最新消息: USBMI致力于为网友们分享Windows、安卓、IOS等主流手机系统相关的资讯以及评测、同时提供相关教程、应用、软件下载等服务。

高中数学:第二章 2.3 第1课时 等差数列的前n项和公式

IT圈 admin 21浏览 0评论

2024年5月20日发(作者:成向)

ruize

[课时作业]页

[A组 基础巩固]

1.等差数列{a

n

}中,d=2,a

n

=11,S

n

=35,则a

1

等于( )

A.5或7

C.7或-1

B.3或5

D.3或-1

a

n

=11,

解析:由题意,得

nn-1

S

n

=35,

na+×2=35.

1

a

1

+2n-1=11,

2



n=5,

n=7,

解得或

a

1

=3,



a

1

=-1.

★答案★:D

2.已知等差数列{a

n

}的前n项和为S

n

,若S

2

=4,S

4

=20,则该数列的公差d为( )

A.7

C.3

B.6

D.2

解析:由S

2

=4,S

4

=20,得2a

1

+d=4,4a

1

+6d=20,解得d=3.

★答案★:C

3.已知等差数列{a

n

}满足a

2

+a

4

=4,a

3

+a

5

=10,则它的前10项的和S

10

等于( )

A.138

C.95

B.135

D.23

10×9

解析:由a

2

+a

4

=4,a

3

+a

5

=10,可知d=3,a

1

=-4.∴S

10

=-40+×3=95.

2

★答案★:C

4.若等差数列{a

n

}的前5项和S

5

=25,且a

2

=3,则a

7

等于( )

A.12

C.14

解析:由S

5

=5a

3

=25,∴a

3

=5.

∴d=a

3

-a

2

=5-3=2.

∴a

7

=a

2

+5d=3+10=13.

★答案★:B

5.已知数列{a

n

}的前n项和S

n

=n

2

-9n,第k项满足5<a

k

<8,则k等于( )

A.9

C.7

解析:当n=1时,a

1

=S

1

=-8;

当n≥2时,a

n

=S

n

-S

n

1

=(n

2

-9n)-[(n-1)

2

-9(n-1)]=2n-10.

B.8

D.6

B.13

D.15

ruize

综上可得数列{a

n

}的通项公式a

n

=2n-10.

所以a

k

=2k-10.令5<2k-10<8,解得k=8.

★答案★:B

1

6.已知数列{a

n

}中,a

1

=1,a

n

=a

n

1

+(n≥2),则数列{a

n

}的前9项和等于________.

2

11

解析:∵n≥2时,a

n

=a

n

1

+,且a

1

=1,所以数列{a

n

}是以1为首项,以为公差的等差

22

9×8

1

数列,所以S

9

=9×1+×=9+18=27.

22

★答案★:27

7.等差数列{a

n

}中,若a

10

=10,a

19

=100,前n项和S

n

=0,则n=________.

a

1

+9d=10

解析:

,∴d=10,a

1

=-80.

a

1

+18d=100

nn-1

∴S

n

=-80n+×10=0,

2

∴-80n+5n(n-1)=0,n=17.

★答案★:17

8.等差数列{a

n

}中,a

2

+a

7

+a

12

=24,则S

13

=________.

解析:因为a

1

+a

13

=a

2

+a

12

=2a

7

又a

2

+a

7

+a

12

=24,

所以a

7

=8.

13a

1

+a

13

所以S

13

==13×8=104.

2

★答案★:104

9.在等差数列{a

n

}中:

(1)已知a

5

+a

10

=58,a

4

+a

9

=50,求S

10

(2)已知S

7

=42,S

n

=510,a

n

3

=45,求n.

解析:(1)由已知条件得

a

5

+a

10

=2a

1

+13d=58,

a

1

=3,



解得



a+a=2a+11d=50,d=4.

4

91

10×10-110×9

∴S

10

=10a

1

+d=10×3+×4=210.

22

7a

1

+a

7

(2)S

7

==7a

4

=42,

2

∴a

4

=6.

na

1

+a

n

na

4

+a

n

3

n6+45

∴S

n

====510.

222

ruize

∴n=20.

10.在等差数列{a

n

}中,a

10

=18,前5项的和S

5

=-15,

(1)求数列{a

n

}的通项公式;

(2)求数列{a

n

}的前n项和的最小值,并指出何时取得最小值.

解析:(1)设{a

n

}的首项,公差分别为a

1

,d.

a+9d=18,

1

5

5a+×4×d=-15,

1

2

解得a

1

=-9,d=3,

∴a

n

=3n-12.

na

1

+a

n

1

2

(2)S

n

==(3n-21n)

22

7

3147

n-

2

-, =

2

2

8

∴当n=3或4时,前n项的和取得最小值为-18.

[B组 能力提升]

1.S

n

是等差数列{a

n

}的前n项和,a

3

+a

6

+a

12

为一个常数,则下列也是常数的是( )

A.S

17

C.S

13

B.S

15

D.S

7

解析:∵a

3

+a

6

+a

12

为常数,∴a

2

+a

7

+a

12

=3a

7

为常数,∴a

7

为常数.又S

13

=13a

7

,∴S

13

为常数.

★答案★:C

2.设等差数列{a

n

}的前n项和为S

n

,S

m

1

=-2,S

m

=0,S

m

1

=3,则m=( )

A.3

C.5

B.4

D.6

解析:a

m

=S

m

-S

m

1

=2,a

m

1

=S

m

1

-S

m

=3,

∴d=a

m

1

-a

m

=1,由S

m

a

1

+a

m

m

=0,

2

知a

1

=-a

m

=-2,a

m

=-2+(m-1)=2,

解得m=5.

★答案★:C

a

5

5S

9

3.设S

n

是等差数列{a

n

}的前n项和,若=,则等于________.

a

3

9S

5

a

5

2a

5

a

1

+a

9

5

解析:由等差数列的性质,===,

a

3

2a

3

a

1

+a

5

9

ruize

9

a

1

+a

9

S

9

2

95

∴==×=1.

S

5

559

a

1

+a

5

2

★答案★:1

4.设等差数列{a

n

}的前n项和为S

n

,已知前6项和为36,最后6项和为180,S

n

=324(n>6),

则数列的项数n=________,a

9

+a

10

=________.

解析:由题意,可知a

1

+a

2

+…+a

6

=36 ①,a

n

+a

n

1

+a

n

2

+…+a

n

5

=180 ②,由①

+②,得(a

1

+a

n

)+(a

2

+a

n

1

)+…+(a

6

+a

n

5

)=6(a

1

+a

n

)=216,∴a

1

+a

n

=36.又S

n

na

1

+a

n

=324,∴18n=324,∴n=18,∴a

1

+a

18

=36,∴a

9

+a

10

=a

1

+a

18

=36.

2

★答案★:18 36

3205

5.等差数列{a

n

}的前n项和S

n

=-n

2

+n,求数列{|a

n

|}的前n项和T

n

.

22

解析:a

1

=S

1

=101,当n≥2时,

3

3205

-n-1

2

a

n

=S

n

-S

n

1

=-n

2

+n-

2

22

205

n-1

=-3n+104,a

1

=S

1

=101也适合

2

2

上式,所以a

n

=-3n+104,令a

n

=0,n=34,故n≥35时,a

n

<0,n≤34时,a

n

>0,所以

3

3205

对数列{|a

n

|},n≤34时,T

n

=|a

1

|+|a

2

|+…+|a

n

|=a

1

+a

2

+…+a

n

=-n

2

+n,

22

当n≥35时,T

n

=|a

1

|+|a

2

|+…+|a

34

|+|a

35

|+…+|a

n

|=a

1

+a

2

+…+a

34

-a

35

-…-a

n

3205

=2(a

1

+a

2

+…+a

34

)-(a

1

+a

2

+…+a

n

)=2S

34

-S

n

=n

2

-n+3 502,

22

2

n+

2

nn≤34,

所以T=

3205

n-

22

n+3 502n≥35.

2

n

2

3205

S

n

6.设{a

n

}为等差数列,S

n

为数列{a

n

}的前n项和,已知S

7

=7,S

15

=75,T

n

为数列

n

的前



n项和,求T

n

.

解析:设等差数列{a

n

}的公差为d,

1

则S

n

=na

1

+n(n-1)d,

2

∵S

7

=7,S

15

=75,

7a

1

+21d=7,

15a+105d=75,

1



a

1

+3d=1,

a

1

=-2,

即解得

a

1

+7d=5,



d=1,

ruize

S

n

11

∴=a

1

+(n-1)d=-2+(n-1),

n22

S

n

1

S

n

1

-=,

n+1

n2

S

n

1

∴数列

n

是等差数列,其首项为-2,公差为,

2



n·n-1

11

2

9

∴T

n

=n×(-2)+×=n-n.

2244

2024年5月20日发(作者:成向)

ruize

[课时作业]页

[A组 基础巩固]

1.等差数列{a

n

}中,d=2,a

n

=11,S

n

=35,则a

1

等于( )

A.5或7

C.7或-1

B.3或5

D.3或-1

a

n

=11,

解析:由题意,得

nn-1

S

n

=35,

na+×2=35.

1

a

1

+2n-1=11,

2



n=5,

n=7,

解得或

a

1

=3,



a

1

=-1.

★答案★:D

2.已知等差数列{a

n

}的前n项和为S

n

,若S

2

=4,S

4

=20,则该数列的公差d为( )

A.7

C.3

B.6

D.2

解析:由S

2

=4,S

4

=20,得2a

1

+d=4,4a

1

+6d=20,解得d=3.

★答案★:C

3.已知等差数列{a

n

}满足a

2

+a

4

=4,a

3

+a

5

=10,则它的前10项的和S

10

等于( )

A.138

C.95

B.135

D.23

10×9

解析:由a

2

+a

4

=4,a

3

+a

5

=10,可知d=3,a

1

=-4.∴S

10

=-40+×3=95.

2

★答案★:C

4.若等差数列{a

n

}的前5项和S

5

=25,且a

2

=3,则a

7

等于( )

A.12

C.14

解析:由S

5

=5a

3

=25,∴a

3

=5.

∴d=a

3

-a

2

=5-3=2.

∴a

7

=a

2

+5d=3+10=13.

★答案★:B

5.已知数列{a

n

}的前n项和S

n

=n

2

-9n,第k项满足5<a

k

<8,则k等于( )

A.9

C.7

解析:当n=1时,a

1

=S

1

=-8;

当n≥2时,a

n

=S

n

-S

n

1

=(n

2

-9n)-[(n-1)

2

-9(n-1)]=2n-10.

B.8

D.6

B.13

D.15

ruize

综上可得数列{a

n

}的通项公式a

n

=2n-10.

所以a

k

=2k-10.令5<2k-10<8,解得k=8.

★答案★:B

1

6.已知数列{a

n

}中,a

1

=1,a

n

=a

n

1

+(n≥2),则数列{a

n

}的前9项和等于________.

2

11

解析:∵n≥2时,a

n

=a

n

1

+,且a

1

=1,所以数列{a

n

}是以1为首项,以为公差的等差

22

9×8

1

数列,所以S

9

=9×1+×=9+18=27.

22

★答案★:27

7.等差数列{a

n

}中,若a

10

=10,a

19

=100,前n项和S

n

=0,则n=________.

a

1

+9d=10

解析:

,∴d=10,a

1

=-80.

a

1

+18d=100

nn-1

∴S

n

=-80n+×10=0,

2

∴-80n+5n(n-1)=0,n=17.

★答案★:17

8.等差数列{a

n

}中,a

2

+a

7

+a

12

=24,则S

13

=________.

解析:因为a

1

+a

13

=a

2

+a

12

=2a

7

又a

2

+a

7

+a

12

=24,

所以a

7

=8.

13a

1

+a

13

所以S

13

==13×8=104.

2

★答案★:104

9.在等差数列{a

n

}中:

(1)已知a

5

+a

10

=58,a

4

+a

9

=50,求S

10

(2)已知S

7

=42,S

n

=510,a

n

3

=45,求n.

解析:(1)由已知条件得

a

5

+a

10

=2a

1

+13d=58,

a

1

=3,



解得



a+a=2a+11d=50,d=4.

4

91

10×10-110×9

∴S

10

=10a

1

+d=10×3+×4=210.

22

7a

1

+a

7

(2)S

7

==7a

4

=42,

2

∴a

4

=6.

na

1

+a

n

na

4

+a

n

3

n6+45

∴S

n

====510.

222

ruize

∴n=20.

10.在等差数列{a

n

}中,a

10

=18,前5项的和S

5

=-15,

(1)求数列{a

n

}的通项公式;

(2)求数列{a

n

}的前n项和的最小值,并指出何时取得最小值.

解析:(1)设{a

n

}的首项,公差分别为a

1

,d.

a+9d=18,

1

5

5a+×4×d=-15,

1

2

解得a

1

=-9,d=3,

∴a

n

=3n-12.

na

1

+a

n

1

2

(2)S

n

==(3n-21n)

22

7

3147

n-

2

-, =

2

2

8

∴当n=3或4时,前n项的和取得最小值为-18.

[B组 能力提升]

1.S

n

是等差数列{a

n

}的前n项和,a

3

+a

6

+a

12

为一个常数,则下列也是常数的是( )

A.S

17

C.S

13

B.S

15

D.S

7

解析:∵a

3

+a

6

+a

12

为常数,∴a

2

+a

7

+a

12

=3a

7

为常数,∴a

7

为常数.又S

13

=13a

7

,∴S

13

为常数.

★答案★:C

2.设等差数列{a

n

}的前n项和为S

n

,S

m

1

=-2,S

m

=0,S

m

1

=3,则m=( )

A.3

C.5

B.4

D.6

解析:a

m

=S

m

-S

m

1

=2,a

m

1

=S

m

1

-S

m

=3,

∴d=a

m

1

-a

m

=1,由S

m

a

1

+a

m

m

=0,

2

知a

1

=-a

m

=-2,a

m

=-2+(m-1)=2,

解得m=5.

★答案★:C

a

5

5S

9

3.设S

n

是等差数列{a

n

}的前n项和,若=,则等于________.

a

3

9S

5

a

5

2a

5

a

1

+a

9

5

解析:由等差数列的性质,===,

a

3

2a

3

a

1

+a

5

9

ruize

9

a

1

+a

9

S

9

2

95

∴==×=1.

S

5

559

a

1

+a

5

2

★答案★:1

4.设等差数列{a

n

}的前n项和为S

n

,已知前6项和为36,最后6项和为180,S

n

=324(n>6),

则数列的项数n=________,a

9

+a

10

=________.

解析:由题意,可知a

1

+a

2

+…+a

6

=36 ①,a

n

+a

n

1

+a

n

2

+…+a

n

5

=180 ②,由①

+②,得(a

1

+a

n

)+(a

2

+a

n

1

)+…+(a

6

+a

n

5

)=6(a

1

+a

n

)=216,∴a

1

+a

n

=36.又S

n

na

1

+a

n

=324,∴18n=324,∴n=18,∴a

1

+a

18

=36,∴a

9

+a

10

=a

1

+a

18

=36.

2

★答案★:18 36

3205

5.等差数列{a

n

}的前n项和S

n

=-n

2

+n,求数列{|a

n

|}的前n项和T

n

.

22

解析:a

1

=S

1

=101,当n≥2时,

3

3205

-n-1

2

a

n

=S

n

-S

n

1

=-n

2

+n-

2

22

205

n-1

=-3n+104,a

1

=S

1

=101也适合

2

2

上式,所以a

n

=-3n+104,令a

n

=0,n=34,故n≥35时,a

n

<0,n≤34时,a

n

>0,所以

3

3205

对数列{|a

n

|},n≤34时,T

n

=|a

1

|+|a

2

|+…+|a

n

|=a

1

+a

2

+…+a

n

=-n

2

+n,

22

当n≥35时,T

n

=|a

1

|+|a

2

|+…+|a

34

|+|a

35

|+…+|a

n

|=a

1

+a

2

+…+a

34

-a

35

-…-a

n

3205

=2(a

1

+a

2

+…+a

34

)-(a

1

+a

2

+…+a

n

)=2S

34

-S

n

=n

2

-n+3 502,

22

2

n+

2

nn≤34,

所以T=

3205

n-

22

n+3 502n≥35.

2

n

2

3205

S

n

6.设{a

n

}为等差数列,S

n

为数列{a

n

}的前n项和,已知S

7

=7,S

15

=75,T

n

为数列

n

的前



n项和,求T

n

.

解析:设等差数列{a

n

}的公差为d,

1

则S

n

=na

1

+n(n-1)d,

2

∵S

7

=7,S

15

=75,

7a

1

+21d=7,

15a+105d=75,

1



a

1

+3d=1,

a

1

=-2,

即解得

a

1

+7d=5,



d=1,

ruize

S

n

11

∴=a

1

+(n-1)d=-2+(n-1),

n22

S

n

1

S

n

1

-=,

n+1

n2

S

n

1

∴数列

n

是等差数列,其首项为-2,公差为,

2



n·n-1

11

2

9

∴T

n

=n×(-2)+×=n-n.

2244

发布评论

评论列表 (0)

  1. 暂无评论