2024年5月12日发(作者:琦夏波)
微积分公式
D
x
sin x=cos x
cos x = -sin x
tan x = sec
2
x
cot x = -csc
2
x
sec x = sec x tan x
csc x = -csc x cot x
1
x
D
x
sin
-1
()=
22
a
ax
x
cos
-1
()=
a
x
a
tan
-1
()=
2
a
ax
2
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x – cot x | + C
sin
-1
x dx = x sin
-1
x+
1x
2
+C
cos
-1
x dx = x cos
-1
x-
1x
2
+C
tan
-1
x dx = x tan
-1
x-ln (1+x
2
)+C
cot
-1
x dx = x cot
-1
x+ln (1+x
2
)+C
sec
-1
x dx = x sec
-1
x- ln |x+
x
2
1
|+C
sin
-1
(-x) = -sin
-1
x
cos
-1
(-x) = - cos
-1
x
tan
-1
(-x) = -tan
-1
x
cot
-1
(-x) = - cot
-1
x
sec
-1
(-x) = - sec
-1
x
csc
-1
(-x) = - csc
-1
x
x
sinh
-1
()= ln (x+
a
2
x
2
) x
R
a
x
cosh
-1
()=ln (x+
x
2
a
2
) x≧1
a
x1
ax
tanh
-1
()=ln () |x| <1
a2a
ax
x
cot
-1
()=
a
1
xa
-1
x
coth ()=ln () |x| >1
2
-1-1
a2a
xa
csc x dx = x csc x+ ln |x+
x1
|+C
x1
1x
2
sech()=ln(+)0≦x≦1
2
ax
x
-1
sec
-1
(
x
a
)=
22
a
xxa
csc
-1
(x/a)=
D
x
sinh x = cosh x
cosh x = sinh x
tanh x = sech
2
x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
x1
1x
2
csch ()=ln(+) |x| >0
ax
x
2
duv = udv + vdu
-1
duv = uv = udv + vdu
→ udv = uv - vdu
cos
2
θ-sin
2
θ=cos2θ
cos
2
θ+ sin
2
θ=1
cosh
2
θ-sinh
2
θ=1
cosh
2
θ+sinh
2
θ=cosh2θ
sin 3θ=3sinθ-4sin
3
θ
cos3θ=4cos
3
θ-3cosθ
→sin
3
θ= (3sinθ-sin3θ)
→cos
3
θ=(3cosθ+cos3θ)
coth x = -csch
2
x coth x dx = ln | sinh x | + C
sech x = -sech x tanh x sech x dx = -2tan
-1
(e
-x
) + C
csch x = -csch x coth x
1e
x
csch x dx = 2 ln || + C
2x
1e
1
x
D
x
sinh
-1
()=
sinh
-1
x dx = x sinh
-1
x-
1x
2
+ C
22
a
ax
x
cosh
-1
()=
a
1
xa
22
cosh
-1
x dx = x cosh
-1
x-
x
2
1
+ C
x
a
tanh
-1
()=
2
2
a
ax
-1
tanh
-1
x dx = x tanh
-1
x+ ln | 1-x
2
|+ C
e
jx
e
jx
e
jx
e
jx
sin x = cos x =
-1-12
2
2j
coth x dx = x coth x- ln | 1-x|+ C
e
x
e
x
e
x
e
x
sinh x = cosh x =
22
bc
a
正弦定理:
= ==2R
sin
sin
sin
sech
-1
x dx = x sech
-1
x- sin
-1
x + C
x
coth()=
a
csch
-1
x dx = x csch
-1
x+ sinh
-1
x + C
a
x
γ
sech
-1
()=
22
a
a
xax
R b
csch
-1
(x/a)=
a
xax
22
β
α
c
余弦定理: a
2
=b
2
+c
2
-2bc cosα
b
2
=a
2
+c
2
-2ac cosβ
c
2
=a
2
+b
2
-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β
sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
2n
3
xx
x
e
x
=1+x+++…++ …
2!
3!
n!
cos α - cos β = -2 sin (α+β) sin (α-β)
tan
tan
cot
cot
tan (α±β)=, cot (α±β)=
tan
tan
cot
cot
1
= n
i1
n
n
x
3
x
5
x
7
(1)
n
x
2n1
sin x = x-+-+…++ …
3!5!
7!
(2n1)!
x
2
x
4
x
6
(1)
n
x
2n
cos x = 1-+-+…++ …
2!4!6!
(2n)!
x
2
x
3
x
4
(1)
n
x
n1
ln (1+x) = x-+-+…++ …
2
3
4
(n1)!
i
= n (n+1)
i1
n
i
2
=
i1
n
1
n (n+1)(2n+1)
6
i
i1
3
= [n (n+1)]
2
x
3
x
5
x
7
(1)
n
x
2n1
tan x = x-+-+…++ …
35
7
(2n1)
-1
Γ(x) =
t
0
x-1-t
e dt = 2
t
0
2x-1
t
2
e
dt =
0
1
(ln)
x-1
dt
t
(1+x)
r
=1+rx+
1
r(r1)
2
r(r1)(r2)
3
x+x+… -1 β(m, n) = x m-1 (1-x) n-1 dx=2 2 sin 2m-1 x cos 2n-1 x dx 0 0 2! 3! = 希腊字母 (Greek Alphabets) 大写 Α Β Γ Δ Ε Ζ Η Θ 小写 0 x m1 dx (1x) mn α β γ δ ε ζ η θ 读音 alpha beta gamma delta epsilon zeta eta theta 大写 Ι Κ Λ Μ Ν Ξ Ο Π 小写 ι κ λ μ ν ξ ο π 读音 iota kappa lambda mu nu xi omicron pi 大写 Ρ Σ Τ Υ Φ Χ Ψ Ω 小写 ρ σ, sigma tau τ υ upsilon phi φ khi χ psi ψ ω omega 读音 rho 倒数关系: sinθcscθ=1; tanθcotθ=1; cosθsecθ=1 商数关系: tanθ= sin cos ; cotθ= cos sin 平方关系: cos 2 θ+ sin 2 θ=1; tan 2 θ+ 1= sec 2 θ; 1+ cot 2 θ= csc 2 θ 順位高 ; 顺位高d 顺位低 ; 順位低 0* = 1 10 * = = 0* = 00 0 0 = e 0() ; 0 = e 0 ; 1 = e 0 算术平均数(Arithmetic mean) 顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲) 中位数(Median) 众数(Mode) 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin) 取排序后中间的那位数字 次数出现最多的数值 变异数(Variance) (X 1 n i X) 2 n or (X 1 n i X) 2 n1 标准差(Standard Deviation) (X 1 n i X) 2 n 分配 Discrete Uniform Continuous Uniform Bernoulli Binomial Negative Binomial Multinomial 机率函数f(x) or (X 1 n i X) 2 变异数V(x) 1 2 (n+1) 12 1 (b-a) 2 12 n1 期望值E(x) 1 (n+1) 2 1 (a+b) 2 动差母函数 m(t) p x q 1-x (x=0, 1) n xn-x x pq kx1 kx pq x f(x 1 , x 2 , …, x m-1 )= n! xxx p 1 1 p 2 2 ...p m m x 1 !x 2 !...x m ! p np pq npq q+pe t (q+ pe t ) n np i np i (1-p i ) 三项 (p 1 e t1 + p 2 e t2 + p 3 ) n Geometric Hypergeometric Poisson Normal Beta Gamma pq x-1 k n N Nn k n N1 N λ μ λ σ 2 Exponent Chi-Squaredχ 2 =f(χ 2 E(χ)=n 1 n 2 2 n 2 2 V(χ)=2n 2 ) = ( 2 ) n 1 2 e 2 2 Weibull 1 000 000 000 000 000 000 000 000 10 24 yotta Y 1 000 000 000 000 000 000 000 10 21 zetta Z 1 000 000 000 000 000 000 10 18 exa E 1 000 000 000 000 000 10 15 peta P 1 000 000 000 000 10 12 tera T 兆 1 000 000 000 10 9 giga G 十亿 1 000 000 10 6 mega M 百万 1 000 10 3 kilo K 千 100 102 hecto H 百 10 101 deca D 十 10 -1 deci d 分,十分之一 10 -2 centi c 厘(或写作「厘」),百分之一 10 -3 milli m 毫,千分之一 001 10 -6 micro 微,百万分之一 000 001 10 -9 nano n 奈,十亿分之一 000 000 001 10 -12 pico p 皮,兆分之一 000 000 000 001 10 -15 femto f 飞(或作「费」),千兆分之一 000 000 000 000 001 10 -18 atto a 阿 000 000 000 000 000 001 10 -21 zepto z 000 000 000 000 000 000 001 10 -24 yocto y
2024年5月12日发(作者:琦夏波)
微积分公式
D
x
sin x=cos x
cos x = -sin x
tan x = sec
2
x
cot x = -csc
2
x
sec x = sec x tan x
csc x = -csc x cot x
1
x
D
x
sin
-1
()=
22
a
ax
x
cos
-1
()=
a
x
a
tan
-1
()=
2
a
ax
2
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x – cot x | + C
sin
-1
x dx = x sin
-1
x+
1x
2
+C
cos
-1
x dx = x cos
-1
x-
1x
2
+C
tan
-1
x dx = x tan
-1
x-ln (1+x
2
)+C
cot
-1
x dx = x cot
-1
x+ln (1+x
2
)+C
sec
-1
x dx = x sec
-1
x- ln |x+
x
2
1
|+C
sin
-1
(-x) = -sin
-1
x
cos
-1
(-x) = - cos
-1
x
tan
-1
(-x) = -tan
-1
x
cot
-1
(-x) = - cot
-1
x
sec
-1
(-x) = - sec
-1
x
csc
-1
(-x) = - csc
-1
x
x
sinh
-1
()= ln (x+
a
2
x
2
) x
R
a
x
cosh
-1
()=ln (x+
x
2
a
2
) x≧1
a
x1
ax
tanh
-1
()=ln () |x| <1
a2a
ax
x
cot
-1
()=
a
1
xa
-1
x
coth ()=ln () |x| >1
2
-1-1
a2a
xa
csc x dx = x csc x+ ln |x+
x1
|+C
x1
1x
2
sech()=ln(+)0≦x≦1
2
ax
x
-1
sec
-1
(
x
a
)=
22
a
xxa
csc
-1
(x/a)=
D
x
sinh x = cosh x
cosh x = sinh x
tanh x = sech
2
x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
x1
1x
2
csch ()=ln(+) |x| >0
ax
x
2
duv = udv + vdu
-1
duv = uv = udv + vdu
→ udv = uv - vdu
cos
2
θ-sin
2
θ=cos2θ
cos
2
θ+ sin
2
θ=1
cosh
2
θ-sinh
2
θ=1
cosh
2
θ+sinh
2
θ=cosh2θ
sin 3θ=3sinθ-4sin
3
θ
cos3θ=4cos
3
θ-3cosθ
→sin
3
θ= (3sinθ-sin3θ)
→cos
3
θ=(3cosθ+cos3θ)
coth x = -csch
2
x coth x dx = ln | sinh x | + C
sech x = -sech x tanh x sech x dx = -2tan
-1
(e
-x
) + C
csch x = -csch x coth x
1e
x
csch x dx = 2 ln || + C
2x
1e
1
x
D
x
sinh
-1
()=
sinh
-1
x dx = x sinh
-1
x-
1x
2
+ C
22
a
ax
x
cosh
-1
()=
a
1
xa
22
cosh
-1
x dx = x cosh
-1
x-
x
2
1
+ C
x
a
tanh
-1
()=
2
2
a
ax
-1
tanh
-1
x dx = x tanh
-1
x+ ln | 1-x
2
|+ C
e
jx
e
jx
e
jx
e
jx
sin x = cos x =
-1-12
2
2j
coth x dx = x coth x- ln | 1-x|+ C
e
x
e
x
e
x
e
x
sinh x = cosh x =
22
bc
a
正弦定理:
= ==2R
sin
sin
sin
sech
-1
x dx = x sech
-1
x- sin
-1
x + C
x
coth()=
a
csch
-1
x dx = x csch
-1
x+ sinh
-1
x + C
a
x
γ
sech
-1
()=
22
a
a
xax
R b
csch
-1
(x/a)=
a
xax
22
β
α
c
余弦定理: a
2
=b
2
+c
2
-2bc cosα
b
2
=a
2
+c
2
-2ac cosβ
c
2
=a
2
+b
2
-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β
sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
2n
3
xx
x
e
x
=1+x+++…++ …
2!
3!
n!
cos α - cos β = -2 sin (α+β) sin (α-β)
tan
tan
cot
cot
tan (α±β)=, cot (α±β)=
tan
tan
cot
cot
1
= n
i1
n
n
x
3
x
5
x
7
(1)
n
x
2n1
sin x = x-+-+…++ …
3!5!
7!
(2n1)!
x
2
x
4
x
6
(1)
n
x
2n
cos x = 1-+-+…++ …
2!4!6!
(2n)!
x
2
x
3
x
4
(1)
n
x
n1
ln (1+x) = x-+-+…++ …
2
3
4
(n1)!
i
= n (n+1)
i1
n
i
2
=
i1
n
1
n (n+1)(2n+1)
6
i
i1
3
= [n (n+1)]
2
x
3
x
5
x
7
(1)
n
x
2n1
tan x = x-+-+…++ …
35
7
(2n1)
-1
Γ(x) =
t
0
x-1-t
e dt = 2
t
0
2x-1
t
2
e
dt =
0
1
(ln)
x-1
dt
t
(1+x)
r
=1+rx+
1
r(r1)
2
r(r1)(r2)
3
x+x+… -1 β(m, n) = x m-1 (1-x) n-1 dx=2 2 sin 2m-1 x cos 2n-1 x dx 0 0 2! 3! = 希腊字母 (Greek Alphabets) 大写 Α Β Γ Δ Ε Ζ Η Θ 小写 0 x m1 dx (1x) mn α β γ δ ε ζ η θ 读音 alpha beta gamma delta epsilon zeta eta theta 大写 Ι Κ Λ Μ Ν Ξ Ο Π 小写 ι κ λ μ ν ξ ο π 读音 iota kappa lambda mu nu xi omicron pi 大写 Ρ Σ Τ Υ Φ Χ Ψ Ω 小写 ρ σ, sigma tau τ υ upsilon phi φ khi χ psi ψ ω omega 读音 rho 倒数关系: sinθcscθ=1; tanθcotθ=1; cosθsecθ=1 商数关系: tanθ= sin cos ; cotθ= cos sin 平方关系: cos 2 θ+ sin 2 θ=1; tan 2 θ+ 1= sec 2 θ; 1+ cot 2 θ= csc 2 θ 順位高 ; 顺位高d 顺位低 ; 順位低 0* = 1 10 * = = 0* = 00 0 0 = e 0() ; 0 = e 0 ; 1 = e 0 算术平均数(Arithmetic mean) 顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲) 中位数(Median) 众数(Mode) 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin) 取排序后中间的那位数字 次数出现最多的数值 变异数(Variance) (X 1 n i X) 2 n or (X 1 n i X) 2 n1 标准差(Standard Deviation) (X 1 n i X) 2 n 分配 Discrete Uniform Continuous Uniform Bernoulli Binomial Negative Binomial Multinomial 机率函数f(x) or (X 1 n i X) 2 变异数V(x) 1 2 (n+1) 12 1 (b-a) 2 12 n1 期望值E(x) 1 (n+1) 2 1 (a+b) 2 动差母函数 m(t) p x q 1-x (x=0, 1) n xn-x x pq kx1 kx pq x f(x 1 , x 2 , …, x m-1 )= n! xxx p 1 1 p 2 2 ...p m m x 1 !x 2 !...x m ! p np pq npq q+pe t (q+ pe t ) n np i np i (1-p i ) 三项 (p 1 e t1 + p 2 e t2 + p 3 ) n Geometric Hypergeometric Poisson Normal Beta Gamma pq x-1 k n N Nn k n N1 N λ μ λ σ 2 Exponent Chi-Squaredχ 2 =f(χ 2 E(χ)=n 1 n 2 2 n 2 2 V(χ)=2n 2 ) = ( 2 ) n 1 2 e 2 2 Weibull 1 000 000 000 000 000 000 000 000 10 24 yotta Y 1 000 000 000 000 000 000 000 10 21 zetta Z 1 000 000 000 000 000 000 10 18 exa E 1 000 000 000 000 000 10 15 peta P 1 000 000 000 000 10 12 tera T 兆 1 000 000 000 10 9 giga G 十亿 1 000 000 10 6 mega M 百万 1 000 10 3 kilo K 千 100 102 hecto H 百 10 101 deca D 十 10 -1 deci d 分,十分之一 10 -2 centi c 厘(或写作「厘」),百分之一 10 -3 milli m 毫,千分之一 001 10 -6 micro 微,百万分之一 000 001 10 -9 nano n 奈,十亿分之一 000 000 001 10 -12 pico p 皮,兆分之一 000 000 000 001 10 -15 femto f 飞(或作「费」),千兆分之一 000 000 000 000 001 10 -18 atto a 阿 000 000 000 000 000 001 10 -21 zepto z 000 000 000 000 000 000 001 10 -24 yocto y