最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

RT8803A 2 3-Phase PWM 控制器商品说明书

IT圈 admin 19浏览 0评论

2024年10月23日发(作者:赫连阳曜)

RT8803A

2/3-Phase PWM Controller for High-Density Power Supply

General Description

The RT8803A is a 2/3-phase synchronous buck controller

specifically designed to power Intel

®

/ AMD next generation

microprocessors. It implements an internal 8-bit DAC that is

identified by VID code of microprocessor directly. RT8803A

generates VID table that conform to Intel

®

VRD10.x and

VRD11 core power with 6.25mV increments and 0.5%

accuracy.

RT8803A adopts innovative time-sharing DCR current sensing

technique to sense phase currents for phase current balance,

load line setting and over current protection. Using a common

GM to sense all phase currents eliminates offset and linearity

variation between GMs in conventional current sensing

methods. As sub-milli-ohm-grade inductors are widely used

in modern motherboards, slight offset and linearity mismatch

will cause considerable current shift between phases. This

technique ensures good current balance at mass production.

Other features include over current protection, programmable

soft start, over voltage protection, and output offset setting.

RT8803A comes to a small footprint package with

VQFN-32L 5x5.

Features

z

z

5V Power Supply

2/3-Phase Power Conversion with Automatic Phase

Selection

8-bit VID Interface, Supporting Intel VRD11/VRD10.x

and AMD K8, K8_M2 CPUs

VR_HOT and VR_FAN Indication

Precision Core Voltage Regulation

Power Stage Thermal Balance by DCR Current

Sensing

Adjustable Soft-start

Over-Voltage Protection

Adjustable Frequency and Typical at 300kHz per

Phase

Power Good Indication

32-Lead VQFN Package

RoHS Compliant and 100% Lead (Pb)-Free

z

z

z

z

z

z

z

z

z

z

Applications

z

z

Ordering Information

RT8803A

Package Type

QV : VQFN-32L 5x5 (V-Type)

Lead Plating System

P : Pb Free

G : Green (Halogen Free and Pb Free)

z

Intel

®

/AMD New generation microprocessor for Desktop

PC and Motherboard

Low Output Voltage, High power density DC-DC

Converters

Voltage Regulator Modules

Pin Configurations

(TOP VIEW)

V

I

D

_

S

E

L

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

27

V

I

D

5

26

Note :

3231302928

Richtek products are :

`

RoHS compliant and compatible with the current require-

VTT/EN

VR_Ready

FBRTN

FB

COMP

SS

VR_FAN

VR_HOT

V

I

D

6

25

24

23

22

21

20

19

1

2

3

4

5

6

7

8

916

33

ments of IPC/JEDEC J-STD-020.

`

Suitable for use in SnPb or Pb-free soldering processes.

GND

VID7

VDD

PWM3

PWM2

PWM1

ISP1

ISP2

ISP3

18

17

I

M

A

X

R

T

I

S

N

1

VQFN-32L 5x5

DS8803A-06 April 2011

I

S

N

2

3

T

S

E

N

D

V

D

O

F

S

A

D

J

1

2

V

I

N

B

T

X

_

1

2

V

R

3

3

R

2

7

1

0

1

N

4

1

4

8

C

1

6

1

u

F

Q

1

I

P

D

0

9

N

0

3

L

A

Q

2

I

P

S

0

6

N

0

3

L

A

Q

3

L

1

2

8

0

n

H

R

T

2

N

T

C

2

k

C

5

5

.

6

p

F

R

1

7

0

C

P

U

_

V

C

C

C

1

1

0

.

1

u

F

R

2

8

2

.

2

C

1

7

3

.

3

n

F

R

1

5

C

6

1

5

k

2

.

2

n

F

R

1

6

1

.

5

k

C

4

5

6

n

F

C

7

4

7

0

p

F

1

2

0

0

u

F

4

.

7

u

F

4

.

7

u

F

C

1

5

4

.

7

u

F

B

T

X

_

1

2

V

C

1

2

C

1

3

C

1

4

V

C

O

R

E

1

6

5

4

2

0

2

1

FB

RT8803A

R

1

3

R

1

4

1

2

k

8

.

2

k

Typical Application Circuit

C

3

5

6

n

F

R

1

1

3

0

0

B

T

X

_

5

V

R

1

9

B

T

X

_

1

2

V

C

2

0

4

.

7

u

F

C

2

1

3

6

0

V

C

O

R

E

2

3

R

2

9

1

0

1

N

4

1

4

8

C

2

3

1

u

F

I

P

D

0

9

N

0

3

L

A

Q

5

I

P

S

0

6

N

0

3

L

A

Q

6

Q

4

7

5

k

3

6

0

V

C

O

R

E

1

3

1

2

0

0

u

F

4

.

7

u

F

V

I

N

C

1

9

C

2

2

4

.

7

u

F

PWM1

PWM2

COMP

F

o

r

A

M

D

1

0

0

R

1

2

3

0

0

1

3

1

1

1

4

R

1

8

7

5

k

R

2

0

R

2

1

R

2

2

1

B

O

O

T

3

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

P

W

M

P

G

N

D

6

SS

RT

ADJ

IMAX

V

I

D

_

S

E

L

P

W

M

3

2

2

I

S

N

2

3

I

S

N

1

1

5

I

S

P

1

1

9

1

8

I

S

P

2

I

S

P

3

1

7

TSEN

F

o

r

I

n

t

e

l

1

6

V

D

D

I

O

F

o

r

K

8

R

T

8

8

0

3

A

F

o

r

K

8

_

M

2

G

N

D

V

C

O

R

E

2

3

V

C

C

V

S

S

G

N

D

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

V

I

D

5

V

I

D

6

V

I

D

7

C

1

8

0

.

1

u

F

L

2

2

8

0

n

H

VR_HOT

VR_Ready

VR_FAN

VTT/EN

FBRTN

B

T

X

_

5

V

B

T

X

_

5

V

R

7

C

8

1

u

F

R

2

3

3

6

0

R

3

1

1

0

R

2

4

3

6

0

R

2

6

3

6

0

B

T

X

_

1

2

V

C

9

2

1

u

F

C

1

0

1

u

F

R

2

5

N

C

OFS

R

1

1

0

3

2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

1

0

V

I

D

_

S

E

L

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

V

I

D

5

V

I

D

6

V

I

D

7

V

D

D

D

V

D

C

3

2

t

o

C

4

1

5

6

0

u

F

x

1

0

R

3

0

2

.

2

C

2

4

3

.

3

n

F

C

4

2

t

o

C

5

9

1

0

u

F

x

1

8

C

1

0

.

1

u

F

3

1

2

9

C

2

0

.

1

u

F

1

8

7

2

B

T

X

_

1

2

V

R

2

1

0

k

1

B

O

O

T

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

V

I

N

P

G

N

D

6

V

I

N

E

n

a

b

l

e

R

3

1

.

1

k

C

2

6

C

2

7

1

2

0

0

u

F

4

.

7

u

F

1

N

4

1

4

8

C

2

8

4

.

7

u

F

C

2

9

4

.

7

u

F

V

T

T

F

o

r

I

n

t

e

l

V

D

D

I

O

R

8

N

C

B

T

X

_

5

V

F

o

r

A

M

D

R

4

R

5

R

6

1

0

k

1

0

k

1

0

k

C

3

0

1

u

F

I

P

D

0

9

N

0

3

L

A

C

2

5

0

.

1

u

F

V

C

O

R

E

2

3

Q

7

L

3

2

8

0

n

H

Q

8

I

P

S

0

6

N

0

3

L

A

Q

9

P

G

O

O

D

R

9

N

C

1

B

O

O

T

3

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

V

I

N

P

G

N

D

6

R

3

2

2

.

2

C

3

1

3

.

3

n

F

R

T

1

1

0

k

N

T

C

DS8803A-06 April 2011

R

1

0

0

C

P

U

_

V

S

S

RT8803A

Functional Pin Description

VTT/EN (Pin 1)

The pin is defined as the chip enable, and the VTT is

applied for internal VID pull high power and power sequence

monitoring.

VR_Ready (Pin 2)

Power good open-drain output.

FBRTN (Pin 3)

Feedback return pin. VID DAC and error amplifier reference

for remote sensing of the output voltage.

FB (Pin 4)

Inverting input pin of the internal error amplifier.

COMP (Pin 5)

Output pin of the error amplifier and input pin of the PWM

comparator.

SS (Pin 6)

Connect this SS pin to GND with a capacitor to set the

soft-start time interval.

VR_FAN (Pin 7)

The pin is defined to signal VR thermal information for

external VR thermal dissipation scheme triggering.

VR_HOT (Pin 8)

The pin is defined to signal VR thermal information for

external VR thermal dissipation scheme triggering.

TSEN (Pin 9)

Temperature detect pin for VR_HOT and VR_FAN.

DVD (Pin 10)

Programmable power UVLO detection input. Trip threshold

is 1V at V

DVD

rising.

RT (Pin 11)

The pin is defined to set internal switching operation

frequency. Connect this pin to GND with a resistor R

RT

to

set the frequency F

SW

.

F

SW

=

4.463 e

9

R

RT

+3500

OFS (Pin 12)

The pin is defined for load line offset setting.

ADJ (Pin 13)

Current sense output for active droop adjusting. Connect

a resistor from this pin to GND to set the load droop.

IMAX (Pin 14)

The pin is defined to set threshold of over current.

ISN1 (Pin 15)

Current sense negative input pin for channel 1 current

sensing.

ISN23 (Pin 16)

Current sense negative input pins for channel 2 and

channel 4 current sensing.

ISP1 (Pin 19), ISP2 (Pin 18), ISP3 (Pin 17)

Current sense positive input pins for individual converter

channel current sensing.

PWM1 (Pin 20), PWM2 (Pin 21), PWM3 (Pin 22)

PWM outputs for each driven channel. Connect these pins

to the PWM input of the MOSFET driver. For systems

which using 2/3/4 channels, pull PWM 3/4/5 pins up to

high.

VDD (Pin 23)

IC power supply. Connect this pin to a 5V supply.

VID7 (Pin 24), VID6 (Pin 25), VID5 (Pin 26), VID4 (Pin

27), VID3 (Pin 28), VID2 (Pin 29), VID1 (Pin 30),

VID0 (Pin 31), VID_SEL (32)

DAC voltage identification inputs for VRD10.x / VRD11 /

K8 / K8_M2 . These pins are internally pulled up to VTT.

VIDSEL VID [7] Table

VTT X VR11

GND X VR10.x

VDD NC K8

VDD GND K8_M2

GND [Exposed pad (33)]

The exposed pad must be soldered to a large PCB and

connected to GND for maximum power dissipation.

3

DS8803A-06 April 2011

RT8803A

Function Block Diagram

VDDVTT/ENDVD

SS

VR_Ready

COMP

FB

OFS

VID7

VID6

VID5

VID4

VID3

VID2

VID1

VID0

VID_SEL

FBRTN

Soft Start

& PGOOD

Power On

Reset

Oscillator

&

Ramp

Generator

RT

DAC

TSEN

VR_FAN

VR_HOT

Temperature

Processing

Droop Tune

& Hi-I

Detection

Sample

& Hold

Mux

ADJ

GND

4

+

CSA

-

+

Clamp

EA

Current

Processing

SUM/N

& OCP

Detection

Pulse

Width

Modulator

& Output

Buffer

PWM1

PWM2

PWM3

IMAX

Mux

ISN1

ISN23

ISP1

Mux

ISP2

ISP3

-

DS8803A-06 April 2011

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

0 1 0 1 0 1 1

0 1 0 1 0 1 0

0 1 0 1 1 0 1

0 1 0 1 1 0 0

0 1 0 1 1 1 1

0 1 0 1 1 1 0

0 1 1 0 0 0 1

0 1 1 0 0 0 0

0 1 1 0 0 1 1

0 1 1 0 0 1 0

0 1 1 0 1 0 1

0 1 1 0 1 0 0

0 1 1 0 1 1 1

0 1 1 0 1 1 0

0 1 1 1 0 0 1

0 1 1 1 0 0 0

0 1 1 1 0 1 1

0 1 1 1 0 1 0

0 1 1 1 1 0 1

0 1 1 1 1 0 0

0 1 1 1 1 1 1

0 1 1 1 1 1 0

1 0 0 0 0 0 1

1 0 0 0 0 0 0

1 0 0 0 0 1 1

1 0 0 0 0 1 0

1 0 0 0 1 0 1

1 0 0 0 1 0 0

1 0 0 0 1 1 1

1 0 0 0 1 1 0

1 0 0 1 0 0 1

1 0 0 1 0 0 0

1 0 0 1 0 1 1

1 0 0 1 0 1 0

1 0 0 1 1 0 1

1 0 0 1 1 0 0

1 0 0 1 1 1 1

1 0 0 1 1 1 0

1 0 1 0 0 0 1

1.60000V

1.59375V

1.58750V

1.58125V

1.57500V

1.56875V

1.56250V

1.55625V

1.55000V

1.54375V

1.53750V

1.53125V

1.52500V

1.51875V

1.51250V

1.50625V

1.50000V

1.49375V

1.48750V

1.48125V

1.47500V

1.46875V

1.46250V

1.45625V

1.45000V

1.44375V

1.43750V

1.43125V

1.42500V

1.41875V

1.41250V

1.40625V

1.40000V

1.39375V

1.38750V

1.38125V

1.37500V

1.36875V

1.36250V

Pin Name

DS8803A-06 April 2011

To be continued

5

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

1 0 1 0 0 0 0

1 0 1 0 0 1 1

1 0 1 0 0 1 0

1 0 1 0 1 0 1

1 0 1 0 1 0 0

1 0 1 0 1 1 1

1 0 1 0 1 1 0

1 0 1 1 0 0 1

1 0 1 1 0 0 0

1 0 1 1 0 1 1

1 0 1 1 0 1 0

1 0 1 1 1 0 1

1 0 1 1 1 0 0

1 0 1 1 1 1 1

1 0 1 1 1 1 0

1 1 0 0 0 0 1

1 1 0 0 0 0 0

1 1 0 0 0 1 1

1 1 0 0 0 1 0

1 1 0 0 1 0 1

1 1 0 0 1 0 0

1 1 0 0 1 1 1

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 1 0 1 0 0 0

1 1 0 1 0 1 1

1 1 0 1 0 1 0

1 1 0 1 1 0 1

1 1 0 1 1 0 0

1 1 0 1 1 1 1

1 1 0 1 1 1 0

1 1 1 0 0 0 1

1 1 1 0 0 0 0

1 1 1 0 0 1 1

1 1 1 0 0 1 0

1 1 1 0 1 0 1

1 1 1 0 1 0 0

1 1 1 0 1 1 1

1 1 1 0 1 1 0

1.35625V

1.35000V

1.34375V

1.33750V

1.33125V

1.32500V

1.31875V

1.31250V

1.30625V

1.30000V

1.29375V

1.28750V

1.28125V

1.27500V

1.26875V

1.26250V

1.25625V

1.25000V

1.24375V

1.23750V

1.23125V

1.22500V

1.21875V

1.21250V

1.20625V

1.20000V

1.19375V

1.18750V

1.18125V

1.17500V

1.16875V

1.16250V

1,15625V

1.15000V

1.14375V

1.13750V

1.13125V

1.12500V

1.11875V

Pin Name

To be continued

6

DS8803A-06 April 2011

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

1 1 1 1 0 0 1

1 1 1 1 0 0 0

1 1 1 1 0 1 1

1 1 1 1 0 1 0

1 1 1 1 1 0 1

1 1 1 1 1 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 0

0 0 0 1 0 0 1

0 0 0 1 0 0 0

0 0 0 1 0 1 1

0 0 0 1 0 1 0

0 0 0 1 1 0 1

0 0 0 1 1 0 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 0 1 0 0 0 1

0 0 1 0 0 0 0

0 0 1 0 0 1 1

0 0 1 0 0 1 0

0 0 1 0 1 0 1

0 0 1 0 1 0 0

0 0 1 0 1 1 1

0 0 1 0 1 1 0

0 0 1 1 0 0 1

0 0 1 1 0 0 0

0 0 1 1 0 1 1

0 0 1 1 0 1 0

0 0 1 1 1 0 1

0 0 1 1 1 0 0

0 0 1 1 1 1 1

1.11250V

1.10625V

1.10000V

1.09375V

OFF

OFF

OFF

OFF

1.08750V

1.08125V

1.07500V

1.06875V

1.06250V

1.05625V

1.05000V

1.04375V

1.03750V

1.03125V

1.02500V

1.01875V

1.01250V

1.00625V

1.00000V

0.99375V

0.98750V

0.98125V

0.97500V

0.96875V

0.96250V

0.95625V

0.95000V

0.94375V

0.93750V

0.93125V

0.92500V

0.91875V

0.91250V

0.90625V

0.90000V

Pin Name

DS8803A-06 April 2011

To be continued

7

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

0 0 1 1 1 1 0

0 1 0 0 0 0 1

0 1 0 0 0 0 0

0 1 0 0 0 1 1

0 1 0 0 0 1 0

0 1 0 0 1 0 1

0 1 0 0 1 0 0

0 1 0 0 1 1 1

0 1 0 0 1 1 0

0 1 0 1 0 0 1

0 1 0 1 0 0 0

0.89375V

0.88750V

0.88125V

0.87500V

0.86875V

0.86250V

0.85625V

0.85000V

0.84375V

0.83750V

0.83125V

Pin Name

8

DS8803A-06 April 2011

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

HEX

00 OFF

01 OFF

02 1.60000V

03 1.59375V

04 1.58750V

05 1.58125V

06 1.57500V

07 1.56875V

08 1.56250V

09 1.55625V

0A 1.55000V

0B 1.54375V

0C 1.53750V

0D 1.53125V

0E 1.52500V

0F 1.51875V

10 1.51250V

11 1.50625V

12 1.50000V

13 1.49375V

14 1.48750V

15 1.48125V

16 1.47500V

17 1.46875V

18 1.46250V

19 1.45625V

1A 1.45000V

1B 1.44375V

1C 1.43750V

1D 1.43125V

1E 1.42500V

1F 1.41875V

20 1.41250V

21 1.40625V

22 1.40000V

23 1.39375V

24 1.38750V

25 1.38125V

26 1.37500V

HEX

27 1.36875V

28 1.36250V

29 1.35625V

2A 1.35000V

2B 1.34375V

2C 1.33750V

2D 1.33125V

2E 1.32500V

2F 1.31875V

30 1.31250V

31 1.30625V

32 1.30000V

33 1.29375V

34 1.28750V

35 1.28125V

36 1.27500V

37 1.26875V

38 1.26250V

39 1.25625V

3A 1.25000V

3B 1.24375V

3C 1.23750V

3D 1.23125V

3E 1.22500V

3F 1.21875V

40 1.21250V

41 1.20625V

42 1.20000V

43 1.19375V

44 1.18750V

45 1.18125V

46 1.17500V

47 1.16875V

48 1.16250V

49 1.15625V

4A 1.15000V

4B 1.14375V

4C 1.13750V

4D 1.13125V

Nominal Output Voltage DACOUT

DS8803A-06 April 2011

To be continued

9

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

Nominal Output Voltage DACOUT

HEX

4E 1.12500V

4F 1.11875V

50 1.11250V

51 1.10625V

52 1.10000V

53 1.09375V

54 1.08750V

55 1.08125V

56 1.07500V

57 1.06875V

58 1.06250V

59 1.05625V

5A 1.05000V

5B 1.04375V

5C 1.03750V

5D 1.03125V

5E 1.02500V

5F 1.01875V

60 1.01250V

61 1.00625V

62 1.00000V

63 0.99375V

64 0.98750V

65 0.98125V

66 0.97500V

67 0.96875V

68 0.96250V

69 0.95625V

6A 0.95000V

6B 0.94375V

6C 0.93750V

6D 0.93125V

6E 0.92500V

6F 0.91875V

70 0.91250V

71 0.90625V

72 0.90000V

73 0.89375V

74 0.88750V

HEX

75 0.88125V

76 0.87500V

77 0.86875V

78 0.86250V

79 0.85625V

7A 0.85000V

7B 0.84375V

7C 0.83750V

7D 0.83125V

7E 0.82500V

7F 0.81875V

80 0.81250V

81 0.80625V

82 0.80000V

83 0.79375V

84 0.78750V

85 0.78125V

86 0.77500V

87 0.76875V

88 0.76250V

89 0.75625V

8A 0.75000V

8B 0.74375V

8C 0.73750V

8D 0.73125V

8E 0.72500V

8F 0.71875V

90 0.71250V

91 0.70625V

92 0.70000V

93 0.69375V

94 0.68750V

95 0.68125V

96 0.67500V

97 0.66875V

98 0.66250V

99 0.65625V

9A 0.65000V

9B 0.64375V

10

To be continued

DS8803A-06 April 2011

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

Nominal Output Voltage DACOUT

HEX

9C 0.63750V

9D 0.63125V

9E 0.62500V

9F 0.61875V

A0 0.61250V

A1 0.60625V

A2 0.60000V

A3 0.59375V

A4 0.58750V

A5 0.58125V

A6 0.57500V

A7 0.56875V

A8 0.56250V

A9 0.55625V

AA 0.55000V

AB 0.54375V

AC 0.53750V

AD 0.53125V

AE 0.52500V

AF 0.51875V

B0 0.51250V

B1 0.50625V

B2 0.50000V

B3 X

B4 X

B5 X

B6 X

B7 X

B8 X

B9 X

BA X

BB X

BC X

BD X

BE X

BF X

C0 X

C1 X

C2 X

HEX

C3 X

C4 X

C5 X

C6 X

C7 X

C8 X

C9 X

CA X

CB X

CC X

CD X

CE X

CF X

D0 X

D1 X

D2 X

D3 X

D4 X

D5 X

D6 X

D7 X

D8 X

D9 X

DA X

DB X

DC X

DD X

DE X

DF X

E0 X

E1 X

E2 X

E3 X

E4 X

E5 X

E6 X

E7 X

E8 X

E9 X

DS8803A-06 April 2011

To be continued

11

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

HEX

EA X

EB X

EC X

ED X

EE X

EF X

F0 X

F1 X

F2 X

F3 X

F4 X

F5 X

F6 X

F7 X

F8 X

F9 X

FA X

FB X

FC X

FD X

FE OFF

FF OFF

Note: (1) 0 : Connected to GND

(2) 1 : Open

(3) X : Don

'

t Care

12

DS8803A-06 April 2011

RT8803A

Table 3. Output Voltage Program (K8)

VID4 VID3 VID2 VID1 VID0 Nominal Output Voltage DACOUT

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

Note: (1) 0 : Connected to GND

(2) 1 : Open

1.550

1.525

1.500

1.475

1.450

1.425

1.400

1.375

1.350

1.325

1.200

1.275

1.250

1.225

1.200

1.175

1.150

1.125

1.100

1.075

1.050

1.025

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

0.800

Shutdown

DS8803A-06 April

13

RT8803A

Table 4. Output Voltage Program (K8_M2)

Nominal Output Voltage DACOUT

VID5 VID4 VID3 VID2 VID1 VID0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 1 0 0

0 1 0 1 0 1

0 1 0 1 1 0

0 1 0 1 1 1

0 1 1 0 0 0

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 1 1 0 1

0 1 1 1 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1.5500

1.5250

1.5000

1.4750

1.4500

1.4250

1.4000

1.3750

1.3500

1.3250

1.3000

1.2750

1.2500

1.2250

1.2000

1.1750

1.1500

1.1250

1.1000

1.0750

1.0500

1.0250

1.0000

0.9750

0.9500

0.9250

0.9000

0.8750

0.8500

0.8250

0.8000

0.7750

0.7625

0.7500

Pin Name

To be continued

14

DS8803A-06 April 2011

RT8803A

Table 4. Output Voltage Program (K8_M2)

Nominal Output Voltage DACOUT

VID5 VID4 VID3 VID2 VID1 VID0

1 0 0 0 1 0

1 0 0 0 1 1

1 0 0 1 0 0

1 0 0 1 0 1

1 0 0 1 1 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 0 1 1

1 0 1 1 0 0

1 0 1 1 0 1

1 0 1 1 1 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 0 1

1 1 0 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 0 1

1 1 1 1 1 0

1 1 1 1 1 1

0.7375

0.7250

0.7125

0.7000

0.6875

0.6750

0.6625

0.6500

0.6375

0.6250

0.6125

0.6000

0.5875

0.5750

0.5625

0.5500

0.5375

0.5250

0.5125

0.5000

0.4875

0.4750

0.4625

0.4500

0.4375

0.4250

0.4125

0.4000

0.3875

0.3750

Pin Name

Note: (1) 0 : Connected to GND

(2) 1 : Open

(3) The voltage above are load independent for desktop and server platforms. For mobile platforms the voltage above

correspond to zero load current.

DS8803A-06 April

15

RT8803A

Absolute Maximum Ratings

(Note 1)

z

z

z

z

z

z

z

z

Supply Voltage, V

DD

------------------------------------------------------------------------------------------

Input, Output or I/O Voltage--------------------------------------------------------------------------------

Power Dissipation, P

D

@ T

A

= 25°C

VQFN−32L 5x5------------------------------------------------------------------------------------------------

Package Thermal Resistance (Note 2)

VQFN-32L 5x5, θ

JA

-------------------------------------------------------------------------------------------

Junction Temperature----------------------------------------------------------------------------------------

Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------

Storage Temperature Range--------------------------------------------------------------------------------

ESD Susceptibility (Note 3)

HBM (Human Body Mode)----------------------------------------------------------------------------------

MM (Machine Mode)-----------------------------------------------------------------------------------------

7V

GND-0.3V to V

DD

+0.3V

2.778W

36°C/W

150°C

260°C

−65°C to 150°C

2kV

200V

Recommended Operating Conditions

(Note 4)

z

z

z

Supply Voltage, V

DD

------------------------------------------------------------------------------------------5V ± 10%

Junction Temperature Range-------------------------------------------------------------------------------−40°C to 125°C

Ambient Temperature Range-------------------------------------------------------------------------------−40°C to 85°C

Electrical Characteristics

(V

DD

= 5V, T

A

= 25°C, unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

V

DD

Supply Current

Nominal Supply Current

Power-On Reset

POR Threshold V

DDRTH

Trip (Low to High)

V

DD

Rising 4.0 4.2 4.5 V

V

I

DD

PWM 1,2,3 Open -- 12 16 mA

Hysteresis V

DDHYS

V

DVD

Threshold

V

TT

Threshold

Oscillator

Free Running Frequency

Frequency Adjustable Range

Ramp Amplitude

Ramp Valley

Maximum On-Time of Each Channel

RT Pin Voltage

f

OSC

ΔV

OSC

V

RT

V

DVDTH

Enable

V

TTTH

Enable

Hysteresis V

DVDHYS

Trip (Low to High)

Hysteresis V

TTHYS

0.2 0.5 --

0.9 1.0 1.1 V

-- 60 -- mV

0.75 0.85 0.95

V

-- 0.1 --

R

RT

= 20kΩ 180 200 220 kHz

50 -- 400 kHz f

OSC_ADJ

R

RT

= 20kΩ -- 1.9 -- V

Three Phase Operation 62 67 72 %

V

RV

0.7 1.0 -- V

R

RT

= 20kΩ 0.9 1.0 1.1 V

To be continued

16

DS8803A-06 April 2011

RT8803A

Parameter Symbol Test Conditions Min Typ Max Unit

Reference and DAC

V

DAC

≥ 1V

DACOUT Voltage Accuracy

DAC (VID0-VID125) Input Low

DAC (VID0-VID125) Input High

V

ID

Pull-up Resistance

OFS Pin Voltage

Error Amplifier

DC Gain -- 65 -- dB

ΔV

DAC

V

ILDAC

V

IHDAC

V

OFS

1V ≥ V

DAC

≥ 0.8V

V

DAC

< 0.8V

R

OFS

= 100kΩ

−0.5 -- 0.5 %

−5 -- 5 mV

−8 -- 8 mV

-- -- V

1/2V

TT

− 0.2

1/2V

TT

+ 0.2

-- -- V

12 15 18

0.9 1.0 1.1 V

Gain-Bandwidth Product GBW -- 10 -- MHz

Slew Rate

Current Sense GM Amplifier

CSN Full Scale Source Current

CSN Current for OCP

Protection

Over-Voltage Trip (FB-DACOUT) ΔOVT

IMAX Voltage

Power Good

Output Low Voltage V

PGOODL

I

PGOOD

= 4mA -- -- 0.2 V

V

IMAX

100 150 200 mV

0.9 1.0 1.1 V

I

ISPFSS

100 -- --

μA

150 -- --

μA

SR COMP = 10pF -- 8 -- V/μs

R

IMAX

= 20k

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for

stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the

operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended

periods may remain possibility to affect device reliability.

Note 2. θ

JA

is measured in the natural convection at T

A

= 25°C on a low effective thermal conductivity test board of

JEDEC 51-3 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

DS8803A-06 April

17

RT8803A

Typical Operating Characteristics

Frequency vs. R

RT

700

600

GM

450

400

350

P

o

s

i

t

i

v

e

D

u

t

y

(

n

s

)

F

r

e

q

u

e

n

c

y

(

k

H

z

)

500

400

300

200

100

0

300

250

200

150

100

50

0

5150175200

PHASE 3

PHASE 1

PHASE 2

(k

ٛ

Ω

)R

RT

(k

ISN (uA)

Output Voltage vs. Temperature

1.264

1.262

322

320

318

Frequency vs. Temperature

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.26

F

r

e

q

u

e

n

c

y

(

k

H

z

)

-20

1.258

1.256

1.254

1.252

1.25

1.248

316

314

312

310

308

306

304

-20

Temperature

(°C)

Temperature

(°C)

Power On from DVD

Power Off from DVD

DVD

(1V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

DVD

(1V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1μs/Div)

18

DS8803A-06 April 2011

RT8803A

Power On from VCC12Power Off from VCC12

VCC12

(10V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

VCC12

(10V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

Power On from VCC5Power Off from VCC5

VCC5

(5V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

VCC5

(5V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (25ms/Div)

Power On with OCP

VR_Ready

(1V/Div)

SS

(2V/Div)

V

OUT

1V/Div)

PWM

(5V/Div)

Time (500μs/Div)

VR_Ready

(1V/Div)

SS

(2V/Div)

V

OUT

(1V/Div)

PWM

(5V/Div)

Output Short Circuit

Time (1ms/Div)

DS8803A-06 April

19

RT8803A

V

OUT

Droop

V

OUT

Overshoot

V

OUT

(20mV/Div)

V

OUT

(20mV/Div)

I

OUT

(40A/Div)

Time (2μs/Div)

I

OUT

(40A/Div)

Time (2μs/Div)

Dynamic VID

V

OUT

(200mV/Div)

Dynamic VID

V

OUT

(200mV/Div)

VID0

(500mV/Div)

Time (50μs/Div)

VID0

(500mV/Div)

Time (50μs/Div)

OVP

VR_Ready

(1V/Div)

SS

(2V/Div)

FB

(1V/Div)

PWM

(5V/Div)

Time (10μs/Div)

20

DS8803A-06 April 2011

RT8803A

Applications Information

RT8803A is a multi-phase DC/DC controller specifically

designed to deliver high quality power for next generation

CPU. RT8803A controls a special power-on sequence &

monitors the thermal condition of VR module to meet the

VRD11 requirement. Phase currents are sensed by

innovative time-sharing DCR current sensing technique

for channel current balance, droop tuning, and over current

protection. Using one common GM amplifier for current

sensing eliminates offset errors and linearity variation

between GMs. As sub-milli-ohm-grade inductors are

widely used in modern mother boards, slight mismatch

of GM amplifiers offset and linearity results in considerable

current shift between phases. The time-sharing DCR

current sensing technique is extremely important to

guarantee phase current balance in mass production.

Converter Initialization, Phase Selection, and

Power Good Function

The RT8803A initiates only after 3 pins are ready: VDD

pin power on reset (POR), VTT/EN pin enabled, and DVD

pin is higher than 1V. VDD POR is to make sure RT8803A

is powered by a voltage for normal work. The rising

threshold voltage of VDD POR is 4.2V typically. At VDD

POR, RT8803A checks PWM3, PWM4 and PWM5 status

to determine phase number of operation. Pull high PWM3

for two-phase operation; pull high PWM4 for three-phase

operation; pull high PWM5 for four-phase operation. The

unused current sense pins should be connected to GND

or left floating.

VTT/EN acts as a chip enable pin and receives signal from

FSB or other power management IC.

DVD is to make sure that ATX12V is ready for drivers to

work normally. Connect a voltage divider from ATX12V to

DVD pin as shown in the Typical Application Circuit. Make

sure that DVD pin voltage is below its threshold voltage

before drivers are ready and above its threshold voltage

for minimum ATX12V during normal operation.

If any one of VDD, VTT/EN, and DVD is not ready, RT8803A

keeps its PWM outputs high impedance and the

companion drivers turn off both upper and lower

MOSFETs. After VDD, VTT/EN, and DVD are ready,

RT8803A initiates its soft start cycle that is compliant

with Intel

®

VRD11 specification as shown in Figure 1. A

time-variant internal current source charges the capacitor

connected to SS pin. SS voltage ramps up piecewise

linearly and locks VID_DAC output with a specified voltage

drop. Consequently, V

CORE

is built up according to

VID_DAC output and meet Intel

®

VRD11 requirement.

VR_READY output is pulled high by external resistor when

V

CORE

reaches VID_DAC output with 1~2ms delay. An

SS capacitor about 47nF is recommend for VRD11

compliance.

VDD POR, DVD, and VTT/EN ready

SS

V

CORE

1.1V

VR_Ready

VID on the fly

1~2ms1~2ms1~2ms

1~2ms

1~2ms

Figure 1. Timming Diagram During Soft Start Interval

Voltage Control

CPU V

CORE

voltage is Kelvin sensed by FB and FBRTN

pins and precisely regulated to VID_DAC output by internal

high gain Error Amplifier (EA). The sensed signal is also

used for power good and over voltage function. The typical

OVP trip point is 170mV above VID_DAC output. RT8803A

pulls PWM outputs low and latches up upon OVP trip to

prevent damaging the CPU. It can only restart by resetting

one of VDD, DVD, or VTT/EN pin.

RT8803A supports Intel VRD10.x, VRD11, AMD K8 and

AMD K8_M2 VID specification.

The change of VID_DAC output at VID on the fly is also

smoothed by capacitor connected to SS pin.

Consequently, Vcore shifts to its new position smoothly

as shown in Figure 2.

DS8803A-06 April

21

RT8803A

PWM3

V

CORE

Consequently, the sensing current I

X

is proportional to

inductor current I

LX

and is expressed as :

I×DCRx

I

X

=

LX

R

CSNX

The sensed current I

X

is used for current balance and droop

tuning as described as followed. Since all phases share

one common GM, GM offset and linearity variation effect

is eliminated in practical applications. As sub-milli-ohm-

grade inductors are widely used in modern mother boards,

slight mismatch of GM amplifiers offset and linearity results

in considerable current shift between phases. The time-

sharing DCR current sensing technical is extremely

important to guarantee phase current balance in mass

production.

Phase Current Balance

The sampled and held phase current I

X

are summed and

averaged to get the averaged current . Each phase

I

X

current I

X

then is compared with the averaged current.

The difference between I

X

and is injected to

I

X

corresponding PWM comparator. If phase current I

X

is

smaller than the averaged current , RT8803A increases

the duty cycle of corresponding phase to increase the

phase current accordingly and vice versa.

VID7

Figure 2. Vcore Response at VID on the Fly

DCR Current Sensing

RT8803A adopts an innovative time-sharing DCR current

sensing technique to sense the phase currents for phase

current balance (phase thermal balance) and load line

regulation as shown in Figure 3. Current sensing amplifier

GM samples and holds voltages VCx across the current

sensing capacitor Cx by turns in a switching cycle.

According to the Basic Circuit Theory, if

Lx

=Rx×Cx then VCx=I×DCRx

LX

DCRx

T1

T2

T3

I

X

= I

LX

x DCR

X

/R

CSNX

I

X

S/H CKT

+

CSA

-

L1

DCR1

R1

C1

+ VC1 -

L3

DCR3

ISP1

T1

T1

ISP3

T3

T3

ISN23

R

CSN3

L2

DCR2

ISN1

R

CSN1

R3

C3

+ VC3 -

CSA: Current Sense Amplifier

R2

ISP2

T2

T2

ISN23

C2

+ VC2 -

R

CSN2

Figure 3

22

DS8803A-06 April 2011

RT8803A

I

OFS

4

If

L

X

=(R

X

//R

PX

)×Cx then

DCRx

VCx=

R

PX

×I

LX

×DCRx

Rx+R

PX

V

CORE

R

FB1

-

+

EACOMP

V

ADJ

DAC

+

-

4I

X

R

ADJ

Figure 4. Load Line and Offset Function

Output Voltage Offset Function

To meet Intel

®

requirement of initial offset of load line,

RT8803A provides programmable initial offset function.

External resistor R

OFS

and voltage source at OFS pin

V

generate offset current

I

OFS

=

OFS

R

OFS

, where V

OFS

is 1V typical. One quarter of I

OFS

flows

through R

FB1

as shown in Figure 4. Error amplifier would

hold the inverting pin equal to V

DAC

- V

ADJ

. Thus output

voltage is subtracted from V

DAC

- V

ADJ

for a constant offset

voltage.

R

FB1

V

CORE

= V

DAC

− V

ADJ

4×R

OFS

A positive output voltage offset is possible by connecting

R

OFS

to VDD instead of to GND. Please note that when

R

OFS

is connected to VDD, V

OFS

is V

DD

− 2V typically and

half of I

OFS

flows through R

FB1

. V

CORE

is rewritten as :

V

CORE

= V

DAC

− V

ADJ

+

R

FB1

R

OFS

With other phase kept unchanged, this phase would share

(R

PX

+Rx)/R

PX

times current than other phases. Figure 6

and 7 show different current ratio setting for the power

stage when Phase 3 is programmed 2 times current than

other phases. Figure 8 and 9 compare the above current

ratio setting results.

L

X

DCRx

+

VCx

-

I

LX

Rx

Cx

R

PX

V

OUT

+

T

Figure 5

Current Ratio Setting

Current ratio adjustment is possible as described below.

It is important for achieving thermal balance in practical

application where thermal conditions between phases are

not identical. Figure 5 shows the application circuit of GM

for current ratio requirement. According to Basic Circuit

Theory

R

PX

Rx+R

PX

VCx = ×I

LX

×DCRx

SRx×R

PX

×Cx

+1

Rx+R

PX

Figure 6. GM3 Setting for current ratio function

Figure 7. GM1~2 Setting for current ratio function

DS8803A-06 April

23

RT8803A

Current Ratio Function

35

30

25

Load Line without dead zone at light loads

1.31

I

L3

1.3

1.29

w/o Dead Zone Compensation

R

CSN

open

I

L

(

A

)

20

15

10

I

L2

I

L1

V

C

O

R

E

(

V

)

1.28

1.27

1.26

1.25

R

CSN2

= 82k

w/i Dead Zone Compensation

5

0

0

1.24

1.23

I

OUT

(A)

I

OUT

(A)

Figure 8

Figure 10

Lx

Rx

DCRx

Cx

+

VCx

-

V

OUT

Current Balance Function

35

30

25

I

LX

I

L

(

A

)

20

15

10

5

0

02040

I

L3

GMx

+

-

R

CSN

R

CSN2

I

L2

I

L1

Ix

Figure 11. Application circuit of GM

6080100120

I

OUT

(A)

Referring to Figure 11, I

X

is expressed as :

I

X

=

I

LX_66%

×DCRxI

LX_66%

×DCRx

V

OUT

++

R

CSN2

R

CSN2

R

CSN

Figure 9

Dead Zone Elimination

RT8803A samples and holds inductor current at 50%

period by time-sharing sourcing a current I

X

to R

CSN

. At

light load condition when inductor current is not balance,

voltage VCx

across the sensing capacitor would be

negative. It needs a negative I

X

to sense the voltage.

However, RT8803A CANNOT provide a negative I

X

and

consequently cannot sense negative inductor current. This

results in dead zone of load line performance as shown in

Figure 10. Therefore a technique as shown in Figure 11 is

required to eliminate the dead zone of load line at light

load condition.

(1)

where I

LX_50%

is the of inductor current at 50% period. To

make sure RT8803A could sense the inductor current,

right hand side of Equation (1) should always be positive:

I

LX_66%

×DCRxI

LX_66%

×DCRx

V

OUT

++≥0

R

CSN2

R

CSN2

R

CSN

(2)

Since R

CSN

>> DCRx in practical application, Equation (2)

could be simplified as :

I

LX_66%

×DCRx

V

OUT

R

CSN2

R

CSN

24

DS8803A-06 April 2011

RT8803A

For example, assuming the negative inductor current is

I

LX_50%

= −5A at no load, then for

R

CSN

330Ω, R

ADJ

= 160Ω, V

OUT

= 1.300V

If R

ADJ

is connected as in Figure 14, R

ADJ

= R1 + (R2//

R

NTC

), which is a negative temperature correlated

resistance. By properly selecting R1 and R2, the positive

temperature coefficient of DCR can be canceled by the

negative temperature coefficient of R

ADJ

. Thus the load

line will be thermally compensated.

ADJ

1.3V

−5A×1mΩ

R

CSN2

330Ω

R

CSN2

≤ 85.8kΩ

Choose R

CSN2

= 82kΩ

Figure 10 shows that dead zone of load line at light load

is eliminated by applying this technique.

VR_HOT & VR_FAN Setting

V

CC

5V

R1

R

ADJ

R

NTC

R2

Figure 14. R

ADJ

Connection for Thernal Compensation

R1

V

TSEN

R

NTC

0.28 x V

CC

TSEN

0.39 x V

CC

0.33 x V

CC

+

CMP

-

+

CMP

-

+

CMP

-

Q1

Over Current Protection

Phase current OCP

RT8803A uses an external resistor R

IMAX

connected to

IMAX pin to generate a reference current I

IMAX

for over

current protection :

V

I

IMAX

=

IMAX

R

IMAX

where V

IMAX

is typical 1.0V . OCP comparator compares

each sensed phase current I

X

with this reference current

as shown in Figure 15. Equivalently, the maximum phase

current I

LX(MAX)

is calculated as below:

1

1

I

X(MAX)

=

I

IMAX

2

3

V

I

X(MAX)

=

3

I

IMAX

=

3

×

IMAX

2

R

IMAX

2

R

R

V

I

LX(MAX)

=

I

X

×

CSNX

=

3

×

IMAX

×

CSNX

R

LX

2

R

IMAX

DCR

X

OCP Comparator

Q2

Q3

Figure 12

V

TSEN

V

TSEN

is inversely proportional

to Temperature.

0.39 x V

CC

0.33 x V

CC

0.28 x V

CC

VR_FAN

VR_HOT

Temperature

Figure 13. VR_HOT and VR_FAN Signal vs TSEN Voltage

Load Line Setting and Thermal Compensation

V

ADJ

= Sum(I

X

) x R

ADJ

= (DCR x R

ADJ

/ R

CSN

) x I

OUT

= LL x I

OUT

V

OUT

= V

DAC

− V

ADJ

= V

DAC

− LL x I

OUT

LL = DCR(PTC) x R

ADJ

(NTC) / R

CSN

DCR is the inductor DCR which is a PTC resistance.

+

-

1/3 I

X

1/2 I

IMAX

Figure 15. Over Current Comparator

DS8803A-06 April

25

RT8803A

Error Amplifier Characteristic

For fast response of converter to meet stringent output

current transient response, RT8803A provides large slew

rate capability and high gain-bandwidth performance.

B

4.7k

4.7k

-

EA

+

V

REF

A

EA Falling Slew Rate

Figure 18. Gain-Bandwidth Measurement by signal A

divided by signal B

Design Procedure Suggestion

V

FB

a. Output filter pole and zero (Inductor, output capacitor

value & ESR).

b. Error amplifier compensation & saw-tooth wave

amplitude (compensation network).

V

COMP

CH1:(500mV/Div)

CH2:(2V/Div)

c. Kelvin sense for V

CORE

.

Current Loop Setting

a. GM amplifier S/H current (current sense component

DCR, ISP

X

and ISN

X

pin external resistor value).

b. Over-current protection trip point (R

IMAX

resistor).

VRM Load Line Setting

a. Droop amplitude (ADJ pin resistor).

Time (250ns/Div)

Figure 16. EA Rising Transient with 10pF Loading ;

Slew Rate = 10V/μs

EA Rising Slew Rate

V

FB

b. No load offset (R

CSN

)

c. DAC offset voltage setting (OFS pin & compensation

network resistor).

d. Temperature coefficient compensation(TSEN external

resister & thermistor, resistor between ADJ and GND.)

Power Sequence & SS

V

COMP

CH1:(500mV/Div)

CH2:(2V/Div)

DVD pin external resistor and SS pin capacitor.

PCB Layout

sense for current sense GM amplifier input.

to layout guide for other items.

Time (250ns/Div)

Figure 17. EA Falling Transient with 10pF Loading ;

Slew Rate = 8V/μs

26

DS8803A-06 April 2011

RT8803A

Outline Dimension

D

D2

SEE DETAIL A

L

1

E

E2

e

b

1

2

1

2

A

A3

A1

DETAIL A

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional,

but must be located within the zone indicated.

Symbol

Dimensions In Millimeters Dimensions In Inches

Min Max Min Max

A 0.800 1.000 0.031 0.039

A1 0.000 0.050 0.000 0.002

A3 0.175 0.250 0.007 0.010

b 0.180 0.300 0.007 0.012

D 4.950 5.050 0.195 0.199

D2 3.400 3.750 0.134 0.148

E 4.950 5.050 0.195 0.199

E2 3.400 3.750 0.134 0.148

e 0.500 0.020

L 0.350 0.450

0.014 0.018

V-Type 32L QFN 5x5 Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email:*********************

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit

design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be

guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

DS8803A-06 April

27

2024年10月23日发(作者:赫连阳曜)

RT8803A

2/3-Phase PWM Controller for High-Density Power Supply

General Description

The RT8803A is a 2/3-phase synchronous buck controller

specifically designed to power Intel

®

/ AMD next generation

microprocessors. It implements an internal 8-bit DAC that is

identified by VID code of microprocessor directly. RT8803A

generates VID table that conform to Intel

®

VRD10.x and

VRD11 core power with 6.25mV increments and 0.5%

accuracy.

RT8803A adopts innovative time-sharing DCR current sensing

technique to sense phase currents for phase current balance,

load line setting and over current protection. Using a common

GM to sense all phase currents eliminates offset and linearity

variation between GMs in conventional current sensing

methods. As sub-milli-ohm-grade inductors are widely used

in modern motherboards, slight offset and linearity mismatch

will cause considerable current shift between phases. This

technique ensures good current balance at mass production.

Other features include over current protection, programmable

soft start, over voltage protection, and output offset setting.

RT8803A comes to a small footprint package with

VQFN-32L 5x5.

Features

z

z

5V Power Supply

2/3-Phase Power Conversion with Automatic Phase

Selection

8-bit VID Interface, Supporting Intel VRD11/VRD10.x

and AMD K8, K8_M2 CPUs

VR_HOT and VR_FAN Indication

Precision Core Voltage Regulation

Power Stage Thermal Balance by DCR Current

Sensing

Adjustable Soft-start

Over-Voltage Protection

Adjustable Frequency and Typical at 300kHz per

Phase

Power Good Indication

32-Lead VQFN Package

RoHS Compliant and 100% Lead (Pb)-Free

z

z

z

z

z

z

z

z

z

z

Applications

z

z

Ordering Information

RT8803A

Package Type

QV : VQFN-32L 5x5 (V-Type)

Lead Plating System

P : Pb Free

G : Green (Halogen Free and Pb Free)

z

Intel

®

/AMD New generation microprocessor for Desktop

PC and Motherboard

Low Output Voltage, High power density DC-DC

Converters

Voltage Regulator Modules

Pin Configurations

(TOP VIEW)

V

I

D

_

S

E

L

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

27

V

I

D

5

26

Note :

3231302928

Richtek products are :

`

RoHS compliant and compatible with the current require-

VTT/EN

VR_Ready

FBRTN

FB

COMP

SS

VR_FAN

VR_HOT

V

I

D

6

25

24

23

22

21

20

19

1

2

3

4

5

6

7

8

916

33

ments of IPC/JEDEC J-STD-020.

`

Suitable for use in SnPb or Pb-free soldering processes.

GND

VID7

VDD

PWM3

PWM2

PWM1

ISP1

ISP2

ISP3

18

17

I

M

A

X

R

T

I

S

N

1

VQFN-32L 5x5

DS8803A-06 April 2011

I

S

N

2

3

T

S

E

N

D

V

D

O

F

S

A

D

J

1

2

V

I

N

B

T

X

_

1

2

V

R

3

3

R

2

7

1

0

1

N

4

1

4

8

C

1

6

1

u

F

Q

1

I

P

D

0

9

N

0

3

L

A

Q

2

I

P

S

0

6

N

0

3

L

A

Q

3

L

1

2

8

0

n

H

R

T

2

N

T

C

2

k

C

5

5

.

6

p

F

R

1

7

0

C

P

U

_

V

C

C

C

1

1

0

.

1

u

F

R

2

8

2

.

2

C

1

7

3

.

3

n

F

R

1

5

C

6

1

5

k

2

.

2

n

F

R

1

6

1

.

5

k

C

4

5

6

n

F

C

7

4

7

0

p

F

1

2

0

0

u

F

4

.

7

u

F

4

.

7

u

F

C

1

5

4

.

7

u

F

B

T

X

_

1

2

V

C

1

2

C

1

3

C

1

4

V

C

O

R

E

1

6

5

4

2

0

2

1

FB

RT8803A

R

1

3

R

1

4

1

2

k

8

.

2

k

Typical Application Circuit

C

3

5

6

n

F

R

1

1

3

0

0

B

T

X

_

5

V

R

1

9

B

T

X

_

1

2

V

C

2

0

4

.

7

u

F

C

2

1

3

6

0

V

C

O

R

E

2

3

R

2

9

1

0

1

N

4

1

4

8

C

2

3

1

u

F

I

P

D

0

9

N

0

3

L

A

Q

5

I

P

S

0

6

N

0

3

L

A

Q

6

Q

4

7

5

k

3

6

0

V

C

O

R

E

1

3

1

2

0

0

u

F

4

.

7

u

F

V

I

N

C

1

9

C

2

2

4

.

7

u

F

PWM1

PWM2

COMP

F

o

r

A

M

D

1

0

0

R

1

2

3

0

0

1

3

1

1

1

4

R

1

8

7

5

k

R

2

0

R

2

1

R

2

2

1

B

O

O

T

3

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

P

W

M

P

G

N

D

6

SS

RT

ADJ

IMAX

V

I

D

_

S

E

L

P

W

M

3

2

2

I

S

N

2

3

I

S

N

1

1

5

I

S

P

1

1

9

1

8

I

S

P

2

I

S

P

3

1

7

TSEN

F

o

r

I

n

t

e

l

1

6

V

D

D

I

O

F

o

r

K

8

R

T

8

8

0

3

A

F

o

r

K

8

_

M

2

G

N

D

V

C

O

R

E

2

3

V

C

C

V

S

S

G

N

D

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

V

I

D

5

V

I

D

6

V

I

D

7

C

1

8

0

.

1

u

F

L

2

2

8

0

n

H

VR_HOT

VR_Ready

VR_FAN

VTT/EN

FBRTN

B

T

X

_

5

V

B

T

X

_

5

V

R

7

C

8

1

u

F

R

2

3

3

6

0

R

3

1

1

0

R

2

4

3

6

0

R

2

6

3

6

0

B

T

X

_

1

2

V

C

9

2

1

u

F

C

1

0

1

u

F

R

2

5

N

C

OFS

R

1

1

0

3

2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

1

0

V

I

D

_

S

E

L

V

I

D

0

V

I

D

1

V

I

D

2

V

I

D

3

V

I

D

4

V

I

D

5

V

I

D

6

V

I

D

7

V

D

D

D

V

D

C

3

2

t

o

C

4

1

5

6

0

u

F

x

1

0

R

3

0

2

.

2

C

2

4

3

.

3

n

F

C

4

2

t

o

C

5

9

1

0

u

F

x

1

8

C

1

0

.

1

u

F

3

1

2

9

C

2

0

.

1

u

F

1

8

7

2

B

T

X

_

1

2

V

R

2

1

0

k

1

B

O

O

T

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

V

I

N

P

G

N

D

6

V

I

N

E

n

a

b

l

e

R

3

1

.

1

k

C

2

6

C

2

7

1

2

0

0

u

F

4

.

7

u

F

1

N

4

1

4

8

C

2

8

4

.

7

u

F

C

2

9

4

.

7

u

F

V

T

T

F

o

r

I

n

t

e

l

V

D

D

I

O

R

8

N

C

B

T

X

_

5

V

F

o

r

A

M

D

R

4

R

5

R

6

1

0

k

1

0

k

1

0

k

C

3

0

1

u

F

I

P

D

0

9

N

0

3

L

A

C

2

5

0

.

1

u

F

V

C

O

R

E

2

3

Q

7

L

3

2

8

0

n

H

Q

8

I

P

S

0

6

N

0

3

L

A

Q

9

P

G

O

O

D

R

9

N

C

1

B

O

O

T

3

8

N

C

U

G

A

T

E

7

4

V

C

C

P

H

A

S

E

R

T

9

6

1

9

5

L

G

A

T

E

2

V

I

N

P

G

N

D

6

R

3

2

2

.

2

C

3

1

3

.

3

n

F

R

T

1

1

0

k

N

T

C

DS8803A-06 April 2011

R

1

0

0

C

P

U

_

V

S

S

RT8803A

Functional Pin Description

VTT/EN (Pin 1)

The pin is defined as the chip enable, and the VTT is

applied for internal VID pull high power and power sequence

monitoring.

VR_Ready (Pin 2)

Power good open-drain output.

FBRTN (Pin 3)

Feedback return pin. VID DAC and error amplifier reference

for remote sensing of the output voltage.

FB (Pin 4)

Inverting input pin of the internal error amplifier.

COMP (Pin 5)

Output pin of the error amplifier and input pin of the PWM

comparator.

SS (Pin 6)

Connect this SS pin to GND with a capacitor to set the

soft-start time interval.

VR_FAN (Pin 7)

The pin is defined to signal VR thermal information for

external VR thermal dissipation scheme triggering.

VR_HOT (Pin 8)

The pin is defined to signal VR thermal information for

external VR thermal dissipation scheme triggering.

TSEN (Pin 9)

Temperature detect pin for VR_HOT and VR_FAN.

DVD (Pin 10)

Programmable power UVLO detection input. Trip threshold

is 1V at V

DVD

rising.

RT (Pin 11)

The pin is defined to set internal switching operation

frequency. Connect this pin to GND with a resistor R

RT

to

set the frequency F

SW

.

F

SW

=

4.463 e

9

R

RT

+3500

OFS (Pin 12)

The pin is defined for load line offset setting.

ADJ (Pin 13)

Current sense output for active droop adjusting. Connect

a resistor from this pin to GND to set the load droop.

IMAX (Pin 14)

The pin is defined to set threshold of over current.

ISN1 (Pin 15)

Current sense negative input pin for channel 1 current

sensing.

ISN23 (Pin 16)

Current sense negative input pins for channel 2 and

channel 4 current sensing.

ISP1 (Pin 19), ISP2 (Pin 18), ISP3 (Pin 17)

Current sense positive input pins for individual converter

channel current sensing.

PWM1 (Pin 20), PWM2 (Pin 21), PWM3 (Pin 22)

PWM outputs for each driven channel. Connect these pins

to the PWM input of the MOSFET driver. For systems

which using 2/3/4 channels, pull PWM 3/4/5 pins up to

high.

VDD (Pin 23)

IC power supply. Connect this pin to a 5V supply.

VID7 (Pin 24), VID6 (Pin 25), VID5 (Pin 26), VID4 (Pin

27), VID3 (Pin 28), VID2 (Pin 29), VID1 (Pin 30),

VID0 (Pin 31), VID_SEL (32)

DAC voltage identification inputs for VRD10.x / VRD11 /

K8 / K8_M2 . These pins are internally pulled up to VTT.

VIDSEL VID [7] Table

VTT X VR11

GND X VR10.x

VDD NC K8

VDD GND K8_M2

GND [Exposed pad (33)]

The exposed pad must be soldered to a large PCB and

connected to GND for maximum power dissipation.

3

DS8803A-06 April 2011

RT8803A

Function Block Diagram

VDDVTT/ENDVD

SS

VR_Ready

COMP

FB

OFS

VID7

VID6

VID5

VID4

VID3

VID2

VID1

VID0

VID_SEL

FBRTN

Soft Start

& PGOOD

Power On

Reset

Oscillator

&

Ramp

Generator

RT

DAC

TSEN

VR_FAN

VR_HOT

Temperature

Processing

Droop Tune

& Hi-I

Detection

Sample

& Hold

Mux

ADJ

GND

4

+

CSA

-

+

Clamp

EA

Current

Processing

SUM/N

& OCP

Detection

Pulse

Width

Modulator

& Output

Buffer

PWM1

PWM2

PWM3

IMAX

Mux

ISN1

ISN23

ISP1

Mux

ISP2

ISP3

-

DS8803A-06 April 2011

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

0 1 0 1 0 1 1

0 1 0 1 0 1 0

0 1 0 1 1 0 1

0 1 0 1 1 0 0

0 1 0 1 1 1 1

0 1 0 1 1 1 0

0 1 1 0 0 0 1

0 1 1 0 0 0 0

0 1 1 0 0 1 1

0 1 1 0 0 1 0

0 1 1 0 1 0 1

0 1 1 0 1 0 0

0 1 1 0 1 1 1

0 1 1 0 1 1 0

0 1 1 1 0 0 1

0 1 1 1 0 0 0

0 1 1 1 0 1 1

0 1 1 1 0 1 0

0 1 1 1 1 0 1

0 1 1 1 1 0 0

0 1 1 1 1 1 1

0 1 1 1 1 1 0

1 0 0 0 0 0 1

1 0 0 0 0 0 0

1 0 0 0 0 1 1

1 0 0 0 0 1 0

1 0 0 0 1 0 1

1 0 0 0 1 0 0

1 0 0 0 1 1 1

1 0 0 0 1 1 0

1 0 0 1 0 0 1

1 0 0 1 0 0 0

1 0 0 1 0 1 1

1 0 0 1 0 1 0

1 0 0 1 1 0 1

1 0 0 1 1 0 0

1 0 0 1 1 1 1

1 0 0 1 1 1 0

1 0 1 0 0 0 1

1.60000V

1.59375V

1.58750V

1.58125V

1.57500V

1.56875V

1.56250V

1.55625V

1.55000V

1.54375V

1.53750V

1.53125V

1.52500V

1.51875V

1.51250V

1.50625V

1.50000V

1.49375V

1.48750V

1.48125V

1.47500V

1.46875V

1.46250V

1.45625V

1.45000V

1.44375V

1.43750V

1.43125V

1.42500V

1.41875V

1.41250V

1.40625V

1.40000V

1.39375V

1.38750V

1.38125V

1.37500V

1.36875V

1.36250V

Pin Name

DS8803A-06 April 2011

To be continued

5

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

1 0 1 0 0 0 0

1 0 1 0 0 1 1

1 0 1 0 0 1 0

1 0 1 0 1 0 1

1 0 1 0 1 0 0

1 0 1 0 1 1 1

1 0 1 0 1 1 0

1 0 1 1 0 0 1

1 0 1 1 0 0 0

1 0 1 1 0 1 1

1 0 1 1 0 1 0

1 0 1 1 1 0 1

1 0 1 1 1 0 0

1 0 1 1 1 1 1

1 0 1 1 1 1 0

1 1 0 0 0 0 1

1 1 0 0 0 0 0

1 1 0 0 0 1 1

1 1 0 0 0 1 0

1 1 0 0 1 0 1

1 1 0 0 1 0 0

1 1 0 0 1 1 1

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 1 0 1 0 0 0

1 1 0 1 0 1 1

1 1 0 1 0 1 0

1 1 0 1 1 0 1

1 1 0 1 1 0 0

1 1 0 1 1 1 1

1 1 0 1 1 1 0

1 1 1 0 0 0 1

1 1 1 0 0 0 0

1 1 1 0 0 1 1

1 1 1 0 0 1 0

1 1 1 0 1 0 1

1 1 1 0 1 0 0

1 1 1 0 1 1 1

1 1 1 0 1 1 0

1.35625V

1.35000V

1.34375V

1.33750V

1.33125V

1.32500V

1.31875V

1.31250V

1.30625V

1.30000V

1.29375V

1.28750V

1.28125V

1.27500V

1.26875V

1.26250V

1.25625V

1.25000V

1.24375V

1.23750V

1.23125V

1.22500V

1.21875V

1.21250V

1.20625V

1.20000V

1.19375V

1.18750V

1.18125V

1.17500V

1.16875V

1.16250V

1,15625V

1.15000V

1.14375V

1.13750V

1.13125V

1.12500V

1.11875V

Pin Name

To be continued

6

DS8803A-06 April 2011

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

1 1 1 1 0 0 1

1 1 1 1 0 0 0

1 1 1 1 0 1 1

1 1 1 1 0 1 0

1 1 1 1 1 0 1

1 1 1 1 1 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 0

0 0 0 1 0 0 1

0 0 0 1 0 0 0

0 0 0 1 0 1 1

0 0 0 1 0 1 0

0 0 0 1 1 0 1

0 0 0 1 1 0 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 0 1 0 0 0 1

0 0 1 0 0 0 0

0 0 1 0 0 1 1

0 0 1 0 0 1 0

0 0 1 0 1 0 1

0 0 1 0 1 0 0

0 0 1 0 1 1 1

0 0 1 0 1 1 0

0 0 1 1 0 0 1

0 0 1 1 0 0 0

0 0 1 1 0 1 1

0 0 1 1 0 1 0

0 0 1 1 1 0 1

0 0 1 1 1 0 0

0 0 1 1 1 1 1

1.11250V

1.10625V

1.10000V

1.09375V

OFF

OFF

OFF

OFF

1.08750V

1.08125V

1.07500V

1.06875V

1.06250V

1.05625V

1.05000V

1.04375V

1.03750V

1.03125V

1.02500V

1.01875V

1.01250V

1.00625V

1.00000V

0.99375V

0.98750V

0.98125V

0.97500V

0.96875V

0.96250V

0.95625V

0.95000V

0.94375V

0.93750V

0.93125V

0.92500V

0.91875V

0.91250V

0.90625V

0.90000V

Pin Name

DS8803A-06 April 2011

To be continued

7

RT8803A

Table 1. Output Voltage Program (VRD10.x + VID6)

Nominal Output Voltage DACOUT

VID4 VID3 VID2 VID1 VID0 VID5 VID6

0 0 1 1 1 1 0

0 1 0 0 0 0 1

0 1 0 0 0 0 0

0 1 0 0 0 1 1

0 1 0 0 0 1 0

0 1 0 0 1 0 1

0 1 0 0 1 0 0

0 1 0 0 1 1 1

0 1 0 0 1 1 0

0 1 0 1 0 0 1

0 1 0 1 0 0 0

0.89375V

0.88750V

0.88125V

0.87500V

0.86875V

0.86250V

0.85625V

0.85000V

0.84375V

0.83750V

0.83125V

Pin Name

8

DS8803A-06 April 2011

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

HEX

00 OFF

01 OFF

02 1.60000V

03 1.59375V

04 1.58750V

05 1.58125V

06 1.57500V

07 1.56875V

08 1.56250V

09 1.55625V

0A 1.55000V

0B 1.54375V

0C 1.53750V

0D 1.53125V

0E 1.52500V

0F 1.51875V

10 1.51250V

11 1.50625V

12 1.50000V

13 1.49375V

14 1.48750V

15 1.48125V

16 1.47500V

17 1.46875V

18 1.46250V

19 1.45625V

1A 1.45000V

1B 1.44375V

1C 1.43750V

1D 1.43125V

1E 1.42500V

1F 1.41875V

20 1.41250V

21 1.40625V

22 1.40000V

23 1.39375V

24 1.38750V

25 1.38125V

26 1.37500V

HEX

27 1.36875V

28 1.36250V

29 1.35625V

2A 1.35000V

2B 1.34375V

2C 1.33750V

2D 1.33125V

2E 1.32500V

2F 1.31875V

30 1.31250V

31 1.30625V

32 1.30000V

33 1.29375V

34 1.28750V

35 1.28125V

36 1.27500V

37 1.26875V

38 1.26250V

39 1.25625V

3A 1.25000V

3B 1.24375V

3C 1.23750V

3D 1.23125V

3E 1.22500V

3F 1.21875V

40 1.21250V

41 1.20625V

42 1.20000V

43 1.19375V

44 1.18750V

45 1.18125V

46 1.17500V

47 1.16875V

48 1.16250V

49 1.15625V

4A 1.15000V

4B 1.14375V

4C 1.13750V

4D 1.13125V

Nominal Output Voltage DACOUT

DS8803A-06 April 2011

To be continued

9

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

Nominal Output Voltage DACOUT

HEX

4E 1.12500V

4F 1.11875V

50 1.11250V

51 1.10625V

52 1.10000V

53 1.09375V

54 1.08750V

55 1.08125V

56 1.07500V

57 1.06875V

58 1.06250V

59 1.05625V

5A 1.05000V

5B 1.04375V

5C 1.03750V

5D 1.03125V

5E 1.02500V

5F 1.01875V

60 1.01250V

61 1.00625V

62 1.00000V

63 0.99375V

64 0.98750V

65 0.98125V

66 0.97500V

67 0.96875V

68 0.96250V

69 0.95625V

6A 0.95000V

6B 0.94375V

6C 0.93750V

6D 0.93125V

6E 0.92500V

6F 0.91875V

70 0.91250V

71 0.90625V

72 0.90000V

73 0.89375V

74 0.88750V

HEX

75 0.88125V

76 0.87500V

77 0.86875V

78 0.86250V

79 0.85625V

7A 0.85000V

7B 0.84375V

7C 0.83750V

7D 0.83125V

7E 0.82500V

7F 0.81875V

80 0.81250V

81 0.80625V

82 0.80000V

83 0.79375V

84 0.78750V

85 0.78125V

86 0.77500V

87 0.76875V

88 0.76250V

89 0.75625V

8A 0.75000V

8B 0.74375V

8C 0.73750V

8D 0.73125V

8E 0.72500V

8F 0.71875V

90 0.71250V

91 0.70625V

92 0.70000V

93 0.69375V

94 0.68750V

95 0.68125V

96 0.67500V

97 0.66875V

98 0.66250V

99 0.65625V

9A 0.65000V

9B 0.64375V

10

To be continued

DS8803A-06 April 2011

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

Pin Name

Nominal Output Voltage DACOUT

HEX

9C 0.63750V

9D 0.63125V

9E 0.62500V

9F 0.61875V

A0 0.61250V

A1 0.60625V

A2 0.60000V

A3 0.59375V

A4 0.58750V

A5 0.58125V

A6 0.57500V

A7 0.56875V

A8 0.56250V

A9 0.55625V

AA 0.55000V

AB 0.54375V

AC 0.53750V

AD 0.53125V

AE 0.52500V

AF 0.51875V

B0 0.51250V

B1 0.50625V

B2 0.50000V

B3 X

B4 X

B5 X

B6 X

B7 X

B8 X

B9 X

BA X

BB X

BC X

BD X

BE X

BF X

C0 X

C1 X

C2 X

HEX

C3 X

C4 X

C5 X

C6 X

C7 X

C8 X

C9 X

CA X

CB X

CC X

CD X

CE X

CF X

D0 X

D1 X

D2 X

D3 X

D4 X

D5 X

D6 X

D7 X

D8 X

D9 X

DA X

DB X

DC X

DD X

DE X

DF X

E0 X

E1 X

E2 X

E3 X

E4 X

E5 X

E6 X

E7 X

E8 X

E9 X

DS8803A-06 April 2011

To be continued

11

RT8803A

Table 2. Output Voltage Program (VRD11)

Pin Name

Nominal Output Voltage DACOUT

HEX

EA X

EB X

EC X

ED X

EE X

EF X

F0 X

F1 X

F2 X

F3 X

F4 X

F5 X

F6 X

F7 X

F8 X

F9 X

FA X

FB X

FC X

FD X

FE OFF

FF OFF

Note: (1) 0 : Connected to GND

(2) 1 : Open

(3) X : Don

'

t Care

12

DS8803A-06 April 2011

RT8803A

Table 3. Output Voltage Program (K8)

VID4 VID3 VID2 VID1 VID0 Nominal Output Voltage DACOUT

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

Note: (1) 0 : Connected to GND

(2) 1 : Open

1.550

1.525

1.500

1.475

1.450

1.425

1.400

1.375

1.350

1.325

1.200

1.275

1.250

1.225

1.200

1.175

1.150

1.125

1.100

1.075

1.050

1.025

1.000

0.975

0.950

0.925

0.900

0.875

0.850

0.825

0.800

Shutdown

DS8803A-06 April

13

RT8803A

Table 4. Output Voltage Program (K8_M2)

Nominal Output Voltage DACOUT

VID5 VID4 VID3 VID2 VID1 VID0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 1 0 0

0 1 0 1 0 1

0 1 0 1 1 0

0 1 0 1 1 1

0 1 1 0 0 0

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 1 1 0 1

0 1 1 1 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1.5500

1.5250

1.5000

1.4750

1.4500

1.4250

1.4000

1.3750

1.3500

1.3250

1.3000

1.2750

1.2500

1.2250

1.2000

1.1750

1.1500

1.1250

1.1000

1.0750

1.0500

1.0250

1.0000

0.9750

0.9500

0.9250

0.9000

0.8750

0.8500

0.8250

0.8000

0.7750

0.7625

0.7500

Pin Name

To be continued

14

DS8803A-06 April 2011

RT8803A

Table 4. Output Voltage Program (K8_M2)

Nominal Output Voltage DACOUT

VID5 VID4 VID3 VID2 VID1 VID0

1 0 0 0 1 0

1 0 0 0 1 1

1 0 0 1 0 0

1 0 0 1 0 1

1 0 0 1 1 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 0 1 1

1 0 1 1 0 0

1 0 1 1 0 1

1 0 1 1 1 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 0 1

1 1 0 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 0 1

1 1 1 1 1 0

1 1 1 1 1 1

0.7375

0.7250

0.7125

0.7000

0.6875

0.6750

0.6625

0.6500

0.6375

0.6250

0.6125

0.6000

0.5875

0.5750

0.5625

0.5500

0.5375

0.5250

0.5125

0.5000

0.4875

0.4750

0.4625

0.4500

0.4375

0.4250

0.4125

0.4000

0.3875

0.3750

Pin Name

Note: (1) 0 : Connected to GND

(2) 1 : Open

(3) The voltage above are load independent for desktop and server platforms. For mobile platforms the voltage above

correspond to zero load current.

DS8803A-06 April

15

RT8803A

Absolute Maximum Ratings

(Note 1)

z

z

z

z

z

z

z

z

Supply Voltage, V

DD

------------------------------------------------------------------------------------------

Input, Output or I/O Voltage--------------------------------------------------------------------------------

Power Dissipation, P

D

@ T

A

= 25°C

VQFN−32L 5x5------------------------------------------------------------------------------------------------

Package Thermal Resistance (Note 2)

VQFN-32L 5x5, θ

JA

-------------------------------------------------------------------------------------------

Junction Temperature----------------------------------------------------------------------------------------

Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------

Storage Temperature Range--------------------------------------------------------------------------------

ESD Susceptibility (Note 3)

HBM (Human Body Mode)----------------------------------------------------------------------------------

MM (Machine Mode)-----------------------------------------------------------------------------------------

7V

GND-0.3V to V

DD

+0.3V

2.778W

36°C/W

150°C

260°C

−65°C to 150°C

2kV

200V

Recommended Operating Conditions

(Note 4)

z

z

z

Supply Voltage, V

DD

------------------------------------------------------------------------------------------5V ± 10%

Junction Temperature Range-------------------------------------------------------------------------------−40°C to 125°C

Ambient Temperature Range-------------------------------------------------------------------------------−40°C to 85°C

Electrical Characteristics

(V

DD

= 5V, T

A

= 25°C, unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

V

DD

Supply Current

Nominal Supply Current

Power-On Reset

POR Threshold V

DDRTH

Trip (Low to High)

V

DD

Rising 4.0 4.2 4.5 V

V

I

DD

PWM 1,2,3 Open -- 12 16 mA

Hysteresis V

DDHYS

V

DVD

Threshold

V

TT

Threshold

Oscillator

Free Running Frequency

Frequency Adjustable Range

Ramp Amplitude

Ramp Valley

Maximum On-Time of Each Channel

RT Pin Voltage

f

OSC

ΔV

OSC

V

RT

V

DVDTH

Enable

V

TTTH

Enable

Hysteresis V

DVDHYS

Trip (Low to High)

Hysteresis V

TTHYS

0.2 0.5 --

0.9 1.0 1.1 V

-- 60 -- mV

0.75 0.85 0.95

V

-- 0.1 --

R

RT

= 20kΩ 180 200 220 kHz

50 -- 400 kHz f

OSC_ADJ

R

RT

= 20kΩ -- 1.9 -- V

Three Phase Operation 62 67 72 %

V

RV

0.7 1.0 -- V

R

RT

= 20kΩ 0.9 1.0 1.1 V

To be continued

16

DS8803A-06 April 2011

RT8803A

Parameter Symbol Test Conditions Min Typ Max Unit

Reference and DAC

V

DAC

≥ 1V

DACOUT Voltage Accuracy

DAC (VID0-VID125) Input Low

DAC (VID0-VID125) Input High

V

ID

Pull-up Resistance

OFS Pin Voltage

Error Amplifier

DC Gain -- 65 -- dB

ΔV

DAC

V

ILDAC

V

IHDAC

V

OFS

1V ≥ V

DAC

≥ 0.8V

V

DAC

< 0.8V

R

OFS

= 100kΩ

−0.5 -- 0.5 %

−5 -- 5 mV

−8 -- 8 mV

-- -- V

1/2V

TT

− 0.2

1/2V

TT

+ 0.2

-- -- V

12 15 18

0.9 1.0 1.1 V

Gain-Bandwidth Product GBW -- 10 -- MHz

Slew Rate

Current Sense GM Amplifier

CSN Full Scale Source Current

CSN Current for OCP

Protection

Over-Voltage Trip (FB-DACOUT) ΔOVT

IMAX Voltage

Power Good

Output Low Voltage V

PGOODL

I

PGOOD

= 4mA -- -- 0.2 V

V

IMAX

100 150 200 mV

0.9 1.0 1.1 V

I

ISPFSS

100 -- --

μA

150 -- --

μA

SR COMP = 10pF -- 8 -- V/μs

R

IMAX

= 20k

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for

stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the

operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended

periods may remain possibility to affect device reliability.

Note 2. θ

JA

is measured in the natural convection at T

A

= 25°C on a low effective thermal conductivity test board of

JEDEC 51-3 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

DS8803A-06 April

17

RT8803A

Typical Operating Characteristics

Frequency vs. R

RT

700

600

GM

450

400

350

P

o

s

i

t

i

v

e

D

u

t

y

(

n

s

)

F

r

e

q

u

e

n

c

y

(

k

H

z

)

500

400

300

200

100

0

300

250

200

150

100

50

0

5150175200

PHASE 3

PHASE 1

PHASE 2

(k

ٛ

Ω

)R

RT

(k

ISN (uA)

Output Voltage vs. Temperature

1.264

1.262

322

320

318

Frequency vs. Temperature

O

u

t

p

u

t

V

o

l

t

a

g

e

(

V

)

1.26

F

r

e

q

u

e

n

c

y

(

k

H

z

)

-20

1.258

1.256

1.254

1.252

1.25

1.248

316

314

312

310

308

306

304

-20

Temperature

(°C)

Temperature

(°C)

Power On from DVD

Power Off from DVD

DVD

(1V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

DVD

(1V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1μs/Div)

18

DS8803A-06 April 2011

RT8803A

Power On from VCC12Power Off from VCC12

VCC12

(10V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

VCC12

(10V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

Power On from VCC5Power Off from VCC5

VCC5

(5V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (1ms/Div)

VCC5

(5V/Div)

SS

(1V/Div)

V

OUT

(1V/Div)

PHASE 3

(10V/Div)

Time (25ms/Div)

Power On with OCP

VR_Ready

(1V/Div)

SS

(2V/Div)

V

OUT

1V/Div)

PWM

(5V/Div)

Time (500μs/Div)

VR_Ready

(1V/Div)

SS

(2V/Div)

V

OUT

(1V/Div)

PWM

(5V/Div)

Output Short Circuit

Time (1ms/Div)

DS8803A-06 April

19

RT8803A

V

OUT

Droop

V

OUT

Overshoot

V

OUT

(20mV/Div)

V

OUT

(20mV/Div)

I

OUT

(40A/Div)

Time (2μs/Div)

I

OUT

(40A/Div)

Time (2μs/Div)

Dynamic VID

V

OUT

(200mV/Div)

Dynamic VID

V

OUT

(200mV/Div)

VID0

(500mV/Div)

Time (50μs/Div)

VID0

(500mV/Div)

Time (50μs/Div)

OVP

VR_Ready

(1V/Div)

SS

(2V/Div)

FB

(1V/Div)

PWM

(5V/Div)

Time (10μs/Div)

20

DS8803A-06 April 2011

RT8803A

Applications Information

RT8803A is a multi-phase DC/DC controller specifically

designed to deliver high quality power for next generation

CPU. RT8803A controls a special power-on sequence &

monitors the thermal condition of VR module to meet the

VRD11 requirement. Phase currents are sensed by

innovative time-sharing DCR current sensing technique

for channel current balance, droop tuning, and over current

protection. Using one common GM amplifier for current

sensing eliminates offset errors and linearity variation

between GMs. As sub-milli-ohm-grade inductors are

widely used in modern mother boards, slight mismatch

of GM amplifiers offset and linearity results in considerable

current shift between phases. The time-sharing DCR

current sensing technique is extremely important to

guarantee phase current balance in mass production.

Converter Initialization, Phase Selection, and

Power Good Function

The RT8803A initiates only after 3 pins are ready: VDD

pin power on reset (POR), VTT/EN pin enabled, and DVD

pin is higher than 1V. VDD POR is to make sure RT8803A

is powered by a voltage for normal work. The rising

threshold voltage of VDD POR is 4.2V typically. At VDD

POR, RT8803A checks PWM3, PWM4 and PWM5 status

to determine phase number of operation. Pull high PWM3

for two-phase operation; pull high PWM4 for three-phase

operation; pull high PWM5 for four-phase operation. The

unused current sense pins should be connected to GND

or left floating.

VTT/EN acts as a chip enable pin and receives signal from

FSB or other power management IC.

DVD is to make sure that ATX12V is ready for drivers to

work normally. Connect a voltage divider from ATX12V to

DVD pin as shown in the Typical Application Circuit. Make

sure that DVD pin voltage is below its threshold voltage

before drivers are ready and above its threshold voltage

for minimum ATX12V during normal operation.

If any one of VDD, VTT/EN, and DVD is not ready, RT8803A

keeps its PWM outputs high impedance and the

companion drivers turn off both upper and lower

MOSFETs. After VDD, VTT/EN, and DVD are ready,

RT8803A initiates its soft start cycle that is compliant

with Intel

®

VRD11 specification as shown in Figure 1. A

time-variant internal current source charges the capacitor

connected to SS pin. SS voltage ramps up piecewise

linearly and locks VID_DAC output with a specified voltage

drop. Consequently, V

CORE

is built up according to

VID_DAC output and meet Intel

®

VRD11 requirement.

VR_READY output is pulled high by external resistor when

V

CORE

reaches VID_DAC output with 1~2ms delay. An

SS capacitor about 47nF is recommend for VRD11

compliance.

VDD POR, DVD, and VTT/EN ready

SS

V

CORE

1.1V

VR_Ready

VID on the fly

1~2ms1~2ms1~2ms

1~2ms

1~2ms

Figure 1. Timming Diagram During Soft Start Interval

Voltage Control

CPU V

CORE

voltage is Kelvin sensed by FB and FBRTN

pins and precisely regulated to VID_DAC output by internal

high gain Error Amplifier (EA). The sensed signal is also

used for power good and over voltage function. The typical

OVP trip point is 170mV above VID_DAC output. RT8803A

pulls PWM outputs low and latches up upon OVP trip to

prevent damaging the CPU. It can only restart by resetting

one of VDD, DVD, or VTT/EN pin.

RT8803A supports Intel VRD10.x, VRD11, AMD K8 and

AMD K8_M2 VID specification.

The change of VID_DAC output at VID on the fly is also

smoothed by capacitor connected to SS pin.

Consequently, Vcore shifts to its new position smoothly

as shown in Figure 2.

DS8803A-06 April

21

RT8803A

PWM3

V

CORE

Consequently, the sensing current I

X

is proportional to

inductor current I

LX

and is expressed as :

I×DCRx

I

X

=

LX

R

CSNX

The sensed current I

X

is used for current balance and droop

tuning as described as followed. Since all phases share

one common GM, GM offset and linearity variation effect

is eliminated in practical applications. As sub-milli-ohm-

grade inductors are widely used in modern mother boards,

slight mismatch of GM amplifiers offset and linearity results

in considerable current shift between phases. The time-

sharing DCR current sensing technical is extremely

important to guarantee phase current balance in mass

production.

Phase Current Balance

The sampled and held phase current I

X

are summed and

averaged to get the averaged current . Each phase

I

X

current I

X

then is compared with the averaged current.

The difference between I

X

and is injected to

I

X

corresponding PWM comparator. If phase current I

X

is

smaller than the averaged current , RT8803A increases

the duty cycle of corresponding phase to increase the

phase current accordingly and vice versa.

VID7

Figure 2. Vcore Response at VID on the Fly

DCR Current Sensing

RT8803A adopts an innovative time-sharing DCR current

sensing technique to sense the phase currents for phase

current balance (phase thermal balance) and load line

regulation as shown in Figure 3. Current sensing amplifier

GM samples and holds voltages VCx across the current

sensing capacitor Cx by turns in a switching cycle.

According to the Basic Circuit Theory, if

Lx

=Rx×Cx then VCx=I×DCRx

LX

DCRx

T1

T2

T3

I

X

= I

LX

x DCR

X

/R

CSNX

I

X

S/H CKT

+

CSA

-

L1

DCR1

R1

C1

+ VC1 -

L3

DCR3

ISP1

T1

T1

ISP3

T3

T3

ISN23

R

CSN3

L2

DCR2

ISN1

R

CSN1

R3

C3

+ VC3 -

CSA: Current Sense Amplifier

R2

ISP2

T2

T2

ISN23

C2

+ VC2 -

R

CSN2

Figure 3

22

DS8803A-06 April 2011

RT8803A

I

OFS

4

If

L

X

=(R

X

//R

PX

)×Cx then

DCRx

VCx=

R

PX

×I

LX

×DCRx

Rx+R

PX

V

CORE

R

FB1

-

+

EACOMP

V

ADJ

DAC

+

-

4I

X

R

ADJ

Figure 4. Load Line and Offset Function

Output Voltage Offset Function

To meet Intel

®

requirement of initial offset of load line,

RT8803A provides programmable initial offset function.

External resistor R

OFS

and voltage source at OFS pin

V

generate offset current

I

OFS

=

OFS

R

OFS

, where V

OFS

is 1V typical. One quarter of I

OFS

flows

through R

FB1

as shown in Figure 4. Error amplifier would

hold the inverting pin equal to V

DAC

- V

ADJ

. Thus output

voltage is subtracted from V

DAC

- V

ADJ

for a constant offset

voltage.

R

FB1

V

CORE

= V

DAC

− V

ADJ

4×R

OFS

A positive output voltage offset is possible by connecting

R

OFS

to VDD instead of to GND. Please note that when

R

OFS

is connected to VDD, V

OFS

is V

DD

− 2V typically and

half of I

OFS

flows through R

FB1

. V

CORE

is rewritten as :

V

CORE

= V

DAC

− V

ADJ

+

R

FB1

R

OFS

With other phase kept unchanged, this phase would share

(R

PX

+Rx)/R

PX

times current than other phases. Figure 6

and 7 show different current ratio setting for the power

stage when Phase 3 is programmed 2 times current than

other phases. Figure 8 and 9 compare the above current

ratio setting results.

L

X

DCRx

+

VCx

-

I

LX

Rx

Cx

R

PX

V

OUT

+

T

Figure 5

Current Ratio Setting

Current ratio adjustment is possible as described below.

It is important for achieving thermal balance in practical

application where thermal conditions between phases are

not identical. Figure 5 shows the application circuit of GM

for current ratio requirement. According to Basic Circuit

Theory

R

PX

Rx+R

PX

VCx = ×I

LX

×DCRx

SRx×R

PX

×Cx

+1

Rx+R

PX

Figure 6. GM3 Setting for current ratio function

Figure 7. GM1~2 Setting for current ratio function

DS8803A-06 April

23

RT8803A

Current Ratio Function

35

30

25

Load Line without dead zone at light loads

1.31

I

L3

1.3

1.29

w/o Dead Zone Compensation

R

CSN

open

I

L

(

A

)

20

15

10

I

L2

I

L1

V

C

O

R

E

(

V

)

1.28

1.27

1.26

1.25

R

CSN2

= 82k

w/i Dead Zone Compensation

5

0

0

1.24

1.23

I

OUT

(A)

I

OUT

(A)

Figure 8

Figure 10

Lx

Rx

DCRx

Cx

+

VCx

-

V

OUT

Current Balance Function

35

30

25

I

LX

I

L

(

A

)

20

15

10

5

0

02040

I

L3

GMx

+

-

R

CSN

R

CSN2

I

L2

I

L1

Ix

Figure 11. Application circuit of GM

6080100120

I

OUT

(A)

Referring to Figure 11, I

X

is expressed as :

I

X

=

I

LX_66%

×DCRxI

LX_66%

×DCRx

V

OUT

++

R

CSN2

R

CSN2

R

CSN

Figure 9

Dead Zone Elimination

RT8803A samples and holds inductor current at 50%

period by time-sharing sourcing a current I

X

to R

CSN

. At

light load condition when inductor current is not balance,

voltage VCx

across the sensing capacitor would be

negative. It needs a negative I

X

to sense the voltage.

However, RT8803A CANNOT provide a negative I

X

and

consequently cannot sense negative inductor current. This

results in dead zone of load line performance as shown in

Figure 10. Therefore a technique as shown in Figure 11 is

required to eliminate the dead zone of load line at light

load condition.

(1)

where I

LX_50%

is the of inductor current at 50% period. To

make sure RT8803A could sense the inductor current,

right hand side of Equation (1) should always be positive:

I

LX_66%

×DCRxI

LX_66%

×DCRx

V

OUT

++≥0

R

CSN2

R

CSN2

R

CSN

(2)

Since R

CSN

>> DCRx in practical application, Equation (2)

could be simplified as :

I

LX_66%

×DCRx

V

OUT

R

CSN2

R

CSN

24

DS8803A-06 April 2011

RT8803A

For example, assuming the negative inductor current is

I

LX_50%

= −5A at no load, then for

R

CSN

330Ω, R

ADJ

= 160Ω, V

OUT

= 1.300V

If R

ADJ

is connected as in Figure 14, R

ADJ

= R1 + (R2//

R

NTC

), which is a negative temperature correlated

resistance. By properly selecting R1 and R2, the positive

temperature coefficient of DCR can be canceled by the

negative temperature coefficient of R

ADJ

. Thus the load

line will be thermally compensated.

ADJ

1.3V

−5A×1mΩ

R

CSN2

330Ω

R

CSN2

≤ 85.8kΩ

Choose R

CSN2

= 82kΩ

Figure 10 shows that dead zone of load line at light load

is eliminated by applying this technique.

VR_HOT & VR_FAN Setting

V

CC

5V

R1

R

ADJ

R

NTC

R2

Figure 14. R

ADJ

Connection for Thernal Compensation

R1

V

TSEN

R

NTC

0.28 x V

CC

TSEN

0.39 x V

CC

0.33 x V

CC

+

CMP

-

+

CMP

-

+

CMP

-

Q1

Over Current Protection

Phase current OCP

RT8803A uses an external resistor R

IMAX

connected to

IMAX pin to generate a reference current I

IMAX

for over

current protection :

V

I

IMAX

=

IMAX

R

IMAX

where V

IMAX

is typical 1.0V . OCP comparator compares

each sensed phase current I

X

with this reference current

as shown in Figure 15. Equivalently, the maximum phase

current I

LX(MAX)

is calculated as below:

1

1

I

X(MAX)

=

I

IMAX

2

3

V

I

X(MAX)

=

3

I

IMAX

=

3

×

IMAX

2

R

IMAX

2

R

R

V

I

LX(MAX)

=

I

X

×

CSNX

=

3

×

IMAX

×

CSNX

R

LX

2

R

IMAX

DCR

X

OCP Comparator

Q2

Q3

Figure 12

V

TSEN

V

TSEN

is inversely proportional

to Temperature.

0.39 x V

CC

0.33 x V

CC

0.28 x V

CC

VR_FAN

VR_HOT

Temperature

Figure 13. VR_HOT and VR_FAN Signal vs TSEN Voltage

Load Line Setting and Thermal Compensation

V

ADJ

= Sum(I

X

) x R

ADJ

= (DCR x R

ADJ

/ R

CSN

) x I

OUT

= LL x I

OUT

V

OUT

= V

DAC

− V

ADJ

= V

DAC

− LL x I

OUT

LL = DCR(PTC) x R

ADJ

(NTC) / R

CSN

DCR is the inductor DCR which is a PTC resistance.

+

-

1/3 I

X

1/2 I

IMAX

Figure 15. Over Current Comparator

DS8803A-06 April

25

RT8803A

Error Amplifier Characteristic

For fast response of converter to meet stringent output

current transient response, RT8803A provides large slew

rate capability and high gain-bandwidth performance.

B

4.7k

4.7k

-

EA

+

V

REF

A

EA Falling Slew Rate

Figure 18. Gain-Bandwidth Measurement by signal A

divided by signal B

Design Procedure Suggestion

V

FB

a. Output filter pole and zero (Inductor, output capacitor

value & ESR).

b. Error amplifier compensation & saw-tooth wave

amplitude (compensation network).

V

COMP

CH1:(500mV/Div)

CH2:(2V/Div)

c. Kelvin sense for V

CORE

.

Current Loop Setting

a. GM amplifier S/H current (current sense component

DCR, ISP

X

and ISN

X

pin external resistor value).

b. Over-current protection trip point (R

IMAX

resistor).

VRM Load Line Setting

a. Droop amplitude (ADJ pin resistor).

Time (250ns/Div)

Figure 16. EA Rising Transient with 10pF Loading ;

Slew Rate = 10V/μs

EA Rising Slew Rate

V

FB

b. No load offset (R

CSN

)

c. DAC offset voltage setting (OFS pin & compensation

network resistor).

d. Temperature coefficient compensation(TSEN external

resister & thermistor, resistor between ADJ and GND.)

Power Sequence & SS

V

COMP

CH1:(500mV/Div)

CH2:(2V/Div)

DVD pin external resistor and SS pin capacitor.

PCB Layout

sense for current sense GM amplifier input.

to layout guide for other items.

Time (250ns/Div)

Figure 17. EA Falling Transient with 10pF Loading ;

Slew Rate = 8V/μs

26

DS8803A-06 April 2011

RT8803A

Outline Dimension

D

D2

SEE DETAIL A

L

1

E

E2

e

b

1

2

1

2

A

A3

A1

DETAIL A

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional,

but must be located within the zone indicated.

Symbol

Dimensions In Millimeters Dimensions In Inches

Min Max Min Max

A 0.800 1.000 0.031 0.039

A1 0.000 0.050 0.000 0.002

A3 0.175 0.250 0.007 0.010

b 0.180 0.300 0.007 0.012

D 4.950 5.050 0.195 0.199

D2 3.400 3.750 0.134 0.148

E 4.950 5.050 0.195 0.199

E2 3.400 3.750 0.134 0.148

e 0.500 0.020

L 0.350 0.450

0.014 0.018

V-Type 32L QFN 5x5 Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email:*********************

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit

design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be

guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

DS8803A-06 April

27

发布评论

评论列表 (0)

  1. 暂无评论