2024年4月4日发(作者:巧曲)
排列组合公式/排列组合计算公式
2008-07-08 13:30
公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=
r
举例:
Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属
于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之
类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,
个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,
9)=9*8*7,(从9倒数3个的乘积)
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联
盟”,可以组合成多少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一
起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数
即为最终组合数C(3,9)=9*8*7/3*2*1
排列、组合的概念和公式典型例题分析
例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每
名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小
组的人数,因此共有
种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,
因此共有
种不同方法.
点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例2 排成一行,其中
不排第一,
不排第二,
不排第三,
不排第四的不同排法共有多
少种?
解 依题意,符合要求的排法可分为第一个排
、
、
中的某一个,共3类,每一类中不
同排法可采用画“树图”的方式逐一排出:
∴ 符合题意的不同排法共有9种.
点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”
是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3 判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了
一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不
同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多
少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中
选出2盆放在教室有多少种不同的选法?
分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺
序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无
关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了
封信;②是组合问题,共需握手
(次).
(2)①是排列问题,共有
(种)不同的选法;②是组合问题,共有
种不同的选法.
(3)①是排列问题,共有
种不同的商;②是组合问题,共有
种不同的积.
(4)①是排列问题,共有
种不同的选法;②是组合问题,共有
种不同的选法.
例4 证明
.
证明 左式
2024年4月4日发(作者:巧曲)
排列组合公式/排列组合计算公式
2008-07-08 13:30
公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=
r
举例:
Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属
于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之
类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,
个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,
9)=9*8*7,(从9倒数3个的乘积)
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联
盟”,可以组合成多少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一
起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数
即为最终组合数C(3,9)=9*8*7/3*2*1
排列、组合的概念和公式典型例题分析
例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每
名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小
组的人数,因此共有
种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,
因此共有
种不同方法.
点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例2 排成一行,其中
不排第一,
不排第二,
不排第三,
不排第四的不同排法共有多
少种?
解 依题意,符合要求的排法可分为第一个排
、
、
中的某一个,共3类,每一类中不
同排法可采用画“树图”的方式逐一排出:
∴ 符合题意的不同排法共有9种.
点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”
是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3 判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了
一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不
同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多
少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中
选出2盆放在教室有多少种不同的选法?
分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺
序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无
关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了
封信;②是组合问题,共需握手
(次).
(2)①是排列问题,共有
(种)不同的选法;②是组合问题,共有
种不同的选法.
(3)①是排列问题,共有
种不同的商;②是组合问题,共有
种不同的积.
(4)①是排列问题,共有
种不同的选法;②是组合问题,共有
种不同的选法.
例4 证明
.
证明 左式