最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

ASTM D1621-2010

IT圈 admin 36浏览 0评论

2024年5月15日发(作者:商江)

Designation:D1621–10

StandardTestMethodfor

CompressivePropertiesofRigidCellularPlastics

1

ThisstandardisissuedunderthefixeddesignationD1621;thenumberimmediatelyfollowingthedesignationindicatestheyearof

originaladoptionor,inthecaseofrevision,rinparenthesesindicatestheyearoflastreapproval.A

superscriptepsilon(´)indicatesaneditorialchangesincethelastrevisionorreapproval.

ThisstandardhasbeenapprovedforusebyagenciesoftheDepartmentofDefense.

*

1.1Thistestmethoddescribesaprocedurefordetermining

thecompressivepropertiesofrigidcellularmaterials,particu-

larlyexpandedplastics.

1.2ThevaluesstatedinSIunitsaretoberegardedasthe

uesinparenthesesareforinformationonly.

1.3Thisstandarddoesnotpurporttoaddressallofthe

safetyconcerns,ifany,e

responsibilityoftheuserofthisstandardtoestablishappro-

priatesafetyandhealthpracticesanddeterminetheapplica-

bilityofregulatorylimitationspriortouse.

N

OTE

1—ThistestmethodandISO844aretechnicallyequivalent.

ncedDocuments

2.1ASTMStandards:

2

D618PracticeforConditioningPlasticsforTesting

E4PracticesforForceVerificationofTestingMachines

E83PracticeforVerificationandClassificationofExten-

someterSystems

E691PracticeforConductinganInterlaboratoryStudyto

DeterminethePrecisionofaTestMethod

2.2ISOStandard:

ISO844CellularPlastics—CompressionTestofRigidMa-

terials

3

ology

3.1Definitions:

ThistestmethodisunderthejurisdictionofASTMCommitteeD20onPlastics

andisthedirectresponsibilityofSubcommitteeD20.22onCellularMaterials-

PlasticsandElastomers.

CurrenteditionapprovedApril1,ally

:

10.1520/D1621-10.

2

ForreferencedASTMstandards,visittheASTMwebsite,,or

contactASTMCustomerServiceatservice@ualBookofASTM

Standardsvolumeinformation,refertothestandard’sDocumentSummarypageon

theASTMwebsite.

3

AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,

4thFloor,NewYork,NY10036,.

1

3.1.1compliance—thedisplacementdifferencebetweentest

machinedrivesystemdisplacementvaluesandactualspecimen

displacement.

3.1.2compliancecorrection—ananalyticalmethodof

modifyingtestinstrumentdisplacementvaluestoeliminatethe

amountofthatmeasurementattributedtotestinstrument

compliance.

3.1.3compressivedeformation—thedecreaseinlengthpro-

ducedinthegagelengthofthetestspecimenbyacompressive

loadexpressedinunitsoflength.

3.1.4compressivestrain—thedimensionlessratioofcom-

pressivedeformationtothegagelengthofthetestspecimenor

thechangeinlengthperunitoforiginallengthalongthe

longitudinalaxis.

3.1.5compressivestrength—thestressattheyieldpointifa

yieldpointoccursbefore10%deformation(asinFig.1a)or,

intheabsenceofsuchayieldpoint,thestressat10%

deformation(asin

Fig.1b).

3.1.6compressivestress(nominal)—thecompressiveload

perunitareaofminimumoriginalcrosssectionwithinthegage

boundaries,carriedbythetestspecimenatanygivenmoment,

expressedinforceperunitarea.

3.1.7compressivestress-straindiagram—adiagramin

whichvaluesofcompressivestressareplottedasordinates

againstcorrespondingvaluesofcompressivestrainasabscis-

sas.

3.1.8compressiveyieldpoint—thefirstpointonthestress-

straindiagramatwhichanincreaseinstrainoccurswithoutan

increaseinstress.

3.1.9deflectometer—adeviceusedtosensethecompres-

sivedeflectionofthespecimenbydirectmeasurementofthe

distancebetweenthecompressionplatens.

3.1.10displacement—compressionplatenmovementafter

theplatenscontactthespecimen,expressedinmillimetresor

inches.

3.1.11gagelength—theinitialmeasuredthicknessofthe

testspecimenexpressedinunitsoflength.

*ASummaryofChangessectionappearsattheendofthisstandard.

Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.

1

D1621–10

X

1

=10%COREDEFORMATION

X

2

=DEFLECTION(APPROXIMATELY13%)

FIG.1aCompressiveStrength(See3.1.5andSection9)FIG.1bCompressiveStrength(See3.1.5andSection9)

3.1.12modulusofelasticity—theratioofstress(nominal)to

correspondingstrainbelowtheproportionallimitofamaterial

expressedinforceperunitareabasedontheminimuminitial

cross-sectionalarea.

3.1.13proportionallimit—thegreateststressthatamaterial

iscapableofsustainingwithoutanydeviationfrompropor-

tionalityofstress-to-strain(Hooke’slaw)expressedinforce

perunitarea.

ficanceandUse

4.1Thistestmethodprovidesinformationregardingthe

dataisobtained,andfromacompleteload-deformationcurve

itispossibletocomputethecompressivestressatanyload

(suchascompressivestressatproportional-limitloador

compressivestrengthatmaximumload)andtocomputethe

effectivemodulusofelasticity.

4.2Compressiontestsprovideastandardmethodofobtain-

ingdataforresearchanddevelopment,qualitycontrol,accep-

tanceorrejectionunderspecifications,andspecialpurposes.

Thetestscannotbeconsideredsignificantforengineering

designinapplicationsdifferingwidelyfromtheload-time

plicationsrequireadditional

testssuchasimpact,creep,andfatigue.

4.3Beforeproceedingwiththistestmethod,referenceshall

bemadetothespecifi

testspecimenpreparation,conditioning,dimensions,ortesting

parameters,oracombinationthereof,coveredinthematerials

specificationshalltakeprecedenceoverthosementionedinthis

earenomaterialspecifications,thenthe

defaultconditionsapply.

tus

5.1TestingMachine—Atestinginstrumentthatincludes

bothastationaryandmovablememberandincludesadrive

2

systemforimpartingtothemovablemember(crosshead),a

uniform,controlledvelocitywithrespecttothestationary

member(base).Thetestingmachineshallalsoincludethe

following:

5.1.1LoadMeasurementSystem—Aloadmeasurementsys-

temcapableofaccuratelyrecordingthecompressiveload

temshallbeindicatethe

loadwithanaccuracyof61%ofthemeasuredvalueorbetter.

Theaccuracyoftheloadmeasurementsystemshallbeverified

inaccordancewithPractices

E4.

5.2CompressionPlatens—Twoflatplates,oneattachedto

thestationarybaseofthetestinginstrumentandtheother

attachedtothemovingcrossheadtodelivertheloadtothetest

latesshallbelargerthanthespecimen

loadingsurfacetoensurethatthespecimenloadingisuniform.

Itisrecommendedthatoneplatenincorporateaspherical

seatingmechanismtocompensatefornon-parallelisminthe

specimen’sloadingsurfacesornon-parallelisminthebaseand

crossheadofthetestinginstrument.

5.3DisplacementMeasurementSystem—Adisplacement

measurementsystemcapableofaccuratelyrecordingthecom-

pressivedeformationofthetestspecimenduringtestingtoan

accuracyof61%

measurementismadethroughuseofthetestmachinecross-

headdrivesystemorusingadirectmeasurementofcompres-

sionplatendisplacement.

5.3.1DirectCompressionPlatenDisplacement—Thissys-

temshallemployadeflectometerthatdirectlyreadsthedistant

u-

racyofthedisplacementmeasurementtransducershallbe

verifiedinaccordancewithPractices

E83andshallbeclassi-

fiedasaClassCorbetter.

5.3.2TestMachineCrossheadDriveSystem—Thissystem

shallemploythepositionoutputfromthecrossheaddrive

D1621–10

methodisonlyappropriatewhenitisdemonstratedthatthe

effectsofdrivesystemcomplianceresultindisplacement

errorsoflessthan1%ofthemeasurementorifappropriate

compliancecorrectionmethodsareemployedtoreducethe

measurementerrortolessthan1%.

5.3.2.1DeterminingDriveSystemCompliance—Testingin-

strumentdrivesystemsalwaysexhibitacertainlevelof

compliancethatischaracterizedbyavariancebetweenthe

reportedcrossheaddisplacementandthedisplacementactually

rianceisafunctionofload

framestiffness,drivesystemwind-up,loadcellcompliance

andfimpliancecanbemeasuredthen,

ifdeterminedtobesignificantandempiricallysubtractedfrom

ceduretodetermine

compliancefollows:

(1)Configurethetestsystemtomatchtheactualtest

configuration.

(2)Positionthetwocompressionplatensveryclosetoeach

othersimulatingazerothicknessspecimeninplace.

(3)Startthecrossheadmovingat12.5mm(0.5in.)/minin

thecompressiondirectionrecordingcrossheaddisplacement

andthecorrespondingloadvalues.

(4)Increaseloadtoapointexceedingthehighestload

ecrossheadand

returntothepre-testlocation.

(5)Therecordedload-deflectioncurve,startingwhenthe

compressionplatenscontactoneanother,isdefinedastest

systemcompliance

5.3.2.2PerformingComplianceCorrection—Usingthe

load-deflectioncurvecreatedin

5.3.2.1,measurethesystem

specimentest

curveateachgivenloadvalue,subtractthesystemcompliance

llbethenew

load-deflectioncurveforuseincalculationsstartinginSection

9.

5.4MicrometerDialGage,caliper,orsteelrule,suitablefor

measuringdimensionsofthespecimensto61%ofthe

measuredvalues.

ecimen

6.1Thetestspecimenshallbesquareorcircularincross

sectionwithaminimumof25.8cm

2

(4in.

2

)andmaximumof

232cm

2

(36in.

2

)imumheightshallbe25.4

mm(1in.)andthemaximumheightshallbenogreaterthanthe

ouldbetakensothat

theloadedendsofthespecimenareparalleltoeachotherand

perpendiculartothesides.

N

OTE

2—Cellularplasticsarenotidealmaterials,andthecompressive

modulusmayappearsignificantlydifferent,dependingonthetestcondi-

tions,athataretobecompared

shouldbeobtainedusingcommontestconditions.

discardedandretestsmade,unlesssuchflawsconstitutea

variabletheeffectofwhichitisdesiredtostudy.

ioning

7.1Conditioning—Conditionthetestspecimensat236

2°C(73.463.6°F)and50610%relativehumidityfornot

lessthan40hpriortotestinaccordancewithProcedureAof

Practice

D618,unlessotherwisespecifiedinthecontractor

relevantmaterialspecifisofdisagreement,the

tolerancesshallbe61°C(61.8°F)and65%relativehumid-

ity.

7.2TestConditions—Conducttestsinthestandardlabora-

toryatmosphereof2362°C(73.463.6°F)and50610%

relativehumidity,unlessotherwisespecifisof

disagreement,thetolerancesshallbe61°C(61.8°F)and

65%relativehumidity.

ure

8.1Measurethedimensionsofthespecimentoaprecision

of61%ofthemeasurementasfollows:

8.1.1Thicknessesuptoandincluding25.4mm(1in.)shall

bemeasuredusingadial-typegagehavingafootwith

minimumareaof6.45cm

2

(1in.

2

).Holdthepressureofthedial

footto0.1760.03kPa(0.02560.005psi).

8.1.2Measuredimensionsover25.4mm(1in.)withadial

gage,asliding-calipergage,liding-

calipergageisemployed,thepropersettingshallbethatpoint

atwhichthemeasuringfacesofthegagecontactthesurfaces

ofthespecimenwithoutcompressingthem.

8.1.3Recordeachdimensionasanaverageofthreemea-

surements.

8.2Placethespecimenbetweenthecompressionplatens

ensuringthatthespecimencenter-lineisalignedwiththe

center-lineofthecompressionplatensandtheloadwillbe

distributedasuniformlyaspossibleovertheentireloading

expeditethetestingprocessif,

whenthespecimenisinplace,theupperplatenispositioned

closeto,butnottouching,thespecimen.

8.2.1Iffollowing

5.3.2.1,attachthedeflectometerorcom-

pressionextensometertothecompressionplatens.

8.3Startthecrossheadmovinginthedirectiontocompress

thespecimenwiththerateofcrossheaddisplacementof2.56

0.25mm(0.160.01in.)/minforeach25.4mm(1in.)of

specimenthickness.

8.4Recordcompressionplatendisplacementandthecorre-

cordedcurvewillbeuseddirectlyif

following5.3.2.1orcouldbemodifiedfollowing5.3.2.2.

8.5Continueuntilayieldpointisreachedoruntilthe

specimenhasbeencompressedapproximately13%ofits

originalthickness,whicheveroccursfirst.

8.5.1Whenspecified,adeformationotherthan10%may

acase,compressthespecimenapproximately3%morethan

thedeformationspecifitutethespecifieddeformation

wherever“10%deformation”iscitedinSections

9and10.

ation

9.1Usingastraightedgeorthroughtheuseofcomputer

software,carefullyextendtothezeroloadlinethesteepest

3

6.2Allsurfacesofthespecimenshallbefreefromlarge

visibleflawsorimperfections.

6.3Ifthematerialissuspectedtobeanisotropic,the

directionofthecompressiveloadingmustbespecifiedrelative

tothesuspecteddirectionofanisotropy.

6.4Aminimumoffivespecimensshallbetestedforeach

ensthatfailatsomeobviousflawshouldbe

D1621–10

straightportionoftheload-deflectioncurveexaminingonlythe

lowerportionoftheload-defltablishesthe

“zerodeformation”or“zerostrain”point(PointOinFig.1a

andFig.1b).Measurealldistancesfordeformationorstrain

calculationsfromthispoint.

9.2MeasurefromPointOalongthezero-loadlinea

distancerepresenting10%

point(PointMin

Fig.1aandFig.1b),drawaverticalline

intersectingtheload-deflectionorload-straincurveatPointP.

9.2.1IfthereisnoyieldpointbeforePointP(asinFig.1b),

readtheloadatPointP.

9.2.2IfthereisayieldpointbeforePointP(asPointLin

Fig.1),readtheloadandmeasurethepercentcoredeformation

orstrain(DistanceO-R)attheyieldpoint.

9.2.3Calculatethecompressivestrengthbydividingthe

load(9.2.1or9.2.2)bytheinitialhorizontalcross-sectional

areaofthespecimen.

9.3Ifcompressivemodulusisrequested,chooseanycon-

venientpoint(suchasPointSinFig.1b)alongthesteepest

straightlineportionoftheload-deflectionorload-straincurve.

Readtheloadandmeasurethedeformationorstrain(Distance

O-T)atthatpoint.

9.3.1Calculatetheapparentmodulusasfollows:

E

c

5WH/AD(1)

TABLE1PrecisionData

Materials

A

B

C

A

Average,psi

13.6307

31.3183

10.3981

S

r

A

1.1491

1.0944

0.9796

S

R

B

1.6078

1.1213

1.0764

r

C

3.2174

3.0642

2.7430

R

D

4.5019

3.1398

3.0141

S

r

=

obtainedbypoolingthewithin-laboratorystandarddeviationsofthetestresults

fromalloftheparticipatinglaboratories.

B

S

R

=between-laboratoriesreproducibility,expressedasstandarddeviation.

C

r=within-laboratorycriticalintervalbetweentwotestresults=2.83S

r

.

D

R=between-laboratoriescriticalintervalbetweentwotestresults=2.83S

R

.

10.1.4Atmosphericconditionsintestroomifdifferentfrom

thosespecifiedinSection

7.

10.1.5Valuesforeachspecimen,plusaveragesandstandard

deviations,ofmodulus(ifrequested)andcompressivestrength.

10.1.6Deformationatmaximumloadtotwosignificant

figures.

10.1.7Dateoftest.

ion

11.1Table1isbasedonaroundrobin

4

conductedin1998

inaccordancewithPracticeE691,involvingthreematerials

hmaterial,allofthe

sampleswerepreparedatonesource,buttheindividual

specimenswerepreparedatthelaboratoriesthattestedthem.

Eachtestresultwastheaverageofsevenindividualdetermi-

boratoryobtainedsixtestresultsforeach

ion,characterizedbyrepeatability(S

r

andr)

andreproducibility(S

R

andR)hasbeendeterminedasshown

inTable1.(Warning—TheexplanationofrandRareonly

intendedtopresentameaningfulwayofconsideringthe

ainTable1

shouldnotbeappliedtoacceptanceorrejectionofmaterials,as

thesedataapplyonlytothematerialstestedintheroundrobin

andareunlikelytoberigorouslyrepresentativeofotherlots,

formulations,conditions,materials,f

thistestmethodshouldapplytheprinciplesoutlinedinPractice

E691togeneratedataspecifictotheirmaterialsandlabora-

tory.)

N

OTE

3—TheprecisiondatapresentedinTable1wasobtainedusing

thetestconditionsdefierialspecification

definesothertestconditions,thisprecisiondatashallnotbeassumedto

apply.

where:

E

c

=modulusofelasticityincompression,Pa(psi),

W=load,N(lbf),

H=initialspecimenheight,m(in.),

A=initialhorizontalcross-sectionalarea,m

2

(in.

2

),and

D=deformation,m(in.).

9.3.2Calculatetheestimatedstandarddeviationasfollows:

¯

2

!

/

~

n21

!

s5

=

~

(

x

2

2nX(2)

where:

s=estimatedstandarddeviation,

x=valueofasingleobservation,

n=numberofobservations,and

¯

=arithmeticmeanofthesetofobservations.X

10.1Reportthefollowinginformation:

10.1.1Completeidentificationofthematerialtested,includ-

ingtype,source,codenumbers,form,principaldimensions,

previoushistory,andsoforth.

10.1.2Numberofspecimenstestedifdifferentfromthat

specifiedin

6.4.

10.1.3Conditioningprocedureusedifdifferentfromthat

specifiedinSection7.

ds

12.1cellularplastics;compressivemodulus;compressive

strength

tRR:D20-

1201.

4

4

D1621–10

SUMMARYOFCHANGES

CommitteeD20hasidentifiedthelocationofselectedchangestothisstandardsincethelastissue

(D1621-04a)thatmayimpacttheuseofthisstandard.(April1,2010)

(1)RevisedSection7.

ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentioned

fthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtherisk

ofinfringementofsuchrights,areentirelytheirownresponsibility.

Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsand

ifnotrevised,mmentsareinvitedeitherforrevisionofthisstandardorforadditionalstandards

mmentswillreceivecarefulconsiderationatameetingofthe

responsibletechnicalcommittee,eelthatyourcommentshavenotreceivedafairhearingyoushould

makeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.

ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,

dualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheabove

addressorat610-832-9585(phone),610-832-9555(fax),orservice@(e-mail);orthroughtheASTMwebsite

().PermissionrightstophotocopythestandardmayalsobesecuredfromtheASTMwebsite(/

COPYRIGHT/).

5

2024年5月15日发(作者:商江)

Designation:D1621–10

StandardTestMethodfor

CompressivePropertiesofRigidCellularPlastics

1

ThisstandardisissuedunderthefixeddesignationD1621;thenumberimmediatelyfollowingthedesignationindicatestheyearof

originaladoptionor,inthecaseofrevision,rinparenthesesindicatestheyearoflastreapproval.A

superscriptepsilon(´)indicatesaneditorialchangesincethelastrevisionorreapproval.

ThisstandardhasbeenapprovedforusebyagenciesoftheDepartmentofDefense.

*

1.1Thistestmethoddescribesaprocedurefordetermining

thecompressivepropertiesofrigidcellularmaterials,particu-

larlyexpandedplastics.

1.2ThevaluesstatedinSIunitsaretoberegardedasthe

uesinparenthesesareforinformationonly.

1.3Thisstandarddoesnotpurporttoaddressallofthe

safetyconcerns,ifany,e

responsibilityoftheuserofthisstandardtoestablishappro-

priatesafetyandhealthpracticesanddeterminetheapplica-

bilityofregulatorylimitationspriortouse.

N

OTE

1—ThistestmethodandISO844aretechnicallyequivalent.

ncedDocuments

2.1ASTMStandards:

2

D618PracticeforConditioningPlasticsforTesting

E4PracticesforForceVerificationofTestingMachines

E83PracticeforVerificationandClassificationofExten-

someterSystems

E691PracticeforConductinganInterlaboratoryStudyto

DeterminethePrecisionofaTestMethod

2.2ISOStandard:

ISO844CellularPlastics—CompressionTestofRigidMa-

terials

3

ology

3.1Definitions:

ThistestmethodisunderthejurisdictionofASTMCommitteeD20onPlastics

andisthedirectresponsibilityofSubcommitteeD20.22onCellularMaterials-

PlasticsandElastomers.

CurrenteditionapprovedApril1,ally

:

10.1520/D1621-10.

2

ForreferencedASTMstandards,visittheASTMwebsite,,or

contactASTMCustomerServiceatservice@ualBookofASTM

Standardsvolumeinformation,refertothestandard’sDocumentSummarypageon

theASTMwebsite.

3

AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,

4thFloor,NewYork,NY10036,.

1

3.1.1compliance—thedisplacementdifferencebetweentest

machinedrivesystemdisplacementvaluesandactualspecimen

displacement.

3.1.2compliancecorrection—ananalyticalmethodof

modifyingtestinstrumentdisplacementvaluestoeliminatethe

amountofthatmeasurementattributedtotestinstrument

compliance.

3.1.3compressivedeformation—thedecreaseinlengthpro-

ducedinthegagelengthofthetestspecimenbyacompressive

loadexpressedinunitsoflength.

3.1.4compressivestrain—thedimensionlessratioofcom-

pressivedeformationtothegagelengthofthetestspecimenor

thechangeinlengthperunitoforiginallengthalongthe

longitudinalaxis.

3.1.5compressivestrength—thestressattheyieldpointifa

yieldpointoccursbefore10%deformation(asinFig.1a)or,

intheabsenceofsuchayieldpoint,thestressat10%

deformation(asin

Fig.1b).

3.1.6compressivestress(nominal)—thecompressiveload

perunitareaofminimumoriginalcrosssectionwithinthegage

boundaries,carriedbythetestspecimenatanygivenmoment,

expressedinforceperunitarea.

3.1.7compressivestress-straindiagram—adiagramin

whichvaluesofcompressivestressareplottedasordinates

againstcorrespondingvaluesofcompressivestrainasabscis-

sas.

3.1.8compressiveyieldpoint—thefirstpointonthestress-

straindiagramatwhichanincreaseinstrainoccurswithoutan

increaseinstress.

3.1.9deflectometer—adeviceusedtosensethecompres-

sivedeflectionofthespecimenbydirectmeasurementofthe

distancebetweenthecompressionplatens.

3.1.10displacement—compressionplatenmovementafter

theplatenscontactthespecimen,expressedinmillimetresor

inches.

3.1.11gagelength—theinitialmeasuredthicknessofthe

testspecimenexpressedinunitsoflength.

*ASummaryofChangessectionappearsattheendofthisstandard.

Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.

1

D1621–10

X

1

=10%COREDEFORMATION

X

2

=DEFLECTION(APPROXIMATELY13%)

FIG.1aCompressiveStrength(See3.1.5andSection9)FIG.1bCompressiveStrength(See3.1.5andSection9)

3.1.12modulusofelasticity—theratioofstress(nominal)to

correspondingstrainbelowtheproportionallimitofamaterial

expressedinforceperunitareabasedontheminimuminitial

cross-sectionalarea.

3.1.13proportionallimit—thegreateststressthatamaterial

iscapableofsustainingwithoutanydeviationfrompropor-

tionalityofstress-to-strain(Hooke’slaw)expressedinforce

perunitarea.

ficanceandUse

4.1Thistestmethodprovidesinformationregardingthe

dataisobtained,andfromacompleteload-deformationcurve

itispossibletocomputethecompressivestressatanyload

(suchascompressivestressatproportional-limitloador

compressivestrengthatmaximumload)andtocomputethe

effectivemodulusofelasticity.

4.2Compressiontestsprovideastandardmethodofobtain-

ingdataforresearchanddevelopment,qualitycontrol,accep-

tanceorrejectionunderspecifications,andspecialpurposes.

Thetestscannotbeconsideredsignificantforengineering

designinapplicationsdifferingwidelyfromtheload-time

plicationsrequireadditional

testssuchasimpact,creep,andfatigue.

4.3Beforeproceedingwiththistestmethod,referenceshall

bemadetothespecifi

testspecimenpreparation,conditioning,dimensions,ortesting

parameters,oracombinationthereof,coveredinthematerials

specificationshalltakeprecedenceoverthosementionedinthis

earenomaterialspecifications,thenthe

defaultconditionsapply.

tus

5.1TestingMachine—Atestinginstrumentthatincludes

bothastationaryandmovablememberandincludesadrive

2

systemforimpartingtothemovablemember(crosshead),a

uniform,controlledvelocitywithrespecttothestationary

member(base).Thetestingmachineshallalsoincludethe

following:

5.1.1LoadMeasurementSystem—Aloadmeasurementsys-

temcapableofaccuratelyrecordingthecompressiveload

temshallbeindicatethe

loadwithanaccuracyof61%ofthemeasuredvalueorbetter.

Theaccuracyoftheloadmeasurementsystemshallbeverified

inaccordancewithPractices

E4.

5.2CompressionPlatens—Twoflatplates,oneattachedto

thestationarybaseofthetestinginstrumentandtheother

attachedtothemovingcrossheadtodelivertheloadtothetest

latesshallbelargerthanthespecimen

loadingsurfacetoensurethatthespecimenloadingisuniform.

Itisrecommendedthatoneplatenincorporateaspherical

seatingmechanismtocompensatefornon-parallelisminthe

specimen’sloadingsurfacesornon-parallelisminthebaseand

crossheadofthetestinginstrument.

5.3DisplacementMeasurementSystem—Adisplacement

measurementsystemcapableofaccuratelyrecordingthecom-

pressivedeformationofthetestspecimenduringtestingtoan

accuracyof61%

measurementismadethroughuseofthetestmachinecross-

headdrivesystemorusingadirectmeasurementofcompres-

sionplatendisplacement.

5.3.1DirectCompressionPlatenDisplacement—Thissys-

temshallemployadeflectometerthatdirectlyreadsthedistant

u-

racyofthedisplacementmeasurementtransducershallbe

verifiedinaccordancewithPractices

E83andshallbeclassi-

fiedasaClassCorbetter.

5.3.2TestMachineCrossheadDriveSystem—Thissystem

shallemploythepositionoutputfromthecrossheaddrive

D1621–10

methodisonlyappropriatewhenitisdemonstratedthatthe

effectsofdrivesystemcomplianceresultindisplacement

errorsoflessthan1%ofthemeasurementorifappropriate

compliancecorrectionmethodsareemployedtoreducethe

measurementerrortolessthan1%.

5.3.2.1DeterminingDriveSystemCompliance—Testingin-

strumentdrivesystemsalwaysexhibitacertainlevelof

compliancethatischaracterizedbyavariancebetweenthe

reportedcrossheaddisplacementandthedisplacementactually

rianceisafunctionofload

framestiffness,drivesystemwind-up,loadcellcompliance

andfimpliancecanbemeasuredthen,

ifdeterminedtobesignificantandempiricallysubtractedfrom

ceduretodetermine

compliancefollows:

(1)Configurethetestsystemtomatchtheactualtest

configuration.

(2)Positionthetwocompressionplatensveryclosetoeach

othersimulatingazerothicknessspecimeninplace.

(3)Startthecrossheadmovingat12.5mm(0.5in.)/minin

thecompressiondirectionrecordingcrossheaddisplacement

andthecorrespondingloadvalues.

(4)Increaseloadtoapointexceedingthehighestload

ecrossheadand

returntothepre-testlocation.

(5)Therecordedload-deflectioncurve,startingwhenthe

compressionplatenscontactoneanother,isdefinedastest

systemcompliance

5.3.2.2PerformingComplianceCorrection—Usingthe

load-deflectioncurvecreatedin

5.3.2.1,measurethesystem

specimentest

curveateachgivenloadvalue,subtractthesystemcompliance

llbethenew

load-deflectioncurveforuseincalculationsstartinginSection

9.

5.4MicrometerDialGage,caliper,orsteelrule,suitablefor

measuringdimensionsofthespecimensto61%ofthe

measuredvalues.

ecimen

6.1Thetestspecimenshallbesquareorcircularincross

sectionwithaminimumof25.8cm

2

(4in.

2

)andmaximumof

232cm

2

(36in.

2

)imumheightshallbe25.4

mm(1in.)andthemaximumheightshallbenogreaterthanthe

ouldbetakensothat

theloadedendsofthespecimenareparalleltoeachotherand

perpendiculartothesides.

N

OTE

2—Cellularplasticsarenotidealmaterials,andthecompressive

modulusmayappearsignificantlydifferent,dependingonthetestcondi-

tions,athataretobecompared

shouldbeobtainedusingcommontestconditions.

discardedandretestsmade,unlesssuchflawsconstitutea

variabletheeffectofwhichitisdesiredtostudy.

ioning

7.1Conditioning—Conditionthetestspecimensat236

2°C(73.463.6°F)and50610%relativehumidityfornot

lessthan40hpriortotestinaccordancewithProcedureAof

Practice

D618,unlessotherwisespecifiedinthecontractor

relevantmaterialspecifisofdisagreement,the

tolerancesshallbe61°C(61.8°F)and65%relativehumid-

ity.

7.2TestConditions—Conducttestsinthestandardlabora-

toryatmosphereof2362°C(73.463.6°F)and50610%

relativehumidity,unlessotherwisespecifisof

disagreement,thetolerancesshallbe61°C(61.8°F)and

65%relativehumidity.

ure

8.1Measurethedimensionsofthespecimentoaprecision

of61%ofthemeasurementasfollows:

8.1.1Thicknessesuptoandincluding25.4mm(1in.)shall

bemeasuredusingadial-typegagehavingafootwith

minimumareaof6.45cm

2

(1in.

2

).Holdthepressureofthedial

footto0.1760.03kPa(0.02560.005psi).

8.1.2Measuredimensionsover25.4mm(1in.)withadial

gage,asliding-calipergage,liding-

calipergageisemployed,thepropersettingshallbethatpoint

atwhichthemeasuringfacesofthegagecontactthesurfaces

ofthespecimenwithoutcompressingthem.

8.1.3Recordeachdimensionasanaverageofthreemea-

surements.

8.2Placethespecimenbetweenthecompressionplatens

ensuringthatthespecimencenter-lineisalignedwiththe

center-lineofthecompressionplatensandtheloadwillbe

distributedasuniformlyaspossibleovertheentireloading

expeditethetestingprocessif,

whenthespecimenisinplace,theupperplatenispositioned

closeto,butnottouching,thespecimen.

8.2.1Iffollowing

5.3.2.1,attachthedeflectometerorcom-

pressionextensometertothecompressionplatens.

8.3Startthecrossheadmovinginthedirectiontocompress

thespecimenwiththerateofcrossheaddisplacementof2.56

0.25mm(0.160.01in.)/minforeach25.4mm(1in.)of

specimenthickness.

8.4Recordcompressionplatendisplacementandthecorre-

cordedcurvewillbeuseddirectlyif

following5.3.2.1orcouldbemodifiedfollowing5.3.2.2.

8.5Continueuntilayieldpointisreachedoruntilthe

specimenhasbeencompressedapproximately13%ofits

originalthickness,whicheveroccursfirst.

8.5.1Whenspecified,adeformationotherthan10%may

acase,compressthespecimenapproximately3%morethan

thedeformationspecifitutethespecifieddeformation

wherever“10%deformation”iscitedinSections

9and10.

ation

9.1Usingastraightedgeorthroughtheuseofcomputer

software,carefullyextendtothezeroloadlinethesteepest

3

6.2Allsurfacesofthespecimenshallbefreefromlarge

visibleflawsorimperfections.

6.3Ifthematerialissuspectedtobeanisotropic,the

directionofthecompressiveloadingmustbespecifiedrelative

tothesuspecteddirectionofanisotropy.

6.4Aminimumoffivespecimensshallbetestedforeach

ensthatfailatsomeobviousflawshouldbe

D1621–10

straightportionoftheload-deflectioncurveexaminingonlythe

lowerportionoftheload-defltablishesthe

“zerodeformation”or“zerostrain”point(PointOinFig.1a

andFig.1b).Measurealldistancesfordeformationorstrain

calculationsfromthispoint.

9.2MeasurefromPointOalongthezero-loadlinea

distancerepresenting10%

point(PointMin

Fig.1aandFig.1b),drawaverticalline

intersectingtheload-deflectionorload-straincurveatPointP.

9.2.1IfthereisnoyieldpointbeforePointP(asinFig.1b),

readtheloadatPointP.

9.2.2IfthereisayieldpointbeforePointP(asPointLin

Fig.1),readtheloadandmeasurethepercentcoredeformation

orstrain(DistanceO-R)attheyieldpoint.

9.2.3Calculatethecompressivestrengthbydividingthe

load(9.2.1or9.2.2)bytheinitialhorizontalcross-sectional

areaofthespecimen.

9.3Ifcompressivemodulusisrequested,chooseanycon-

venientpoint(suchasPointSinFig.1b)alongthesteepest

straightlineportionoftheload-deflectionorload-straincurve.

Readtheloadandmeasurethedeformationorstrain(Distance

O-T)atthatpoint.

9.3.1Calculatetheapparentmodulusasfollows:

E

c

5WH/AD(1)

TABLE1PrecisionData

Materials

A

B

C

A

Average,psi

13.6307

31.3183

10.3981

S

r

A

1.1491

1.0944

0.9796

S

R

B

1.6078

1.1213

1.0764

r

C

3.2174

3.0642

2.7430

R

D

4.5019

3.1398

3.0141

S

r

=

obtainedbypoolingthewithin-laboratorystandarddeviationsofthetestresults

fromalloftheparticipatinglaboratories.

B

S

R

=between-laboratoriesreproducibility,expressedasstandarddeviation.

C

r=within-laboratorycriticalintervalbetweentwotestresults=2.83S

r

.

D

R=between-laboratoriescriticalintervalbetweentwotestresults=2.83S

R

.

10.1.4Atmosphericconditionsintestroomifdifferentfrom

thosespecifiedinSection

7.

10.1.5Valuesforeachspecimen,plusaveragesandstandard

deviations,ofmodulus(ifrequested)andcompressivestrength.

10.1.6Deformationatmaximumloadtotwosignificant

figures.

10.1.7Dateoftest.

ion

11.1Table1isbasedonaroundrobin

4

conductedin1998

inaccordancewithPracticeE691,involvingthreematerials

hmaterial,allofthe

sampleswerepreparedatonesource,buttheindividual

specimenswerepreparedatthelaboratoriesthattestedthem.

Eachtestresultwastheaverageofsevenindividualdetermi-

boratoryobtainedsixtestresultsforeach

ion,characterizedbyrepeatability(S

r

andr)

andreproducibility(S

R

andR)hasbeendeterminedasshown

inTable1.(Warning—TheexplanationofrandRareonly

intendedtopresentameaningfulwayofconsideringthe

ainTable1

shouldnotbeappliedtoacceptanceorrejectionofmaterials,as

thesedataapplyonlytothematerialstestedintheroundrobin

andareunlikelytoberigorouslyrepresentativeofotherlots,

formulations,conditions,materials,f

thistestmethodshouldapplytheprinciplesoutlinedinPractice

E691togeneratedataspecifictotheirmaterialsandlabora-

tory.)

N

OTE

3—TheprecisiondatapresentedinTable1wasobtainedusing

thetestconditionsdefierialspecification

definesothertestconditions,thisprecisiondatashallnotbeassumedto

apply.

where:

E

c

=modulusofelasticityincompression,Pa(psi),

W=load,N(lbf),

H=initialspecimenheight,m(in.),

A=initialhorizontalcross-sectionalarea,m

2

(in.

2

),and

D=deformation,m(in.).

9.3.2Calculatetheestimatedstandarddeviationasfollows:

¯

2

!

/

~

n21

!

s5

=

~

(

x

2

2nX(2)

where:

s=estimatedstandarddeviation,

x=valueofasingleobservation,

n=numberofobservations,and

¯

=arithmeticmeanofthesetofobservations.X

10.1Reportthefollowinginformation:

10.1.1Completeidentificationofthematerialtested,includ-

ingtype,source,codenumbers,form,principaldimensions,

previoushistory,andsoforth.

10.1.2Numberofspecimenstestedifdifferentfromthat

specifiedin

6.4.

10.1.3Conditioningprocedureusedifdifferentfromthat

specifiedinSection7.

ds

12.1cellularplastics;compressivemodulus;compressive

strength

tRR:D20-

1201.

4

4

D1621–10

SUMMARYOFCHANGES

CommitteeD20hasidentifiedthelocationofselectedchangestothisstandardsincethelastissue

(D1621-04a)thatmayimpacttheuseofthisstandard.(April1,2010)

(1)RevisedSection7.

ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentioned

fthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtherisk

ofinfringementofsuchrights,areentirelytheirownresponsibility.

Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsand

ifnotrevised,mmentsareinvitedeitherforrevisionofthisstandardorforadditionalstandards

mmentswillreceivecarefulconsiderationatameetingofthe

responsibletechnicalcommittee,eelthatyourcommentshavenotreceivedafairhearingyoushould

makeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.

ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,

dualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheabove

addressorat610-832-9585(phone),610-832-9555(fax),orservice@(e-mail);orthroughtheASTMwebsite

().PermissionrightstophotocopythestandardmayalsobesecuredfromtheASTMwebsite(/

COPYRIGHT/).

5

发布评论

评论列表 (0)

  1. 暂无评论