2024年5月15日发(作者:商江)
Designation:D1621–10
StandardTestMethodfor
CompressivePropertiesofRigidCellularPlastics
1
ThisstandardisissuedunderthefixeddesignationD1621;thenumberimmediatelyfollowingthedesignationindicatestheyearof
originaladoptionor,inthecaseofrevision,rinparenthesesindicatestheyearoflastreapproval.A
superscriptepsilon(´)indicatesaneditorialchangesincethelastrevisionorreapproval.
ThisstandardhasbeenapprovedforusebyagenciesoftheDepartmentofDefense.
*
1.1Thistestmethoddescribesaprocedurefordetermining
thecompressivepropertiesofrigidcellularmaterials,particu-
larlyexpandedplastics.
1.2ThevaluesstatedinSIunitsaretoberegardedasthe
uesinparenthesesareforinformationonly.
1.3Thisstandarddoesnotpurporttoaddressallofthe
safetyconcerns,ifany,e
responsibilityoftheuserofthisstandardtoestablishappro-
priatesafetyandhealthpracticesanddeterminetheapplica-
bilityofregulatorylimitationspriortouse.
N
OTE
1—ThistestmethodandISO844aretechnicallyequivalent.
ncedDocuments
2.1ASTMStandards:
2
D618PracticeforConditioningPlasticsforTesting
E4PracticesforForceVerificationofTestingMachines
E83PracticeforVerificationandClassificationofExten-
someterSystems
E691PracticeforConductinganInterlaboratoryStudyto
DeterminethePrecisionofaTestMethod
2.2ISOStandard:
ISO844CellularPlastics—CompressionTestofRigidMa-
terials
3
ology
3.1Definitions:
ThistestmethodisunderthejurisdictionofASTMCommitteeD20onPlastics
andisthedirectresponsibilityofSubcommitteeD20.22onCellularMaterials-
PlasticsandElastomers.
CurrenteditionapprovedApril1,ally
:
10.1520/D1621-10.
2
ForreferencedASTMstandards,visittheASTMwebsite,,or
contactASTMCustomerServiceatservice@ualBookofASTM
Standardsvolumeinformation,refertothestandard’sDocumentSummarypageon
theASTMwebsite.
3
AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,
4thFloor,NewYork,NY10036,.
1
3.1.1compliance—thedisplacementdifferencebetweentest
machinedrivesystemdisplacementvaluesandactualspecimen
displacement.
3.1.2compliancecorrection—ananalyticalmethodof
modifyingtestinstrumentdisplacementvaluestoeliminatethe
amountofthatmeasurementattributedtotestinstrument
compliance.
3.1.3compressivedeformation—thedecreaseinlengthpro-
ducedinthegagelengthofthetestspecimenbyacompressive
loadexpressedinunitsoflength.
3.1.4compressivestrain—thedimensionlessratioofcom-
pressivedeformationtothegagelengthofthetestspecimenor
thechangeinlengthperunitoforiginallengthalongthe
longitudinalaxis.
3.1.5compressivestrength—thestressattheyieldpointifa
yieldpointoccursbefore10%deformation(asinFig.1a)or,
intheabsenceofsuchayieldpoint,thestressat10%
deformation(asin
Fig.1b).
3.1.6compressivestress(nominal)—thecompressiveload
perunitareaofminimumoriginalcrosssectionwithinthegage
boundaries,carriedbythetestspecimenatanygivenmoment,
expressedinforceperunitarea.
3.1.7compressivestress-straindiagram—adiagramin
whichvaluesofcompressivestressareplottedasordinates
againstcorrespondingvaluesofcompressivestrainasabscis-
sas.
3.1.8compressiveyieldpoint—thefirstpointonthestress-
straindiagramatwhichanincreaseinstrainoccurswithoutan
increaseinstress.
3.1.9deflectometer—adeviceusedtosensethecompres-
sivedeflectionofthespecimenbydirectmeasurementofthe
distancebetweenthecompressionplatens.
3.1.10displacement—compressionplatenmovementafter
theplatenscontactthespecimen,expressedinmillimetresor
inches.
3.1.11gagelength—theinitialmeasuredthicknessofthe
testspecimenexpressedinunitsoflength.
*ASummaryofChangessectionappearsattheendofthisstandard.
Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.
1
D1621–10
X
1
=10%COREDEFORMATION
X
2
=DEFLECTION(APPROXIMATELY13%)
FIG.1aCompressiveStrength(See3.1.5andSection9)FIG.1bCompressiveStrength(See3.1.5andSection9)
3.1.12modulusofelasticity—theratioofstress(nominal)to
correspondingstrainbelowtheproportionallimitofamaterial
expressedinforceperunitareabasedontheminimuminitial
cross-sectionalarea.
3.1.13proportionallimit—thegreateststressthatamaterial
iscapableofsustainingwithoutanydeviationfrompropor-
tionalityofstress-to-strain(Hooke’slaw)expressedinforce
perunitarea.
ficanceandUse
4.1Thistestmethodprovidesinformationregardingthe
dataisobtained,andfromacompleteload-deformationcurve
itispossibletocomputethecompressivestressatanyload
(suchascompressivestressatproportional-limitloador
compressivestrengthatmaximumload)andtocomputethe
effectivemodulusofelasticity.
4.2Compressiontestsprovideastandardmethodofobtain-
ingdataforresearchanddevelopment,qualitycontrol,accep-
tanceorrejectionunderspecifications,andspecialpurposes.
Thetestscannotbeconsideredsignificantforengineering
designinapplicationsdifferingwidelyfromtheload-time
plicationsrequireadditional
testssuchasimpact,creep,andfatigue.
4.3Beforeproceedingwiththistestmethod,referenceshall
bemadetothespecifi
testspecimenpreparation,conditioning,dimensions,ortesting
parameters,oracombinationthereof,coveredinthematerials
specificationshalltakeprecedenceoverthosementionedinthis
earenomaterialspecifications,thenthe
defaultconditionsapply.
tus
5.1TestingMachine—Atestinginstrumentthatincludes
bothastationaryandmovablememberandincludesadrive
2
systemforimpartingtothemovablemember(crosshead),a
uniform,controlledvelocitywithrespecttothestationary
member(base).Thetestingmachineshallalsoincludethe
following:
5.1.1LoadMeasurementSystem—Aloadmeasurementsys-
temcapableofaccuratelyrecordingthecompressiveload
temshallbeindicatethe
loadwithanaccuracyof61%ofthemeasuredvalueorbetter.
Theaccuracyoftheloadmeasurementsystemshallbeverified
inaccordancewithPractices
E4.
5.2CompressionPlatens—Twoflatplates,oneattachedto
thestationarybaseofthetestinginstrumentandtheother
attachedtothemovingcrossheadtodelivertheloadtothetest
latesshallbelargerthanthespecimen
loadingsurfacetoensurethatthespecimenloadingisuniform.
Itisrecommendedthatoneplatenincorporateaspherical
seatingmechanismtocompensatefornon-parallelisminthe
specimen’sloadingsurfacesornon-parallelisminthebaseand
crossheadofthetestinginstrument.
5.3DisplacementMeasurementSystem—Adisplacement
measurementsystemcapableofaccuratelyrecordingthecom-
pressivedeformationofthetestspecimenduringtestingtoan
accuracyof61%
measurementismadethroughuseofthetestmachinecross-
headdrivesystemorusingadirectmeasurementofcompres-
sionplatendisplacement.
5.3.1DirectCompressionPlatenDisplacement—Thissys-
temshallemployadeflectometerthatdirectlyreadsthedistant
u-
racyofthedisplacementmeasurementtransducershallbe
verifiedinaccordancewithPractices
E83andshallbeclassi-
fiedasaClassCorbetter.
5.3.2TestMachineCrossheadDriveSystem—Thissystem
shallemploythepositionoutputfromthecrossheaddrive
D1621–10
methodisonlyappropriatewhenitisdemonstratedthatthe
effectsofdrivesystemcomplianceresultindisplacement
errorsoflessthan1%ofthemeasurementorifappropriate
compliancecorrectionmethodsareemployedtoreducethe
measurementerrortolessthan1%.
5.3.2.1DeterminingDriveSystemCompliance—Testingin-
strumentdrivesystemsalwaysexhibitacertainlevelof
compliancethatischaracterizedbyavariancebetweenthe
reportedcrossheaddisplacementandthedisplacementactually
rianceisafunctionofload
framestiffness,drivesystemwind-up,loadcellcompliance
andfimpliancecanbemeasuredthen,
ifdeterminedtobesignificantandempiricallysubtractedfrom
ceduretodetermine
compliancefollows:
(1)Configurethetestsystemtomatchtheactualtest
configuration.
(2)Positionthetwocompressionplatensveryclosetoeach
othersimulatingazerothicknessspecimeninplace.
(3)Startthecrossheadmovingat12.5mm(0.5in.)/minin
thecompressiondirectionrecordingcrossheaddisplacement
andthecorrespondingloadvalues.
(4)Increaseloadtoapointexceedingthehighestload
ecrossheadand
returntothepre-testlocation.
(5)Therecordedload-deflectioncurve,startingwhenthe
compressionplatenscontactoneanother,isdefinedastest
systemcompliance
5.3.2.2PerformingComplianceCorrection—Usingthe
load-deflectioncurvecreatedin
5.3.2.1,measurethesystem
specimentest
curveateachgivenloadvalue,subtractthesystemcompliance
llbethenew
load-deflectioncurveforuseincalculationsstartinginSection
9.
5.4MicrometerDialGage,caliper,orsteelrule,suitablefor
measuringdimensionsofthespecimensto61%ofthe
measuredvalues.
ecimen
6.1Thetestspecimenshallbesquareorcircularincross
sectionwithaminimumof25.8cm
2
(4in.
2
)andmaximumof
232cm
2
(36in.
2
)imumheightshallbe25.4
mm(1in.)andthemaximumheightshallbenogreaterthanthe
ouldbetakensothat
theloadedendsofthespecimenareparalleltoeachotherand
perpendiculartothesides.
N
OTE
2—Cellularplasticsarenotidealmaterials,andthecompressive
modulusmayappearsignificantlydifferent,dependingonthetestcondi-
tions,athataretobecompared
shouldbeobtainedusingcommontestconditions.
discardedandretestsmade,unlesssuchflawsconstitutea
variabletheeffectofwhichitisdesiredtostudy.
ioning
7.1Conditioning—Conditionthetestspecimensat236
2°C(73.463.6°F)and50610%relativehumidityfornot
lessthan40hpriortotestinaccordancewithProcedureAof
Practice
D618,unlessotherwisespecifiedinthecontractor
relevantmaterialspecifisofdisagreement,the
tolerancesshallbe61°C(61.8°F)and65%relativehumid-
ity.
7.2TestConditions—Conducttestsinthestandardlabora-
toryatmosphereof2362°C(73.463.6°F)and50610%
relativehumidity,unlessotherwisespecifisof
disagreement,thetolerancesshallbe61°C(61.8°F)and
65%relativehumidity.
ure
8.1Measurethedimensionsofthespecimentoaprecision
of61%ofthemeasurementasfollows:
8.1.1Thicknessesuptoandincluding25.4mm(1in.)shall
bemeasuredusingadial-typegagehavingafootwith
minimumareaof6.45cm
2
(1in.
2
).Holdthepressureofthedial
footto0.1760.03kPa(0.02560.005psi).
8.1.2Measuredimensionsover25.4mm(1in.)withadial
gage,asliding-calipergage,liding-
calipergageisemployed,thepropersettingshallbethatpoint
atwhichthemeasuringfacesofthegagecontactthesurfaces
ofthespecimenwithoutcompressingthem.
8.1.3Recordeachdimensionasanaverageofthreemea-
surements.
8.2Placethespecimenbetweenthecompressionplatens
ensuringthatthespecimencenter-lineisalignedwiththe
center-lineofthecompressionplatensandtheloadwillbe
distributedasuniformlyaspossibleovertheentireloading
expeditethetestingprocessif,
whenthespecimenisinplace,theupperplatenispositioned
closeto,butnottouching,thespecimen.
8.2.1Iffollowing
5.3.2.1,attachthedeflectometerorcom-
pressionextensometertothecompressionplatens.
8.3Startthecrossheadmovinginthedirectiontocompress
thespecimenwiththerateofcrossheaddisplacementof2.56
0.25mm(0.160.01in.)/minforeach25.4mm(1in.)of
specimenthickness.
8.4Recordcompressionplatendisplacementandthecorre-
cordedcurvewillbeuseddirectlyif
following5.3.2.1orcouldbemodifiedfollowing5.3.2.2.
8.5Continueuntilayieldpointisreachedoruntilthe
specimenhasbeencompressedapproximately13%ofits
originalthickness,whicheveroccursfirst.
8.5.1Whenspecified,adeformationotherthan10%may
acase,compressthespecimenapproximately3%morethan
thedeformationspecifitutethespecifieddeformation
wherever“10%deformation”iscitedinSections
9and10.
ation
9.1Usingastraightedgeorthroughtheuseofcomputer
software,carefullyextendtothezeroloadlinethesteepest
3
6.2Allsurfacesofthespecimenshallbefreefromlarge
visibleflawsorimperfections.
6.3Ifthematerialissuspectedtobeanisotropic,the
directionofthecompressiveloadingmustbespecifiedrelative
tothesuspecteddirectionofanisotropy.
6.4Aminimumoffivespecimensshallbetestedforeach
ensthatfailatsomeobviousflawshouldbe
D1621–10
straightportionoftheload-deflectioncurveexaminingonlythe
lowerportionoftheload-defltablishesthe
“zerodeformation”or“zerostrain”point(PointOinFig.1a
andFig.1b).Measurealldistancesfordeformationorstrain
calculationsfromthispoint.
9.2MeasurefromPointOalongthezero-loadlinea
distancerepresenting10%
point(PointMin
Fig.1aandFig.1b),drawaverticalline
intersectingtheload-deflectionorload-straincurveatPointP.
9.2.1IfthereisnoyieldpointbeforePointP(asinFig.1b),
readtheloadatPointP.
9.2.2IfthereisayieldpointbeforePointP(asPointLin
Fig.1),readtheloadandmeasurethepercentcoredeformation
orstrain(DistanceO-R)attheyieldpoint.
9.2.3Calculatethecompressivestrengthbydividingthe
load(9.2.1or9.2.2)bytheinitialhorizontalcross-sectional
areaofthespecimen.
9.3Ifcompressivemodulusisrequested,chooseanycon-
venientpoint(suchasPointSinFig.1b)alongthesteepest
straightlineportionoftheload-deflectionorload-straincurve.
Readtheloadandmeasurethedeformationorstrain(Distance
O-T)atthatpoint.
9.3.1Calculatetheapparentmodulusasfollows:
E
c
5WH/AD(1)
TABLE1PrecisionData
Materials
A
B
C
A
Average,psi
13.6307
31.3183
10.3981
S
r
A
1.1491
1.0944
0.9796
S
R
B
1.6078
1.1213
1.0764
r
C
3.2174
3.0642
2.7430
R
D
4.5019
3.1398
3.0141
S
r
=
obtainedbypoolingthewithin-laboratorystandarddeviationsofthetestresults
fromalloftheparticipatinglaboratories.
B
S
R
=between-laboratoriesreproducibility,expressedasstandarddeviation.
C
r=within-laboratorycriticalintervalbetweentwotestresults=2.83S
r
.
D
R=between-laboratoriescriticalintervalbetweentwotestresults=2.83S
R
.
10.1.4Atmosphericconditionsintestroomifdifferentfrom
thosespecifiedinSection
7.
10.1.5Valuesforeachspecimen,plusaveragesandstandard
deviations,ofmodulus(ifrequested)andcompressivestrength.
10.1.6Deformationatmaximumloadtotwosignificant
figures.
10.1.7Dateoftest.
ion
11.1Table1isbasedonaroundrobin
4
conductedin1998
inaccordancewithPracticeE691,involvingthreematerials
hmaterial,allofthe
sampleswerepreparedatonesource,buttheindividual
specimenswerepreparedatthelaboratoriesthattestedthem.
Eachtestresultwastheaverageofsevenindividualdetermi-
boratoryobtainedsixtestresultsforeach
ion,characterizedbyrepeatability(S
r
andr)
andreproducibility(S
R
andR)hasbeendeterminedasshown
inTable1.(Warning—TheexplanationofrandRareonly
intendedtopresentameaningfulwayofconsideringthe
ainTable1
shouldnotbeappliedtoacceptanceorrejectionofmaterials,as
thesedataapplyonlytothematerialstestedintheroundrobin
andareunlikelytoberigorouslyrepresentativeofotherlots,
formulations,conditions,materials,f
thistestmethodshouldapplytheprinciplesoutlinedinPractice
E691togeneratedataspecifictotheirmaterialsandlabora-
tory.)
N
OTE
3—TheprecisiondatapresentedinTable1wasobtainedusing
thetestconditionsdefierialspecification
definesothertestconditions,thisprecisiondatashallnotbeassumedto
apply.
where:
E
c
=modulusofelasticityincompression,Pa(psi),
W=load,N(lbf),
H=initialspecimenheight,m(in.),
A=initialhorizontalcross-sectionalarea,m
2
(in.
2
),and
D=deformation,m(in.).
9.3.2Calculatetheestimatedstandarddeviationasfollows:
¯
2
!
/
~
n21
!
s5
=
~
(
x
2
2nX(2)
where:
s=estimatedstandarddeviation,
x=valueofasingleobservation,
n=numberofobservations,and
¯
=arithmeticmeanofthesetofobservations.X
10.1Reportthefollowinginformation:
10.1.1Completeidentificationofthematerialtested,includ-
ingtype,source,codenumbers,form,principaldimensions,
previoushistory,andsoforth.
10.1.2Numberofspecimenstestedifdifferentfromthat
specifiedin
6.4.
10.1.3Conditioningprocedureusedifdifferentfromthat
specifiedinSection7.
ds
12.1cellularplastics;compressivemodulus;compressive
strength
tRR:D20-
1201.
4
4
D1621–10
SUMMARYOFCHANGES
CommitteeD20hasidentifiedthelocationofselectedchangestothisstandardsincethelastissue
(D1621-04a)thatmayimpacttheuseofthisstandard.(April1,2010)
(1)RevisedSection7.
ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentioned
fthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtherisk
ofinfringementofsuchrights,areentirelytheirownresponsibility.
Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsand
ifnotrevised,mmentsareinvitedeitherforrevisionofthisstandardorforadditionalstandards
mmentswillreceivecarefulconsiderationatameetingofthe
responsibletechnicalcommittee,eelthatyourcommentshavenotreceivedafairhearingyoushould
makeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.
ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,
dualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheabove
addressorat610-832-9585(phone),610-832-9555(fax),orservice@(e-mail);orthroughtheASTMwebsite
().PermissionrightstophotocopythestandardmayalsobesecuredfromtheASTMwebsite(/
COPYRIGHT/).
5
2024年5月15日发(作者:商江)
Designation:D1621–10
StandardTestMethodfor
CompressivePropertiesofRigidCellularPlastics
1
ThisstandardisissuedunderthefixeddesignationD1621;thenumberimmediatelyfollowingthedesignationindicatestheyearof
originaladoptionor,inthecaseofrevision,rinparenthesesindicatestheyearoflastreapproval.A
superscriptepsilon(´)indicatesaneditorialchangesincethelastrevisionorreapproval.
ThisstandardhasbeenapprovedforusebyagenciesoftheDepartmentofDefense.
*
1.1Thistestmethoddescribesaprocedurefordetermining
thecompressivepropertiesofrigidcellularmaterials,particu-
larlyexpandedplastics.
1.2ThevaluesstatedinSIunitsaretoberegardedasthe
uesinparenthesesareforinformationonly.
1.3Thisstandarddoesnotpurporttoaddressallofthe
safetyconcerns,ifany,e
responsibilityoftheuserofthisstandardtoestablishappro-
priatesafetyandhealthpracticesanddeterminetheapplica-
bilityofregulatorylimitationspriortouse.
N
OTE
1—ThistestmethodandISO844aretechnicallyequivalent.
ncedDocuments
2.1ASTMStandards:
2
D618PracticeforConditioningPlasticsforTesting
E4PracticesforForceVerificationofTestingMachines
E83PracticeforVerificationandClassificationofExten-
someterSystems
E691PracticeforConductinganInterlaboratoryStudyto
DeterminethePrecisionofaTestMethod
2.2ISOStandard:
ISO844CellularPlastics—CompressionTestofRigidMa-
terials
3
ology
3.1Definitions:
ThistestmethodisunderthejurisdictionofASTMCommitteeD20onPlastics
andisthedirectresponsibilityofSubcommitteeD20.22onCellularMaterials-
PlasticsandElastomers.
CurrenteditionapprovedApril1,ally
:
10.1520/D1621-10.
2
ForreferencedASTMstandards,visittheASTMwebsite,,or
contactASTMCustomerServiceatservice@ualBookofASTM
Standardsvolumeinformation,refertothestandard’sDocumentSummarypageon
theASTMwebsite.
3
AvailablefromAmericanNationalStandardsInstitute(ANSI),25W.43rdSt.,
4thFloor,NewYork,NY10036,.
1
3.1.1compliance—thedisplacementdifferencebetweentest
machinedrivesystemdisplacementvaluesandactualspecimen
displacement.
3.1.2compliancecorrection—ananalyticalmethodof
modifyingtestinstrumentdisplacementvaluestoeliminatethe
amountofthatmeasurementattributedtotestinstrument
compliance.
3.1.3compressivedeformation—thedecreaseinlengthpro-
ducedinthegagelengthofthetestspecimenbyacompressive
loadexpressedinunitsoflength.
3.1.4compressivestrain—thedimensionlessratioofcom-
pressivedeformationtothegagelengthofthetestspecimenor
thechangeinlengthperunitoforiginallengthalongthe
longitudinalaxis.
3.1.5compressivestrength—thestressattheyieldpointifa
yieldpointoccursbefore10%deformation(asinFig.1a)or,
intheabsenceofsuchayieldpoint,thestressat10%
deformation(asin
Fig.1b).
3.1.6compressivestress(nominal)—thecompressiveload
perunitareaofminimumoriginalcrosssectionwithinthegage
boundaries,carriedbythetestspecimenatanygivenmoment,
expressedinforceperunitarea.
3.1.7compressivestress-straindiagram—adiagramin
whichvaluesofcompressivestressareplottedasordinates
againstcorrespondingvaluesofcompressivestrainasabscis-
sas.
3.1.8compressiveyieldpoint—thefirstpointonthestress-
straindiagramatwhichanincreaseinstrainoccurswithoutan
increaseinstress.
3.1.9deflectometer—adeviceusedtosensethecompres-
sivedeflectionofthespecimenbydirectmeasurementofthe
distancebetweenthecompressionplatens.
3.1.10displacement—compressionplatenmovementafter
theplatenscontactthespecimen,expressedinmillimetresor
inches.
3.1.11gagelength—theinitialmeasuredthicknessofthe
testspecimenexpressedinunitsoflength.
*ASummaryofChangessectionappearsattheendofthisstandard.
Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.
1
D1621–10
X
1
=10%COREDEFORMATION
X
2
=DEFLECTION(APPROXIMATELY13%)
FIG.1aCompressiveStrength(See3.1.5andSection9)FIG.1bCompressiveStrength(See3.1.5andSection9)
3.1.12modulusofelasticity—theratioofstress(nominal)to
correspondingstrainbelowtheproportionallimitofamaterial
expressedinforceperunitareabasedontheminimuminitial
cross-sectionalarea.
3.1.13proportionallimit—thegreateststressthatamaterial
iscapableofsustainingwithoutanydeviationfrompropor-
tionalityofstress-to-strain(Hooke’slaw)expressedinforce
perunitarea.
ficanceandUse
4.1Thistestmethodprovidesinformationregardingthe
dataisobtained,andfromacompleteload-deformationcurve
itispossibletocomputethecompressivestressatanyload
(suchascompressivestressatproportional-limitloador
compressivestrengthatmaximumload)andtocomputethe
effectivemodulusofelasticity.
4.2Compressiontestsprovideastandardmethodofobtain-
ingdataforresearchanddevelopment,qualitycontrol,accep-
tanceorrejectionunderspecifications,andspecialpurposes.
Thetestscannotbeconsideredsignificantforengineering
designinapplicationsdifferingwidelyfromtheload-time
plicationsrequireadditional
testssuchasimpact,creep,andfatigue.
4.3Beforeproceedingwiththistestmethod,referenceshall
bemadetothespecifi
testspecimenpreparation,conditioning,dimensions,ortesting
parameters,oracombinationthereof,coveredinthematerials
specificationshalltakeprecedenceoverthosementionedinthis
earenomaterialspecifications,thenthe
defaultconditionsapply.
tus
5.1TestingMachine—Atestinginstrumentthatincludes
bothastationaryandmovablememberandincludesadrive
2
systemforimpartingtothemovablemember(crosshead),a
uniform,controlledvelocitywithrespecttothestationary
member(base).Thetestingmachineshallalsoincludethe
following:
5.1.1LoadMeasurementSystem—Aloadmeasurementsys-
temcapableofaccuratelyrecordingthecompressiveload
temshallbeindicatethe
loadwithanaccuracyof61%ofthemeasuredvalueorbetter.
Theaccuracyoftheloadmeasurementsystemshallbeverified
inaccordancewithPractices
E4.
5.2CompressionPlatens—Twoflatplates,oneattachedto
thestationarybaseofthetestinginstrumentandtheother
attachedtothemovingcrossheadtodelivertheloadtothetest
latesshallbelargerthanthespecimen
loadingsurfacetoensurethatthespecimenloadingisuniform.
Itisrecommendedthatoneplatenincorporateaspherical
seatingmechanismtocompensatefornon-parallelisminthe
specimen’sloadingsurfacesornon-parallelisminthebaseand
crossheadofthetestinginstrument.
5.3DisplacementMeasurementSystem—Adisplacement
measurementsystemcapableofaccuratelyrecordingthecom-
pressivedeformationofthetestspecimenduringtestingtoan
accuracyof61%
measurementismadethroughuseofthetestmachinecross-
headdrivesystemorusingadirectmeasurementofcompres-
sionplatendisplacement.
5.3.1DirectCompressionPlatenDisplacement—Thissys-
temshallemployadeflectometerthatdirectlyreadsthedistant
u-
racyofthedisplacementmeasurementtransducershallbe
verifiedinaccordancewithPractices
E83andshallbeclassi-
fiedasaClassCorbetter.
5.3.2TestMachineCrossheadDriveSystem—Thissystem
shallemploythepositionoutputfromthecrossheaddrive
D1621–10
methodisonlyappropriatewhenitisdemonstratedthatthe
effectsofdrivesystemcomplianceresultindisplacement
errorsoflessthan1%ofthemeasurementorifappropriate
compliancecorrectionmethodsareemployedtoreducethe
measurementerrortolessthan1%.
5.3.2.1DeterminingDriveSystemCompliance—Testingin-
strumentdrivesystemsalwaysexhibitacertainlevelof
compliancethatischaracterizedbyavariancebetweenthe
reportedcrossheaddisplacementandthedisplacementactually
rianceisafunctionofload
framestiffness,drivesystemwind-up,loadcellcompliance
andfimpliancecanbemeasuredthen,
ifdeterminedtobesignificantandempiricallysubtractedfrom
ceduretodetermine
compliancefollows:
(1)Configurethetestsystemtomatchtheactualtest
configuration.
(2)Positionthetwocompressionplatensveryclosetoeach
othersimulatingazerothicknessspecimeninplace.
(3)Startthecrossheadmovingat12.5mm(0.5in.)/minin
thecompressiondirectionrecordingcrossheaddisplacement
andthecorrespondingloadvalues.
(4)Increaseloadtoapointexceedingthehighestload
ecrossheadand
returntothepre-testlocation.
(5)Therecordedload-deflectioncurve,startingwhenthe
compressionplatenscontactoneanother,isdefinedastest
systemcompliance
5.3.2.2PerformingComplianceCorrection—Usingthe
load-deflectioncurvecreatedin
5.3.2.1,measurethesystem
specimentest
curveateachgivenloadvalue,subtractthesystemcompliance
llbethenew
load-deflectioncurveforuseincalculationsstartinginSection
9.
5.4MicrometerDialGage,caliper,orsteelrule,suitablefor
measuringdimensionsofthespecimensto61%ofthe
measuredvalues.
ecimen
6.1Thetestspecimenshallbesquareorcircularincross
sectionwithaminimumof25.8cm
2
(4in.
2
)andmaximumof
232cm
2
(36in.
2
)imumheightshallbe25.4
mm(1in.)andthemaximumheightshallbenogreaterthanthe
ouldbetakensothat
theloadedendsofthespecimenareparalleltoeachotherand
perpendiculartothesides.
N
OTE
2—Cellularplasticsarenotidealmaterials,andthecompressive
modulusmayappearsignificantlydifferent,dependingonthetestcondi-
tions,athataretobecompared
shouldbeobtainedusingcommontestconditions.
discardedandretestsmade,unlesssuchflawsconstitutea
variabletheeffectofwhichitisdesiredtostudy.
ioning
7.1Conditioning—Conditionthetestspecimensat236
2°C(73.463.6°F)and50610%relativehumidityfornot
lessthan40hpriortotestinaccordancewithProcedureAof
Practice
D618,unlessotherwisespecifiedinthecontractor
relevantmaterialspecifisofdisagreement,the
tolerancesshallbe61°C(61.8°F)and65%relativehumid-
ity.
7.2TestConditions—Conducttestsinthestandardlabora-
toryatmosphereof2362°C(73.463.6°F)and50610%
relativehumidity,unlessotherwisespecifisof
disagreement,thetolerancesshallbe61°C(61.8°F)and
65%relativehumidity.
ure
8.1Measurethedimensionsofthespecimentoaprecision
of61%ofthemeasurementasfollows:
8.1.1Thicknessesuptoandincluding25.4mm(1in.)shall
bemeasuredusingadial-typegagehavingafootwith
minimumareaof6.45cm
2
(1in.
2
).Holdthepressureofthedial
footto0.1760.03kPa(0.02560.005psi).
8.1.2Measuredimensionsover25.4mm(1in.)withadial
gage,asliding-calipergage,liding-
calipergageisemployed,thepropersettingshallbethatpoint
atwhichthemeasuringfacesofthegagecontactthesurfaces
ofthespecimenwithoutcompressingthem.
8.1.3Recordeachdimensionasanaverageofthreemea-
surements.
8.2Placethespecimenbetweenthecompressionplatens
ensuringthatthespecimencenter-lineisalignedwiththe
center-lineofthecompressionplatensandtheloadwillbe
distributedasuniformlyaspossibleovertheentireloading
expeditethetestingprocessif,
whenthespecimenisinplace,theupperplatenispositioned
closeto,butnottouching,thespecimen.
8.2.1Iffollowing
5.3.2.1,attachthedeflectometerorcom-
pressionextensometertothecompressionplatens.
8.3Startthecrossheadmovinginthedirectiontocompress
thespecimenwiththerateofcrossheaddisplacementof2.56
0.25mm(0.160.01in.)/minforeach25.4mm(1in.)of
specimenthickness.
8.4Recordcompressionplatendisplacementandthecorre-
cordedcurvewillbeuseddirectlyif
following5.3.2.1orcouldbemodifiedfollowing5.3.2.2.
8.5Continueuntilayieldpointisreachedoruntilthe
specimenhasbeencompressedapproximately13%ofits
originalthickness,whicheveroccursfirst.
8.5.1Whenspecified,adeformationotherthan10%may
acase,compressthespecimenapproximately3%morethan
thedeformationspecifitutethespecifieddeformation
wherever“10%deformation”iscitedinSections
9and10.
ation
9.1Usingastraightedgeorthroughtheuseofcomputer
software,carefullyextendtothezeroloadlinethesteepest
3
6.2Allsurfacesofthespecimenshallbefreefromlarge
visibleflawsorimperfections.
6.3Ifthematerialissuspectedtobeanisotropic,the
directionofthecompressiveloadingmustbespecifiedrelative
tothesuspecteddirectionofanisotropy.
6.4Aminimumoffivespecimensshallbetestedforeach
ensthatfailatsomeobviousflawshouldbe
D1621–10
straightportionoftheload-deflectioncurveexaminingonlythe
lowerportionoftheload-defltablishesthe
“zerodeformation”or“zerostrain”point(PointOinFig.1a
andFig.1b).Measurealldistancesfordeformationorstrain
calculationsfromthispoint.
9.2MeasurefromPointOalongthezero-loadlinea
distancerepresenting10%
point(PointMin
Fig.1aandFig.1b),drawaverticalline
intersectingtheload-deflectionorload-straincurveatPointP.
9.2.1IfthereisnoyieldpointbeforePointP(asinFig.1b),
readtheloadatPointP.
9.2.2IfthereisayieldpointbeforePointP(asPointLin
Fig.1),readtheloadandmeasurethepercentcoredeformation
orstrain(DistanceO-R)attheyieldpoint.
9.2.3Calculatethecompressivestrengthbydividingthe
load(9.2.1or9.2.2)bytheinitialhorizontalcross-sectional
areaofthespecimen.
9.3Ifcompressivemodulusisrequested,chooseanycon-
venientpoint(suchasPointSinFig.1b)alongthesteepest
straightlineportionoftheload-deflectionorload-straincurve.
Readtheloadandmeasurethedeformationorstrain(Distance
O-T)atthatpoint.
9.3.1Calculatetheapparentmodulusasfollows:
E
c
5WH/AD(1)
TABLE1PrecisionData
Materials
A
B
C
A
Average,psi
13.6307
31.3183
10.3981
S
r
A
1.1491
1.0944
0.9796
S
R
B
1.6078
1.1213
1.0764
r
C
3.2174
3.0642
2.7430
R
D
4.5019
3.1398
3.0141
S
r
=
obtainedbypoolingthewithin-laboratorystandarddeviationsofthetestresults
fromalloftheparticipatinglaboratories.
B
S
R
=between-laboratoriesreproducibility,expressedasstandarddeviation.
C
r=within-laboratorycriticalintervalbetweentwotestresults=2.83S
r
.
D
R=between-laboratoriescriticalintervalbetweentwotestresults=2.83S
R
.
10.1.4Atmosphericconditionsintestroomifdifferentfrom
thosespecifiedinSection
7.
10.1.5Valuesforeachspecimen,plusaveragesandstandard
deviations,ofmodulus(ifrequested)andcompressivestrength.
10.1.6Deformationatmaximumloadtotwosignificant
figures.
10.1.7Dateoftest.
ion
11.1Table1isbasedonaroundrobin
4
conductedin1998
inaccordancewithPracticeE691,involvingthreematerials
hmaterial,allofthe
sampleswerepreparedatonesource,buttheindividual
specimenswerepreparedatthelaboratoriesthattestedthem.
Eachtestresultwastheaverageofsevenindividualdetermi-
boratoryobtainedsixtestresultsforeach
ion,characterizedbyrepeatability(S
r
andr)
andreproducibility(S
R
andR)hasbeendeterminedasshown
inTable1.(Warning—TheexplanationofrandRareonly
intendedtopresentameaningfulwayofconsideringthe
ainTable1
shouldnotbeappliedtoacceptanceorrejectionofmaterials,as
thesedataapplyonlytothematerialstestedintheroundrobin
andareunlikelytoberigorouslyrepresentativeofotherlots,
formulations,conditions,materials,f
thistestmethodshouldapplytheprinciplesoutlinedinPractice
E691togeneratedataspecifictotheirmaterialsandlabora-
tory.)
N
OTE
3—TheprecisiondatapresentedinTable1wasobtainedusing
thetestconditionsdefierialspecification
definesothertestconditions,thisprecisiondatashallnotbeassumedto
apply.
where:
E
c
=modulusofelasticityincompression,Pa(psi),
W=load,N(lbf),
H=initialspecimenheight,m(in.),
A=initialhorizontalcross-sectionalarea,m
2
(in.
2
),and
D=deformation,m(in.).
9.3.2Calculatetheestimatedstandarddeviationasfollows:
¯
2
!
/
~
n21
!
s5
=
~
(
x
2
2nX(2)
where:
s=estimatedstandarddeviation,
x=valueofasingleobservation,
n=numberofobservations,and
¯
=arithmeticmeanofthesetofobservations.X
10.1Reportthefollowinginformation:
10.1.1Completeidentificationofthematerialtested,includ-
ingtype,source,codenumbers,form,principaldimensions,
previoushistory,andsoforth.
10.1.2Numberofspecimenstestedifdifferentfromthat
specifiedin
6.4.
10.1.3Conditioningprocedureusedifdifferentfromthat
specifiedinSection7.
ds
12.1cellularplastics;compressivemodulus;compressive
strength
tRR:D20-
1201.
4
4
D1621–10
SUMMARYOFCHANGES
CommitteeD20hasidentifiedthelocationofselectedchangestothisstandardsincethelastissue
(D1621-04a)thatmayimpacttheuseofthisstandard.(April1,2010)
(1)RevisedSection7.
ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentioned
fthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtherisk
ofinfringementofsuchrights,areentirelytheirownresponsibility.
Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsand
ifnotrevised,mmentsareinvitedeitherforrevisionofthisstandardorforadditionalstandards
mmentswillreceivecarefulconsiderationatameetingofthe
responsibletechnicalcommittee,eelthatyourcommentshavenotreceivedafairhearingyoushould
makeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.
ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,
dualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheabove
addressorat610-832-9585(phone),610-832-9555(fax),orservice@(e-mail);orthroughtheASTMwebsite
().PermissionrightstophotocopythestandardmayalsobesecuredfromtheASTMwebsite(/
COPYRIGHT/).
5