最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

带电粒子在洛伦兹力和重力作用下的运动轨迹

IT圈 admin 47浏览 0评论

2024年3月9日发(作者:贯恨风)

带电粒子在洛伦兹力和重力作用下的运动轨迹

如果不考虑电磁辐射的影响的话,这题确实不太困难,就是高考难度的题,而且曾被出成过高考题,2008年高考物理江苏卷的倒数第二题就是这样的题目

运动轨迹确实是摆线

我那篇文章贴了推导过程,这里就直接放结论了:

小球的运动学方程为:

x=v_{0}t-R_{0}sinomega t=R_{0}omega t-R_{0}sinomega t

y=R_{0}-R_{0}cosomega t

这就是摆线的参数方程

速度:

v_{x}=x'left( t right)=v_{0}-R_{0}omegacdotcos

omega t =v_{0}-v_{0}cosomega t

v_{y}=y'left( t right)=R_{0}omegacdotsinomega

t=v_{0}sinomega t

当然,这道高考题额外增加了一个多余条件:曲线在最低点的曲率半径为该点到 x 轴距离的2倍

这个条件一加,题目就被大幅度简化了

这个条件不是独立的,可由其他条件推出:

由曲率半径公式

rho=frac{left( x'^{2}+y'^{2} right)^{3/2}} {left|

x'y''-x''y' right|} =frac{left( v_{x}^{2}+v_{y}^{2}

right)^{3/2}} {left| v_{x}a_{y}-a_{x}v_{y} right|}

=2sqrt{2}R_{0}sqrt{1-cosomega t}

=4R_{0}sinfrac{omega t}{2}

在第一次达到最低点处, omega t=pi

此时的曲率半径 R=4R_{0}=2y_{m}

或者也可以用纯粹的动力学的方法推出

注意 a=frac{v_{0}^{2}}{R_{0}}=g ,与速度 v 的夹角为

frac{omega t}{2}

则它的法向加速度大小

a_{n}=frac{v_{0}^{2}}{R_{0}}cosfrac{omega t}{2}

曲率半径

rho=frac{v^{2}}{a_{n}}=4R_{0}sinfrac{omega t}{2}

2024年3月9日发(作者:贯恨风)

带电粒子在洛伦兹力和重力作用下的运动轨迹

如果不考虑电磁辐射的影响的话,这题确实不太困难,就是高考难度的题,而且曾被出成过高考题,2008年高考物理江苏卷的倒数第二题就是这样的题目

运动轨迹确实是摆线

我那篇文章贴了推导过程,这里就直接放结论了:

小球的运动学方程为:

x=v_{0}t-R_{0}sinomega t=R_{0}omega t-R_{0}sinomega t

y=R_{0}-R_{0}cosomega t

这就是摆线的参数方程

速度:

v_{x}=x'left( t right)=v_{0}-R_{0}omegacdotcos

omega t =v_{0}-v_{0}cosomega t

v_{y}=y'left( t right)=R_{0}omegacdotsinomega

t=v_{0}sinomega t

当然,这道高考题额外增加了一个多余条件:曲线在最低点的曲率半径为该点到 x 轴距离的2倍

这个条件一加,题目就被大幅度简化了

这个条件不是独立的,可由其他条件推出:

由曲率半径公式

rho=frac{left( x'^{2}+y'^{2} right)^{3/2}} {left|

x'y''-x''y' right|} =frac{left( v_{x}^{2}+v_{y}^{2}

right)^{3/2}} {left| v_{x}a_{y}-a_{x}v_{y} right|}

=2sqrt{2}R_{0}sqrt{1-cosomega t}

=4R_{0}sinfrac{omega t}{2}

在第一次达到最低点处, omega t=pi

此时的曲率半径 R=4R_{0}=2y_{m}

或者也可以用纯粹的动力学的方法推出

注意 a=frac{v_{0}^{2}}{R_{0}}=g ,与速度 v 的夹角为

frac{omega t}{2}

则它的法向加速度大小

a_{n}=frac{v_{0}^{2}}{R_{0}}cosfrac{omega t}{2}

曲率半径

rho=frac{v^{2}}{a_{n}}=4R_{0}sinfrac{omega t}{2}

发布评论

评论列表 (0)

  1. 暂无评论