
结果是(
A.
12
B.12
)
)
C.
2
D.2
2.
下图中用量角器测得
ABC
的度数是(
A
.
50
B.
80
C.
130
D.
150
)
3.
下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是(
A.B.C.D.
4.
某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了
8
棵桂花,如图所示.若
A
,
B
两
第1页/共11页
处桂花的位置关于小路对称,在分别以两条小路为
x
,
y
轴的平面直角坐标系内,若点
A
的坐标为
(6,2)
,
则点
B
的坐标为()
A.
(6,2)
B.
(6,2)
C.
(2,6)
D.
(2,6)
)过直线
l
外一点
P
作
l
的垂线
m
,再过
P
作
m
的垂线
n
,则直线
l
与
n
的位置关系是(
5.
在同一平面内,
A.
相交
6.
下列运算正确的是(
A.
3a2a1
C.
B.
相交且垂直
)
B.
(ab)
2
a
2
b
2
D.
3a
3
2a
2
6a
5
.
)
D.360
°
C.
平行
D.
不能确定
a
5
a
7
2
7.
将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是(
A.60
°
8.
设
m
5
A.
m5
B.90
°
C.180
°
)
C.
4m3
1
45
,则实数
m
所在的范围是(
5
B.
5m4
D.
m3
9.
在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,
两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是(
A.
)
1
6
B.
1
3
C.
1
2
D.
2
3
10.
正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为
10
5
m
3
,
设土石方日平均运送量为
V
(单位:
m
3
/天),完成运送任务所需要的时间为
t
(单位:天),则
V
与
t
满足
()
B.
正比例函数关系
D.
二次函数关系
A
反比例函数关系
.
C.
一次函数关系
第2页/共11页
11.
对于某个一次函数
ykxb(k0)
,根据两位同学的对话得出的结论,错误的是()
A.
k0
B.
kb0
C.
kb0
D.
k
1
b
2
若
ab0,bcca0
,则下列结论:①
|a|>|b|
,②
a0
,③
b0
,④
c0
,
12.
在实数
a, b, c
中,
正确的个数有(
A.1
个
)
B.2
个
C.3
个
D.4
个
第Ⅱ卷(非选择题
注意事项:
1.
第Ⅱ卷分填空题和解答题.
共
84
分)
2.
第Ⅱ卷所有题目的答案,考生须用
0.5
毫米黑色签字笔答在答题卡规定的区域内,在试卷上
答题不得分.
二、填空题(本大题共
4
小题,每小题
3
分,共
12
分)
13.
已知菱形的两条对角线长分别为
6
和
8
,则它的面积为
______
.
14.
观察下列式子
1312
2
;
2413
2
;
3514
2
;
……
按照上述规律,
____________
n
2
.
15.
如图,三角形纸片
ABC
中,
AC6, BC9
,分别沿与
BC, AC
平行的方向,从靠近
A
的
AB
边的三
等分点剪去两个角,得到的平行四边形纸片的周长是
____________
.
第3页/共11页
2
16.
小明利用学习函数获得的经验研究函数
y
x
2
的性质,得到如下结论:
x
①当
x1
时,
x
越小,函数值越小;
②当
1x0
时,
x
越大,函数值越小;
③当
0x1
时,
x
越小,函数值越大;
④当
x1
时,
x
越大,函数值越大.
其中正确的是
_____________
(只填写序号).
三、解答题(本大题共
7
小题,共
72
分)
17.
(
1
)解不等式
5
2
x
1
x
,并在数轴上表示解集.
2
a
2
(
2
)下面是某同学计算
a
1
的
解题过程:
a
1
a
2
解:
a
1
a
1
a
2
(
a
1)
2
a
1
a
1
a
2
(
a
1)
2
a
1
a
2
a
2
a
1
a
1
a
1
1
a
1
①
②
③
④
上述解题过程从第几步开始出现错误?请写出正确的解题过程.
18.
某中学九年级共有
600
名学生,从中随机抽取了
20
名学生进行信息技术操作测试,测试成绩(单位:
分)如下:
81
87
90
92
82
94
89
88
99
92
95
87
91
100
83
86
92
85
93
96
第4页/共11页
(
1
)请按组距为
5
将数据分组,列出频数分布表,画出频数分布直方图;
(
2
)①这组数据的中位数是
_____________
;
②分析数据分布的情况(写出一条即可)
_____________
;
(
3
)若
85
分以上(不含
85
分)成绩为优秀等次,请预估该校九年级学生在同等难度
的
信息技术操作考试
中达到优秀等次的人数.
19.
如图,灯塔
A
周围
9
海里内有暗礁.一渔船由东向西航行至
B
处,测得灯塔
A
在北偏西
58
°方向上,
继续航行
6
海里后到达
C
处,测得灯塔
A
在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁
的危险?
(参考数据:
sin320.530,cos320.848,tan320.625;sin580.848,
cos580.530,tan581.6
)
与公司约定一个月(
30
天)的报酬是
M
型平板电脑一台和
1500
元现金,
20.
大学生小敏参加暑期实习活动,
当她工作满
20
天后因故结束实习,结算工资时公司给了她一台该型平板电脑和
300
元现金.
(
1
)这台
M
型平板电脑价值多少元?
第5页/共11页
(
2
)小敏若工作
m
天,将上述工资支付标准折算为现金,她应获得多少报酬(用含
m
的代数式表示)?
21.
如图,
O
是
ABC
的外接圆,
BD
是
O
的直径,
ABAC,AE∥BC
,
E
为
BD
的延长线与
AE
的
交点.
(
1
)求证:
AE
是
O
的切线;
的长.(
2
)若
ABC75,BC2
,求
CD
22.
如图,
A90,ABAC,BDAB,BCABBD
.
(
1
)写出
AB
与
BD
的数量关系
(
2
)延长
BC
到
E
,使
CEBC
,延长
DC
到
F
,使
CFDC
,连接
EF
.求证:
EFAB
.
(
3
)在(
2
)的条件下,作
ACE
的平分线,交
AF
于点
H
,求证:
AHFH
.
23.
综合与实践
问题情境
小莹妈妈的花卉超市以
15
元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近
A
,
B
,
C
,
D
,
E
五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:
售价(元/盆)
A
B
20
30
日销售量(盆)
50
30
第6页/共11页
2024年5月13日发(作者:衷棠华)
试卷类型:A
2023年临沂市初中学业水平考试试题
数学
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分
钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答
题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.
2.答题注意事项见答题卡,答在本试卷上不得分.
第I卷(选择题共36分)
一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有
一项是符合题目要求的.
1.计算
(7)(5)
的
结果是(
A.
12
B.12
)
)
C.
2
D.2
2.
下图中用量角器测得
ABC
的度数是(
A
.
50
B.
80
C.
130
D.
150
)
3.
下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是(
A.B.C.D.
4.
某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了
8
棵桂花,如图所示.若
A
,
B
两
第1页/共11页
处桂花的位置关于小路对称,在分别以两条小路为
x
,
y
轴的平面直角坐标系内,若点
A
的坐标为
(6,2)
,
则点
B
的坐标为()
A.
(6,2)
B.
(6,2)
C.
(2,6)
D.
(2,6)
)过直线
l
外一点
P
作
l
的垂线
m
,再过
P
作
m
的垂线
n
,则直线
l
与
n
的位置关系是(
5.
在同一平面内,
A.
相交
6.
下列运算正确的是(
A.
3a2a1
C.
B.
相交且垂直
)
B.
(ab)
2
a
2
b
2
D.
3a
3
2a
2
6a
5
.
)
D.360
°
C.
平行
D.
不能确定
a
5
a
7
2
7.
将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是(
A.60
°
8.
设
m
5
A.
m5
B.90
°
C.180
°
)
C.
4m3
1
45
,则实数
m
所在的范围是(
5
B.
5m4
D.
m3
9.
在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,
两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是(
A.
)
1
6
B.
1
3
C.
1
2
D.
2
3
10.
正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为
10
5
m
3
,
设土石方日平均运送量为
V
(单位:
m
3
/天),完成运送任务所需要的时间为
t
(单位:天),则
V
与
t
满足
()
B.
正比例函数关系
D.
二次函数关系
A
反比例函数关系
.
C.
一次函数关系
第2页/共11页
11.
对于某个一次函数
ykxb(k0)
,根据两位同学的对话得出的结论,错误的是()
A.
k0
B.
kb0
C.
kb0
D.
k
1
b
2
若
ab0,bcca0
,则下列结论:①
|a|>|b|
,②
a0
,③
b0
,④
c0
,
12.
在实数
a, b, c
中,
正确的个数有(
A.1
个
)
B.2
个
C.3
个
D.4
个
第Ⅱ卷(非选择题
注意事项:
1.
第Ⅱ卷分填空题和解答题.
共
84
分)
2.
第Ⅱ卷所有题目的答案,考生须用
0.5
毫米黑色签字笔答在答题卡规定的区域内,在试卷上
答题不得分.
二、填空题(本大题共
4
小题,每小题
3
分,共
12
分)
13.
已知菱形的两条对角线长分别为
6
和
8
,则它的面积为
______
.
14.
观察下列式子
1312
2
;
2413
2
;
3514
2
;
……
按照上述规律,
____________
n
2
.
15.
如图,三角形纸片
ABC
中,
AC6, BC9
,分别沿与
BC, AC
平行的方向,从靠近
A
的
AB
边的三
等分点剪去两个角,得到的平行四边形纸片的周长是
____________
.
第3页/共11页
2
16.
小明利用学习函数获得的经验研究函数
y
x
2
的性质,得到如下结论:
x
①当
x1
时,
x
越小,函数值越小;
②当
1x0
时,
x
越大,函数值越小;
③当
0x1
时,
x
越小,函数值越大;
④当
x1
时,
x
越大,函数值越大.
其中正确的是
_____________
(只填写序号).
三、解答题(本大题共
7
小题,共
72
分)
17.
(
1
)解不等式
5
2
x
1
x
,并在数轴上表示解集.
2
a
2
(
2
)下面是某同学计算
a
1
的
解题过程:
a
1
a
2
解:
a
1
a
1
a
2
(
a
1)
2
a
1
a
1
a
2
(
a
1)
2
a
1
a
2
a
2
a
1
a
1
a
1
1
a
1
①
②
③
④
上述解题过程从第几步开始出现错误?请写出正确的解题过程.
18.
某中学九年级共有
600
名学生,从中随机抽取了
20
名学生进行信息技术操作测试,测试成绩(单位:
分)如下:
81
87
90
92
82
94
89
88
99
92
95
87
91
100
83
86
92
85
93
96
第4页/共11页
(
1
)请按组距为
5
将数据分组,列出频数分布表,画出频数分布直方图;
(
2
)①这组数据的中位数是
_____________
;
②分析数据分布的情况(写出一条即可)
_____________
;
(
3
)若
85
分以上(不含
85
分)成绩为优秀等次,请预估该校九年级学生在同等难度
的
信息技术操作考试
中达到优秀等次的人数.
19.
如图,灯塔
A
周围
9
海里内有暗礁.一渔船由东向西航行至
B
处,测得灯塔
A
在北偏西
58
°方向上,
继续航行
6
海里后到达
C
处,测得灯塔
A
在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁
的危险?
(参考数据:
sin320.530,cos320.848,tan320.625;sin580.848,
cos580.530,tan581.6
)
与公司约定一个月(
30
天)的报酬是
M
型平板电脑一台和
1500
元现金,
20.
大学生小敏参加暑期实习活动,
当她工作满
20
天后因故结束实习,结算工资时公司给了她一台该型平板电脑和
300
元现金.
(
1
)这台
M
型平板电脑价值多少元?
第5页/共11页
(
2
)小敏若工作
m
天,将上述工资支付标准折算为现金,她应获得多少报酬(用含
m
的代数式表示)?
21.
如图,
O
是
ABC
的外接圆,
BD
是
O
的直径,
ABAC,AE∥BC
,
E
为
BD
的延长线与
AE
的
交点.
(
1
)求证:
AE
是
O
的切线;
的长.(
2
)若
ABC75,BC2
,求
CD
22.
如图,
A90,ABAC,BDAB,BCABBD
.
(
1
)写出
AB
与
BD
的数量关系
(
2
)延长
BC
到
E
,使
CEBC
,延长
DC
到
F
,使
CFDC
,连接
EF
.求证:
EFAB
.
(
3
)在(
2
)的条件下,作
ACE
的平分线,交
AF
于点
H
,求证:
AHFH
.
23.
综合与实践
问题情境
小莹妈妈的花卉超市以
15
元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近
A
,
B
,
C
,
D
,
E
五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:
售价(元/盆)
A
B
20
30
日销售量(盆)
50
30
第6页/共11页