2024年2月21日发(作者:聊乐蓉)
高等数学第六版课后习题及答案 第二章第四节
习题 24
1 求函数的二阶导数
(1)
y2x2ln
x
(2)
ye2x1
(3)
yxcos
x
(4)
yet sin
t
(5)ya2x2
(6)
yln(1x2)
(7)
ytan
x
(8)y31
x1 (9)
y(1x2)arctan
x
xe (10)y
x (11)yxex
(12)yln(x1x2)
解 (1)y4x1
y412
xx (2)
ye2x1
22e2x1
y2e2x1
24e2x1
(3)
yxcos
x
ycos
xxsin
x
ysin
xsin
xxcos
x2sin
xxcos
x
(4)
yetsin
tetcos
tet(cos
tsin
t)
yet(cos
tsin
t)et(sin
tcos
t)2etcos
t
2
(5)y1x
(a2x2)22222axaxa2x2xxa2x22
ya2xa2
2222(ax)ax (6)
y12(1x2)2x2
1x1x2(1x2)2x(2x)2(1x2)
y
(1x2)2(1x2)2 (7)
ysec2
x
y2sec
x(sec
x)2sec
xsec
xtan
x2sec2xtan
x
2(x31)3x (8)y3232
(x1)(x1)6x(x31)23x22(x31)3x6x(2x31)
y
(x31)4(x31)3 (9)y2xarctanx(1x2)122xarctanx1
1x
y2arctanx2x2
1xxxex(x1)exe1 (10)y
x2x2[ex(x1)ex]x2ex(x1)2xex(x22x2)
y
x4x3 (11)yexxex(2x)ex(12x2)
yex2x(12x2)ex4x2xex(32x2)
(12)y11(x1x2)(12x)1
x1x2x1x221x21x2222222x
y12(1x2)122x
1x1x21x2)(1x)21x 2 设f(x)(x10)6
f (2)?
解f (x)6(x10)5
f (x)30(x10)4
f (x)120(x10)3
f (2)120(210)207360
d2y 3 若f (x)存在 求下列函数y的二阶导数2
dx3 (1)
yf(x2)
(2)
yln[f(x)]
解 (1)y f (x2)(x2)2xf (x2)
y2f (x2)2x2xf (x2)2f (x2)4x2f (x2)
(2)y1f(x)
f(x)f(x)f(x)f(x)f(x)f(x)f(x)[f(x)]2
y
22[f(x)][f(x)] 4 试从dx1导出
dyy2y (1)dx
23dy(y)33(y)2yydx (2)3
dy(y)52ddxd1d1dxy1y
解 (1)dxdy2dydydyydxydy(y)2y(y)33ddydydx
(2)xdxy3dydy3dyy3y(y)3y3(y)2y13(y)2yy
y(y)6(y)5
5 已知物体的运动规律为sAsint(A、是常数) 求物体运动的加速度 并验证
2ds2s0
2dt 解
dsAcost
dt
2dsA2sint
2dtd2s就是物体运动的加速度
dt22s2sA2sint2Asint0
d2dt 6 验证函数yC1exC2ex(C1
C2是常数)满足关系式
y2y0
解
yC1exC2ex
yC12exC22ex
y2y(C12exC22ex)2(C1exC2ex)
(C12exC22ex)(C12exC22ex)0
7 验证函数yexsin
x满足关系式
y2y2y0
解
yexsin
xexcos
xex(sin
xcos
x)
yex(sin
xcos
x)ex(cos
xsin
x)2excos
x
y2y2y2excos
x2ex(sin
xcos
x)2exsin
x
2excos
x2exsin
x2excos
x2exsin
x0
8 求下列函数的n阶导数的一般表达式
(1)
yxna1xn1a2xn2 an1xan
(a1
a2
an都是常数)
(2)
ysin2x
(3)
yxln
x
(4)
yxex
解 (1) ynxn1(n1)a1xn2(n2)a2xn3 an1
yn(n1)xn2(n1)(n2)a1xn3(n2)(n3)a2xn4 an2
y(n)n(n1)(n2) 21x0n!
(2)
y2sin
x cos
xsin2x
y2cos2x2sin(2x)
2
y22cos(2x)22sin(2x2)
22
y(4)23cos(2x2)23sin(2x3)
22
y(n)2n1sin[2x(n1)]
2 (3)
ylnx1
y1x1
x
y(1)x2
y(4)(1)(2)x3
y(n)(1)(2)(3) (n2)xn1(1)n2 (4)
yexxex
yexexxex2exxex
y2exexxex3exxex
y(n)nexxexex(nx)
9 求下列函数所指定的阶的导数
(1)
yexcos
x 求y(4)
(2)
yxsh
x 求y(100)
(3)
yx2sin 2x 求y(50)
.
解 (1)令uex
vcos
x 有
(n2)!n(n2)!
(1)xn1xn1
uuuue
vsin
x
vcos
x
vsin
x
v(4)cos
x
所以
y(4)u(4)v4uv6uv4uvuv(4)
ex[cos
x4(sin
x)6(cos
x)4sin
xcos
x]4excos
x
(2)令ux
vsh
x 则有
u1
u0
vch
x
vsh
x
v(99)ch
x
v(100)sh
x
所以
1298(98)99(99)y(100)u(100)vC100u(99)vC100u(98)v C100uvC100uvuv(100)
(4)x 100ch
xxsh
x
(3)令ux2
vsin 2x 则有
u2x
u2
u0
v(48)248sin(2x48)248sin2x
2
v(49)249cos 2x
v(50)250sin 2x
12(48)48(48)49(49)u(49)vC50uv C50uvC50uvuv(50)
所以
y(50)u(50)vC15048(48)49(49)uvC50uvuv(50)
C50
50492228sin2x502x249cos2xx2(250sin2x)
2
250(x2sin2x50xcos2x1225sin2x)
2
2024年2月21日发(作者:聊乐蓉)
高等数学第六版课后习题及答案 第二章第四节
习题 24
1 求函数的二阶导数
(1)
y2x2ln
x
(2)
ye2x1
(3)
yxcos
x
(4)
yet sin
t
(5)ya2x2
(6)
yln(1x2)
(7)
ytan
x
(8)y31
x1 (9)
y(1x2)arctan
x
xe (10)y
x (11)yxex
(12)yln(x1x2)
解 (1)y4x1
y412
xx (2)
ye2x1
22e2x1
y2e2x1
24e2x1
(3)
yxcos
x
ycos
xxsin
x
ysin
xsin
xxcos
x2sin
xxcos
x
(4)
yetsin
tetcos
tet(cos
tsin
t)
yet(cos
tsin
t)et(sin
tcos
t)2etcos
t
2
(5)y1x
(a2x2)22222axaxa2x2xxa2x22
ya2xa2
2222(ax)ax (6)
y12(1x2)2x2
1x1x2(1x2)2x(2x)2(1x2)
y
(1x2)2(1x2)2 (7)
ysec2
x
y2sec
x(sec
x)2sec
xsec
xtan
x2sec2xtan
x
2(x31)3x (8)y3232
(x1)(x1)6x(x31)23x22(x31)3x6x(2x31)
y
(x31)4(x31)3 (9)y2xarctanx(1x2)122xarctanx1
1x
y2arctanx2x2
1xxxex(x1)exe1 (10)y
x2x2[ex(x1)ex]x2ex(x1)2xex(x22x2)
y
x4x3 (11)yexxex(2x)ex(12x2)
yex2x(12x2)ex4x2xex(32x2)
(12)y11(x1x2)(12x)1
x1x2x1x221x21x2222222x
y12(1x2)122x
1x1x21x2)(1x)21x 2 设f(x)(x10)6
f (2)?
解f (x)6(x10)5
f (x)30(x10)4
f (x)120(x10)3
f (2)120(210)207360
d2y 3 若f (x)存在 求下列函数y的二阶导数2
dx3 (1)
yf(x2)
(2)
yln[f(x)]
解 (1)y f (x2)(x2)2xf (x2)
y2f (x2)2x2xf (x2)2f (x2)4x2f (x2)
(2)y1f(x)
f(x)f(x)f(x)f(x)f(x)f(x)f(x)[f(x)]2
y
22[f(x)][f(x)] 4 试从dx1导出
dyy2y (1)dx
23dy(y)33(y)2yydx (2)3
dy(y)52ddxd1d1dxy1y
解 (1)dxdy2dydydyydxydy(y)2y(y)33ddydydx
(2)xdxy3dydy3dyy3y(y)3y3(y)2y13(y)2yy
y(y)6(y)5
5 已知物体的运动规律为sAsint(A、是常数) 求物体运动的加速度 并验证
2ds2s0
2dt 解
dsAcost
dt
2dsA2sint
2dtd2s就是物体运动的加速度
dt22s2sA2sint2Asint0
d2dt 6 验证函数yC1exC2ex(C1
C2是常数)满足关系式
y2y0
解
yC1exC2ex
yC12exC22ex
y2y(C12exC22ex)2(C1exC2ex)
(C12exC22ex)(C12exC22ex)0
7 验证函数yexsin
x满足关系式
y2y2y0
解
yexsin
xexcos
xex(sin
xcos
x)
yex(sin
xcos
x)ex(cos
xsin
x)2excos
x
y2y2y2excos
x2ex(sin
xcos
x)2exsin
x
2excos
x2exsin
x2excos
x2exsin
x0
8 求下列函数的n阶导数的一般表达式
(1)
yxna1xn1a2xn2 an1xan
(a1
a2
an都是常数)
(2)
ysin2x
(3)
yxln
x
(4)
yxex
解 (1) ynxn1(n1)a1xn2(n2)a2xn3 an1
yn(n1)xn2(n1)(n2)a1xn3(n2)(n3)a2xn4 an2
y(n)n(n1)(n2) 21x0n!
(2)
y2sin
x cos
xsin2x
y2cos2x2sin(2x)
2
y22cos(2x)22sin(2x2)
22
y(4)23cos(2x2)23sin(2x3)
22
y(n)2n1sin[2x(n1)]
2 (3)
ylnx1
y1x1
x
y(1)x2
y(4)(1)(2)x3
y(n)(1)(2)(3) (n2)xn1(1)n2 (4)
yexxex
yexexxex2exxex
y2exexxex3exxex
y(n)nexxexex(nx)
9 求下列函数所指定的阶的导数
(1)
yexcos
x 求y(4)
(2)
yxsh
x 求y(100)
(3)
yx2sin 2x 求y(50)
.
解 (1)令uex
vcos
x 有
(n2)!n(n2)!
(1)xn1xn1
uuuue
vsin
x
vcos
x
vsin
x
v(4)cos
x
所以
y(4)u(4)v4uv6uv4uvuv(4)
ex[cos
x4(sin
x)6(cos
x)4sin
xcos
x]4excos
x
(2)令ux
vsh
x 则有
u1
u0
vch
x
vsh
x
v(99)ch
x
v(100)sh
x
所以
1298(98)99(99)y(100)u(100)vC100u(99)vC100u(98)v C100uvC100uvuv(100)
(4)x 100ch
xxsh
x
(3)令ux2
vsin 2x 则有
u2x
u2
u0
v(48)248sin(2x48)248sin2x
2
v(49)249cos 2x
v(50)250sin 2x
12(48)48(48)49(49)u(49)vC50uv C50uvC50uvuv(50)
所以
y(50)u(50)vC15048(48)49(49)uvC50uvuv(50)
C50
50492228sin2x502x249cos2xx2(250sin2x)
2
250(x2sin2x50xcos2x1225sin2x)
2