最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

一元一次方程复习题

IT圈 admin 28浏览 0评论

2024年1月17日发(作者:旅森丽)

《一元一次方程》复习题

一、选择题。

1. 下列方程中是一元一次方程的是( )

A.2x3y B.7x56x1 C.x21x11 D.2x

21x2.若方程ax3x15的解为x=5,则a等于( )

A. 80 B. 4

13 C. 6 D. 2

3.根据“x与5的和的3倍比x的少2”列出方程是( ).

A.3x+5=x3-2 B.3x+5=x3x3+2

x3 C.3(x+5)=-2 D.3(x+5)=+2

4.若(m2)x2m36是一元一次方程,则m等于( ).

A、1 B、2 C、1或2 D、任何数

5. 甲队有32人,乙队有28人。现在从乙队抽X人到甲队,使甲队人数是乙队人数的2倍,根据题意,得出的方程是( )

A、32+X=56; B、32=2(28-X);

C、32+X=2(28-X); D、2(32+X)=28-X

6.把方程x0.70.03x172x10x172x1 B、1 A、737310x1720x10x1720x10 D1 C、73730.170.2x1中的分母化为整数,正确的是( )

7. 下列运用等式的性质对等式进行的变形中,正确的是( )。

A、若x=y,则x—5=y+5 B、若a=b,则ac=bc

C、若acbc,则2a3b D、若x=y,则xaya

8.下列各题中正确的是( )

A. 由7x4x3移项得7x4x3

B. 由2x131x32去分母得2(2x1)13(x3)

C. 由2(2x1)3(x3)1去括号得4x23x91

D. 由2(x1)x7移项、合并同类项得x=5

9. 一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为-

A.17 B.18 C.19 D.20

10. 某商人一次卖出两件商品。一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人( )

A、赔了90元; B、赚了90元; C、赚了100元; D、不赔不赚。

11.下列变形中,正确的是( )

A.若ac=bc,则a=b. B.若acbc,则a=b.

C.若a=b,则a=b. D.若a2=b2,则a=b.

12.已知三个连续奇数的和是51,则中间的那个数是( ).

A.15 B.17 C.19 D.21

13、关于x的方程3x+5=0与3x+3k=1的解相同,则k=( ).

44A.-2 B. C.2 D.-

3314.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是 ( )

A.10岁 B.15岁 C.20岁 D.30岁

15.若代数式2x2+3y-7的值为8,则代数式4x2+6y+10的值为( )

A.40 B. 30 C. 15 D.25

二.填空题。

1. x的三倍减去7,等于它的两倍加上5,用方程表示为_____________ 。

2. 若x=-4是方程m(x-1)=4x-m的解,则m= ________;。

3. 若2a与1-a互为相反数,则a等于_____________。

4.拉萨市出租车的收费标准是:3千米内(含3千米)起步价为8元,3千米外每千米收费为1.8元,当你回家付出车费20.6元,设你坐出租车x千米。列方程为

5. 已知方程x252x32的解也是方程3x2b的解,则b=____________.

三.解答题。

(一)解方程。

(1)2x+5=5x-7 (2)3(x-2)=2-5(x-2)

2

(3)

(二).用方程求解。

1、若x=2是方程k(2x-1)=kx+7的解,那么求k的值

2、当x为什么时,代数式3

3. k取何值时,代数式

4. m为何值时,关于x的方程4x2m3x1的解是x2x3m的解的2倍?

四.应用题。

(一)行程问题:

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

2、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?

(2)如果同向而行,两人多久第一次相遇?

k132x3与2x1的值相等

y242y361 (4)

43341x261

5值比3k12的值小1。

3

3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.

5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。

(1)火车的速度为每秒多少米?(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?

8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,步行者的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇

(汽车掉头的时间忽略不计)?

9、一列火车经过一条300米长的隧道,需要20秒。在隧道的上方有一盏路灯,路灯的光线垂直往下照,火车通过灯光的时间为10秒。这列火车有多长?

时钟问题:

10、在6点和7点间,几时分针和时针重合?

11、分针与时针每天重合几次?

12、在3点与4点之间,分针与时针经过多长时间,(1)重合;(2)垂直;(3)平角。

行船问题:

4

12、 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

13、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

14、某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,轮船在静水中航行的速度是多少千米/时?

15、某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,水流的速度是多少千米/时?

(二)工程问题:

1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?如何列式?

(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把

水池注满?

② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三

5

管同时开放,多少小时才能把一空池注满水?

(三)和差倍分问题(生产、做工等各类问题):

1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?

3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.

(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)

(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?

7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

6

8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.

2(1)设计横断面面积为1.6米,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;

(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。

9.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:

捐款(元) 5 8 10 12

人数 6 ■ ■ 7

表中有两处看不清楚,请你帮助确定表中数据。

比赛积分问题:

10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了多少道题?

11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

年龄问题:

12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.

13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

比例问题:

14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

15.一时期,日元与人民币的比价为25:1,那么日元50万,可以兑换人民币多少元?

16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°. 7

如图,第二天魏老师就给同学们出了两个问题:

(1)如果把0.5千克的菜放在秤上,指针转过多少角度?

(2)如果指针转了540°,这些菜有多少千克?

(四)调配问题:

1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?

3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(五)分配问题:

4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

(六)配套问题:

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

8

3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(七)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %

2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是 。。

3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

5.某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。(1)求今年油菜的种植面积。

设今年油菜的种植面积是x 亩。完成下表后再列方程解答。

亩产量 种植面积 油菜籽总产量

含油率

产油量

(千克/亩) (亩) (千克) (千克)

去年 150 40﹪

今年 x

9

(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。

6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

利润与利润率:

7.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________.

8.某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为( )

一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

9.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。已知进价x元时标价m元的60%,则x的值是( )

10.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.

11.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率.

12.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?

13.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每售价成本只的成本降低了__________.(精确到0.01元.毛利率=成本10000)

14.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?

10

15.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

16.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。他们一共要付 元

117.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系:

3DP1730.问:

(1)当单价为4元时,市场需求量是多少?

(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?

18.八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克.

(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):

(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?

19.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有 元(不计利息税)

本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。若年利率为x%,则可列方程__________________________。(年存储利息=本金×年利率×年数)

20.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。若设小明的这笔一年定期存款是x元,则下列方程中正确的是( )

(A)x1.98%20%1219 (B)1.98%x20%1219

(C)1.98%x(120%)1219 (D)x1.98%x(120%)1219

(八)数字问题:

1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

11

2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。

13579

.将连续的奇数1,3,5,7,9„,排成如下的数表:

2123252729(1)十字框中的五个数的平均数与15有什么关系?

3133353739(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

(九)几何问题:

1.一个长方形的周长长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,可列方程是

2.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?

3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

24.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm,问量筒中水面升高了多少cm?

5.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分2

的面积为224cm,求重叠部分面积。

(十)方案设计与成本分析:

1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。

当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销 12

售或加工完毕,企业研制了三种可行方案。

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;

方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。

你认为哪种方案获利最多?为什么

2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.

请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.

3.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

4.某市的出租车计价规则如下:行程不超过3km,收起步价8元,超过部分每千米收费1.2元.某天张老师和三位学生去看望一学生,共乘了11km, 请你算一下张老师应付车费

元。

5.据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调 13

整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?

6.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)

7.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

8.某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的路程的多少讨论用哪个公司的车比较合算?

9.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b

①分别用a、b表示用两种方式出售水果的收入。

②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?

14

10.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.

(1)试用含x的代数式表示出两种方案所需的费用.

(2)当所需仪器为多少件时, 两种方案所需费用一样多?

(3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.

11.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。

(1)、试求一个人要打电话30分钟,他应该选择那种通信业务?

(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?

12.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?

13.据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:

换表后

时间 换表前

峰时(8︰00—21︰00) 谷时(21︰00—8︰00)

电价 每度0.52元 每度0.55元 每度0.30元

小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时” 电和“谷时” 电分别是多少度?

14.小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时

(1)照明时间500小时选哪一种灯省钱?

15

(2)照明时间1500小时选哪一种灯省钱?

(3)照明多少时间用两种灯费用相等?

15.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30m2的墙面。

(1)求每个房间需要粉刷的墙面面积;

(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?

(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?

(十二)浓度问题:

1.(1)有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。

(2)某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?

2.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?

3.甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?

4.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?

16

第一讲作业:

1、汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?

2、100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

3、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

17

4、某地上网有两种收费方式,用户可以任选其一:

A、记时制:2.8元/小时,

B、包月制:16元/月。此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户上网20小时,选用哪种上网方式比较合算?

(2)当上网时间在什么小时时,两种上网费用一样多?

5、电信部门推出两种电话计费方式如下表:

A B

月租费(元/月) 30 0

通话费(元/分钟) 0.40 0.5

(1)当通话时间是多少分钟时两种方式收费一样多?

(2)当通话时间 时,A种收费方式省钱;当通话时间 时,B种收费方式省钱.

18

2024年1月17日发(作者:旅森丽)

《一元一次方程》复习题

一、选择题。

1. 下列方程中是一元一次方程的是( )

A.2x3y B.7x56x1 C.x21x11 D.2x

21x2.若方程ax3x15的解为x=5,则a等于( )

A. 80 B. 4

13 C. 6 D. 2

3.根据“x与5的和的3倍比x的少2”列出方程是( ).

A.3x+5=x3-2 B.3x+5=x3x3+2

x3 C.3(x+5)=-2 D.3(x+5)=+2

4.若(m2)x2m36是一元一次方程,则m等于( ).

A、1 B、2 C、1或2 D、任何数

5. 甲队有32人,乙队有28人。现在从乙队抽X人到甲队,使甲队人数是乙队人数的2倍,根据题意,得出的方程是( )

A、32+X=56; B、32=2(28-X);

C、32+X=2(28-X); D、2(32+X)=28-X

6.把方程x0.70.03x172x10x172x1 B、1 A、737310x1720x10x1720x10 D1 C、73730.170.2x1中的分母化为整数,正确的是( )

7. 下列运用等式的性质对等式进行的变形中,正确的是( )。

A、若x=y,则x—5=y+5 B、若a=b,则ac=bc

C、若acbc,则2a3b D、若x=y,则xaya

8.下列各题中正确的是( )

A. 由7x4x3移项得7x4x3

B. 由2x131x32去分母得2(2x1)13(x3)

C. 由2(2x1)3(x3)1去括号得4x23x91

D. 由2(x1)x7移项、合并同类项得x=5

9. 一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为-

A.17 B.18 C.19 D.20

10. 某商人一次卖出两件商品。一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人( )

A、赔了90元; B、赚了90元; C、赚了100元; D、不赔不赚。

11.下列变形中,正确的是( )

A.若ac=bc,则a=b. B.若acbc,则a=b.

C.若a=b,则a=b. D.若a2=b2,则a=b.

12.已知三个连续奇数的和是51,则中间的那个数是( ).

A.15 B.17 C.19 D.21

13、关于x的方程3x+5=0与3x+3k=1的解相同,则k=( ).

44A.-2 B. C.2 D.-

3314.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是 ( )

A.10岁 B.15岁 C.20岁 D.30岁

15.若代数式2x2+3y-7的值为8,则代数式4x2+6y+10的值为( )

A.40 B. 30 C. 15 D.25

二.填空题。

1. x的三倍减去7,等于它的两倍加上5,用方程表示为_____________ 。

2. 若x=-4是方程m(x-1)=4x-m的解,则m= ________;。

3. 若2a与1-a互为相反数,则a等于_____________。

4.拉萨市出租车的收费标准是:3千米内(含3千米)起步价为8元,3千米外每千米收费为1.8元,当你回家付出车费20.6元,设你坐出租车x千米。列方程为

5. 已知方程x252x32的解也是方程3x2b的解,则b=____________.

三.解答题。

(一)解方程。

(1)2x+5=5x-7 (2)3(x-2)=2-5(x-2)

2

(3)

(二).用方程求解。

1、若x=2是方程k(2x-1)=kx+7的解,那么求k的值

2、当x为什么时,代数式3

3. k取何值时,代数式

4. m为何值时,关于x的方程4x2m3x1的解是x2x3m的解的2倍?

四.应用题。

(一)行程问题:

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

2、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?

(2)如果同向而行,两人多久第一次相遇?

k132x3与2x1的值相等

y242y361 (4)

43341x261

5值比3k12的值小1。

3

3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.

5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。

(1)火车的速度为每秒多少米?(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?

8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,步行者的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇

(汽车掉头的时间忽略不计)?

9、一列火车经过一条300米长的隧道,需要20秒。在隧道的上方有一盏路灯,路灯的光线垂直往下照,火车通过灯光的时间为10秒。这列火车有多长?

时钟问题:

10、在6点和7点间,几时分针和时针重合?

11、分针与时针每天重合几次?

12、在3点与4点之间,分针与时针经过多长时间,(1)重合;(2)垂直;(3)平角。

行船问题:

4

12、 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

13、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

14、某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,轮船在静水中航行的速度是多少千米/时?

15、某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,水流的速度是多少千米/时?

(二)工程问题:

1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?如何列式?

(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把

水池注满?

② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三

5

管同时开放,多少小时才能把一空池注满水?

(三)和差倍分问题(生产、做工等各类问题):

1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?

3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.

(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)

(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?

7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

6

8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.

2(1)设计横断面面积为1.6米,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;

(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。

9.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:

捐款(元) 5 8 10 12

人数 6 ■ ■ 7

表中有两处看不清楚,请你帮助确定表中数据。

比赛积分问题:

10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了多少道题?

11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

年龄问题:

12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.

13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

比例问题:

14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

15.一时期,日元与人民币的比价为25:1,那么日元50万,可以兑换人民币多少元?

16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°. 7

如图,第二天魏老师就给同学们出了两个问题:

(1)如果把0.5千克的菜放在秤上,指针转过多少角度?

(2)如果指针转了540°,这些菜有多少千克?

(四)调配问题:

1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?

3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(五)分配问题:

4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

(六)配套问题:

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

8

3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(七)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %

2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是 。。

3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

5.某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。(1)求今年油菜的种植面积。

设今年油菜的种植面积是x 亩。完成下表后再列方程解答。

亩产量 种植面积 油菜籽总产量

含油率

产油量

(千克/亩) (亩) (千克) (千克)

去年 150 40﹪

今年 x

9

(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。

6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

利润与利润率:

7.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________.

8.某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为( )

一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

9.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。已知进价x元时标价m元的60%,则x的值是( )

10.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.

11.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率.

12.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?

13.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每售价成本只的成本降低了__________.(精确到0.01元.毛利率=成本10000)

14.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?

10

15.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

16.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。他们一共要付 元

117.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系:

3DP1730.问:

(1)当单价为4元时,市场需求量是多少?

(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?

18.八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克.

(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):

(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?

19.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有 元(不计利息税)

本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。若年利率为x%,则可列方程__________________________。(年存储利息=本金×年利率×年数)

20.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。若设小明的这笔一年定期存款是x元,则下列方程中正确的是( )

(A)x1.98%20%1219 (B)1.98%x20%1219

(C)1.98%x(120%)1219 (D)x1.98%x(120%)1219

(八)数字问题:

1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

11

2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。

13579

.将连续的奇数1,3,5,7,9„,排成如下的数表:

2123252729(1)十字框中的五个数的平均数与15有什么关系?

3133353739(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

(九)几何问题:

1.一个长方形的周长长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,可列方程是

2.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?

3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。

24.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm,问量筒中水面升高了多少cm?

5.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分2

的面积为224cm,求重叠部分面积。

(十)方案设计与成本分析:

1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。

当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销 12

售或加工完毕,企业研制了三种可行方案。

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;

方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。

你认为哪种方案获利最多?为什么

2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.

请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.

3.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

4.某市的出租车计价规则如下:行程不超过3km,收起步价8元,超过部分每千米收费1.2元.某天张老师和三位学生去看望一学生,共乘了11km, 请你算一下张老师应付车费

元。

5.据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调 13

整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?

6.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)

7.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

8.某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的路程的多少讨论用哪个公司的车比较合算?

9.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b

①分别用a、b表示用两种方式出售水果的收入。

②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?

14

10.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.

(1)试用含x的代数式表示出两种方案所需的费用.

(2)当所需仪器为多少件时, 两种方案所需费用一样多?

(3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.

11.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。

(1)、试求一个人要打电话30分钟,他应该选择那种通信业务?

(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?

12.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?

13.据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:

换表后

时间 换表前

峰时(8︰00—21︰00) 谷时(21︰00—8︰00)

电价 每度0.52元 每度0.55元 每度0.30元

小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时” 电和“谷时” 电分别是多少度?

14.小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时

(1)照明时间500小时选哪一种灯省钱?

15

(2)照明时间1500小时选哪一种灯省钱?

(3)照明多少时间用两种灯费用相等?

15.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30m2的墙面。

(1)求每个房间需要粉刷的墙面面积;

(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?

(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?

(十二)浓度问题:

1.(1)有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。

(2)某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?

2.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?

3.甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?

4.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?

16

第一讲作业:

1、汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?

2、100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

3、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

17

4、某地上网有两种收费方式,用户可以任选其一:

A、记时制:2.8元/小时,

B、包月制:16元/月。此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户上网20小时,选用哪种上网方式比较合算?

(2)当上网时间在什么小时时,两种上网费用一样多?

5、电信部门推出两种电话计费方式如下表:

A B

月租费(元/月) 30 0

通话费(元/分钟) 0.40 0.5

(1)当通话时间是多少分钟时两种方式收费一样多?

(2)当通话时间 时,A种收费方式省钱;当通话时间 时,B种收费方式省钱.

18

发布评论

评论列表 (0)

  1. 暂无评论