2024年4月1日发(作者:邴腾骞)
For personal use only in study and research; not for commercial use
电机转矩、功率、转速之间的关系及计算公式
电动机输出转矩:
使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生
一定程度的扭转变形,故转矩有时又称为扭矩。
转矩与功率及转速的关系: 转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n
由此可推导出:
转矩=9550*功率/转速 《===》 功率=转速*转矩/9550
方程式中:
P—功率的单位(kW);
n—转速的单位(r/min);
T—转矩的单位(N.m);
9550是计算系数。
电机扭矩计算公式 T=9550P/n 是如何计算的呢?
分析:
功率=力*速度 即 P=F*V---——--公式
【1】
转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】
线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】
将公式2、3代入公式1得:
P=F*V=T/R*πR*n分/30 =π/30*T*n分
-----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟
如果将P的单位换成KW,那么就是如下公式:
P*1000=π/30*T*n
30000/π*P=T*n
30000/3.1415926*P=T*n
9549.297*P=T*n
这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。
转矩的类型
转矩可分为静态转矩和动态转矩。
※静态转矩
静态转矩是值不随时间延长而变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、
缓变转矩和微脉动转矩。
静止转矩的值为常数,传动轴不旋转;
恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩;
缓变转矩的值随时间延长而缓慢变化,但在短时间内可认为转矩值是不变的;
微脉动转矩的瞬时值有幅度不大的脉动变化。
※动态转矩
动态转矩是值随时间延长而变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。
振动转矩的值是周期性波动的;
过渡转矩是机械从一种工况转换到另一种工况时的转矩变化
过程;随机转矩是一种不确定的、变化无规律的转矩。
选择电动机时,如何选择功率与转矩?
电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选
择时应注意以下两点:
①如果电动机功率选得过小.就会出现“小马拉大车”现象,造成电动机长期过载.使其绝
缘因发热而损坏.甚至电动机被烧毁。
②如果电动机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分
利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。
要正确选择电动机的功率,必须经过以下计算或比较:
P=F*V/1000(P=计算功率KW,F=所需拉力N,工作机线速度M/S)
对于恒定负载连续工作方式,可按下式计算所需电动机的功率:
P1(kw):P=P/n1n2
式中n1为生产机械的效率;n2为电动机的效率,即传动效率。
按上式求出的功率P1,不一定与产品功率相同。因此.所选电动机的额定功率应等于或稍大
于计算所得的功率。
此外.最常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电动
机的功率进行对比。
具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用
相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。
验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得
的电流与该电动机铭牌上标出的额定电流进行对比。如果电功机的实际工作电流与铭脾上标出的
额定电流上下相差不大.则表明所选电动机的功率
合适。如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电动机的功
率选得过大,应调换功率较小的电动机。如果测得的电动机工作电流比铭牌上标出的额定电流大
40%以上.则表明电动机的功率选得过小,应调换功率较大的电动机。
适用于伺服电机额定功率、额定转速和额定转矩之间的关系互导,但实际的额定转矩值应该
是实际测量出来为准,因为有能量转换效率问题,基本数值大体一致,会有细微减小。。。
追问:
如果我是用无极调速的呢?
就电机输出功率与转矩而言,交流变频调速和直流调速有什么特点和区别?
回答:
论交流变频调速与直流调速一:变频器的发展直流电动机拖动和交流电动机拖动先后诞生与
19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。但是,由于技术上的
原因,在很长一段时期内,占整个电力拖动系统80%左右的不变速拖动系统中采用的是交流电动
机(包括异步电动机和同步电动机),而在需要进行调速控制的拖动系统中则基本上采用的直流
电动机。但是,众所周知,由于结构上的原因,直流电动机存在以下缺点:(1) 需要定期更换
电刷和换向器,维护保养困难,寿命较短;(2) 由于直流电动机存在换向火花,难以应用于存
在易燃易爆气体的恶劣环境;(3) 结构复杂,难以制造出大容量、高转速和高电压的直流电动
机。而与直流电动机相比,交流电动机则具有以下优点:(1) 结构坚固,工作可靠,易于维修
保养;(2) 不存在换向火花,可以应用于存在易燃易爆气体的恶劣环境;(3) 容易制造出大
容量、高转速和高电压的交流电动机。因此,很久以来,人们希望在许多场合下能够用可调速的
交流电动机来代替直流电动机,并在交流电动机的调速控制方面进行了大量的研究开发工作。但
是,直至20世纪70年代,交流调速系统的研究开发方面一直未能得到真正能够令人满意的成果,
也因此限制了交流调速系统的推广应用。也正是因为这个原因,在工业生产中大量使用的诸如风
机、水泵等需要进行调速控制的电力拖动系统中不得不采用挡板和阀门来调节风速和流量。这种
做法不但增加了系统的复杂性,也造成了能源的浪费。经历了20世纪70年代中期的第2次石油
危机之后,人们充分认识到了节能工作的重要性,并进一步重视和加强了对交流调速技术的研究
开发工作。随着电力电子技术、微电子技术和控制理论的发展,电力半导体器件和微处理器的性
能的不断提高,变频驱动技术也得到了显著的发展。随着各种复杂控制技术在变频器技术中的应
用,变频器的性能不断提高,而且应用范围也越来越广。目前变频器不但在传统的电力拖动系统
中得到了广泛的应用,而且几乎已经扩展到了工业生产的所有领域,并且在空调、洗衣机、电冰
箱等家电产品中也得到了广泛应用。变频器技术是一门综合性的技术,它建立在控制技术、电力
电子技术、微电子技术和计算机技术的基础之上,并随着这些基础技术的发展而不断得到发展。
表1-1列出了近年来变频器技术的基本发展过程。 二: 变频器调速控制系统的优势与传统的交
流拖动系统相比,利用变频器对交流电动机进行调速控制的交流拖动系统有许多优点,如节能,
容易实现对现有电动机的调速控制,可以实现大范围的高效连续调速控制,容易实现电动机的正
反转切换,可以进行高频度的起停运转,可以进行电气制动,可以用一台变频器对多台电动机进
行调速控制,电源功率因数大,所需电源容量小,可以组成高性能的控制系统等等。下面介绍一
下上面提到的变频器调速控制系统的各种主要优点。在许多情况下,使用变频器的目的是节能,
尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说,通过变频器进行调速控制可以代
替传统上利用挡板和阀门进行的风量、流量和扬程的控制,所以节能效果非常明显。因为以节能
为目的的调速运转对电动机的调速范围和精度要求不高,所以通常采用在价格方面比较经济的通
用型变频器。由于变频器可以看作是一个频率可调的交流电源,对于现有的进行恒速运转的异步
电动机来说,只需在电网电源和现有的电动机之间接入变频器和相应设备,就可以利用变频器实
现调速控制,而无须对电动机和系统本身进行大的设备改造。在采用了变频器的交流拖动系统中,
异步电动机的调速控制是通过改变变频器的输出频率实现的。因此,在进行调速控制时,可以通
过控制变频器的输出频率使电动机工作在转差率较小的范围,电动机的调速范围较宽,并可以达
到提高运行效率的目的。一般来说,通用型变频器的调速范围可以达到1:10以上,而高性能的
矢量控制方式的变频器的调速范围可以达到1:1000。此外,当采用矢量控制方式的变频器对异
步电动机进行调速控制时,还可以直接控制电动机的输出转矩。因此,高性能的矢量控制变频器
与变频器专用电动机的组合在控制性能方面可以达到和超过高精度直流伺服电动机的控制性能。
利用普通的电网电源运行的交流拖动系统,为了实现电动机的正反转切换,必须利用开闭器等装
置对电源进行换相切换。利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的
开关顺序即可以达到对输出进行换相的目的,很容易实现电动机的正反转切换而不需要专门设置
正反转切换装置。此外,对在电网电源下运行的电动机进行正反转切换时,如果在电动机尚未停
止时就进行相序的切换,电动机内将会由于相序的改变而流过大于起动电流的电流,有烧毁电动
机的危险,所以通常必须等电动机完全停下来之后才能够进行换相操作。而在采用变频器的交流
调速系统中,由于可以通过改变变频器的输出频率使电动机按照斜坡函数的规律进行加速,从而
达到限制加速电流的目的。因此,在利用变频器进行调速控制时更容易和其它设备一起构成自动
控制系统。对于利用普通的电网电源运行的交流拖动系统来说,由于电动机的起动电流较大并存
在着与起动时间成正比的功率损耗,所以不能使电动机进行高频度的起停运转。而对于采用了变
频器的交流调速系统来说,由于电动机的起停都是在低速区进行而且加减速过程都比较平缓,电
动机的功耗和发热较小,可以进行较高频度的起停运转。变频调速系统的上述特点可以用于采用
交流拖动系统的传送带和移动工作台等以达到节能的目的。这是因为,在利用异步电动机进行恒
速驱动的传送带以及移动工作台中,电动机通常一直处于工作状态,而采用变频器 进行调速控制
后,由于可以使电动机进行高频度的起停运转,可以使传送带或移动工作台只是在有货物或工件
时停止运行,从而达到节能的目的。由于在变频器驱动系统中电动机的调速控制是通过改变变频
器的输出频率进行的,当把变频器的输出频率降至电动机的实际转速所对应的频率以下时,负载
的机械能将被转换为电能,并被回馈给供电电网,并形成电气制动。此外,一些变频器还具有直
流制动功能,即在需要进行制动时,可以通过变频器给电动机加上一个直流电压,并利用该电压
产生的电流进行制动。同机械制动相比,电气制动有许多优点,例如体积小,维护简单,可靠性
好等。但是也应该注意到,由于在静止状态下电气制动并不能使电动机产生保持转矩,所以在某
些场合还必须采取相应的措施,例如和机械制动器同时使用等。高速驱动是变频器调速控制的最
重要的优点之一。这是因为对于直流电动机来说,由于受电刷和换向环等因素的制约,无法进行
高速运转。但是,对于异步电动机来说,由于不存在上述制约因素,理论上讲异步电动机的转速
可以达到相当高的速度。由于异步电动机的转速为: 公式(1—1)式中n——电机转速,r/min;
f——电源频率,HZ; p——电动机磁极个数; s——转差。当用工频电源(50HZ)对异步电
动机进行驱动时,二极电动机的最高速度只能达到3000r/min。为了得到更高的转速,则必须使
用专用的高频电源或使用机械增速装置进行增速。与此相比,目前高频变频器的输出频率已经可
以达到3000KHZ,所以当利用这种高速变频器对二极异步电动机进行驱动时,可以得到高达
180000r/min的高速。而且随着变频器技术的发展,高频电源的输出频率也在不断提高,因此进
行更高速度的驱动也将成为可能。此外,与采用机械增速装置的高速驱动系统相比,由于采用高
频变频器的高速驱动系统中并不存在异步电动机以外的机械装置,其可靠性更好,而且保养和维
修也更加简单。在变频器调速控制系统中,变频器和电动机是可以分离设置的。因此,通过和各
种不同的异步电动机的适当组合,可以得到使用于各种工作环境的交流调速系统,而对变频器本
身并没有特殊要求。例如,对有防爆和防腐蚀要求的环境,只需将电动机换为专用电动机,而使
用普通的变频器并将其安装在有防爆和防腐蚀要求的环境之外的普通环境即可。由于变频器本身
对外部来说可以看作是一个可以进行调频调压的交流电源,可以用一台变频器同时驱动多台异步
电动机或同步电动机,从而达到节约设备投资的目的。而对于直流调速系统来说,则很难做到这
一点。当用一台变频器同时驱动多台电动机时,若驱动对象为同步电动机,所有的电动机将会以
同样的速度(同步转速)运转,而当驱动对象为容量和负载都不相同的异步电动机时,则由于转
差的原因,各电动机之间会存在一定的速度差。因为变频器时通过交流—直流的电源变换后对异
步电动机进行驱动的,所以电源的功率因数不受电动机功率因数的影响,几乎为定值。此外,当
用电网电源对异步电动机进行驱动时,电动机的起动电流为额定电流的5—6倍,而在采用变频
器对异步电动机记性驱动时,由于可以将变频器的输出频率降至很低时起动,电动机的起动电流
很小,因而变频器输入端电源的容量也可以比较小。一般来说,变频器输入端电源的容量只需为
电动机 输出容量的1.5倍左右即可。这也说明变频器也可以同时起到减压起动器的作用。随着控
制理论、交流调速理论和电子技术的发展,变频器技术也得到了充分的重视和发展,目前,有高
性能变频器和专用的异步电动机组成的控制系统在性能上已经达到和超过了直流电动机伺服系
统。此外,由于异步电动机还具有对环境适应性强,维护简单等许多直流伺服电动机所不具备的
优点,所以在许多需要进行高速高精度控制的应用中这种高性能的交流调速系统正在逐步替代直
流伺服系统。而且由于高性能的变频器的外部接口功能也非常丰富,可以将其作为自动控制系统
中的一个部件使用,构成所需的自动控制系统。由于变频器具有上述优点,因而在各种领域中得
到了广泛的应用。 三: 变频器技术的发展动向变频器进入实用期已超过了1/4个世纪,在此期
间,作为变频器技术基础的电力电子技术和微电子技术都经理了飞跃性的发展,随着新型电力电
子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来
越小,而厂家则仍然在不断地为实现变频器的进一步小型化而做着新的努力。从技术方面来看,
随着变频器市场的进一步扩大,今后变频器技术将会随着与变频器有关的技术的发展在下面几个
方面进一步得到发展:(1) 大容量和小体积化;(2) 高性能和多功能化;(3) 易操作性的
提高;(4) 寿命和可靠性增加;(5) 无公害化。大容量化和小体积化将会随着电力半导体器
件的发展而不断的到发展。近年来,采用电压驱动的电力半导体器件IGBT(Isolated Gate Bipolar
Transistor,隔离门极双极晶体管)发展很快,并在迅速进入传统上使用BJT(双极功率晶体管)
和功率MOSFET(场效应管)的各种领域。此外,以IGBT为开关器件的IPM(Intelligent Power
Module,智能功率模块)和单片功率IC 芯片将功率开关器件与驱动电路,保护电路等集成在同
一封装内,具有高性能和可靠性好的优点,所以随着它们在大电流化和高耐压化方面的发展,必
将在中小型变频器中得到更加广泛的应用。随着微电子技术和半导体技术的发展,用于变频器的
CPU和半导体器件以及各种传感器的性能越来越高。而随着变频器技术的发展,交流调速理论日
益成熟,现代控制理论也在不断得到新的应用。这些都为进一步提高变频器的性能提供了条件。
此外,随着变频器的进一步推广应用,拥护也在不断提出各种新的要求,促使变频器的生产厂家
不断地在提高变频器性能和变频器功能方面做出新的努力,以满足用户的需要和争取在激烈的市
场竞争中立于不败之地。随着变频器市场的不断扩大,如何进一步提高变频器的易操作性,使普
通的技术人员甚至非技术人员也能很快的掌握变频器的使用技术已经成为厂家必须考虑的问题。
因为只有容易操作的产品才能够不断获得新的用户,并进一步扩大市场,所以今后的新型变频器
将更加容易操作。随着半导体技术的发展和电力电子技术的发展,变频器中所使用的各种元器件
的寿命和可靠性都在不断提高,这些都将使变频器本身的寿命和可靠性进一步增加。近年来,人
们对环境问题非常重视,并因此而出现了“绿色产品”的名称。因此,对于变频器来说,也必须
考虑其对周围环境的影响。在变频器推广应用的初期,噪声问题曾经是一个比较大的问题。随着
IGBT的低噪声变频器的出现,这个问题已经基本上得到了解决。但是,随着噪声问题的解决,人
们的目光又转向了变频器对周围环境的其它影响并在不断探索新的解决办法。例如,对于采用了
二极管整流电路和电压形PWM逆变电路的变频器来说,变频器本身造成的高次谐波将给电源电
压和电流带来畸变,并影响接于同一电源的其它设备。但是,通过在变频器中采用PWM整流电
路,就可以基本上解决这个问题。虽然因为价格和控制技术等方面的原因目前采用PWM整流电
路的变频器尚未得到推广,但是,随着变频器技术的发展和人们对环境问题的重视,不断减少变
频器对环境的影响直至推出真正的无公害变频器也已经成为大势所趋。四:都说变频调速比直流
调速好,直流调速真的要淘汰吗? 变频调速之所以比直流调速广泛运用是因为交流电机,不是变
频调速原理具有优越性,变频调速只能应用于调速,而对力矩是无法做到精确控制的,原因很简
单,直流调速的电枢和励磁不是耦合的,是分开的,这样对电枢电流和励磁电流能够做到精确控
制。而交流调速,电枢电流和励磁电流是耦合的,是无法做到精确控制的, 尽管目前的变频调速
具有矢量控制,也就是运用现代控制理论,通过矢量转换,将交流电机中耦合的电枢电流和励磁
电流解开,从而对其进行控制,也就是仿真直流调速的原理。但是要做到直流调速的控制特性目
前是很困难的。因此在轧机、造纸等对力矩要求很高行业,直流调速还是具有广泛性。而仅对速
度控制,目前变频调速是可以逼真直流调速的特性,因为交流电机的优越性是直流电机无法做到
的。 直流电机的电刷和体积的原因,限制了它的应用范围,变频调速可以说是由风机和水泵发展
而来的,是由于风机和水泵节能的需要,变频调速是最佳选择,不过我个人认为就目前电价和变
频器的自身的价格相比,这种节能是毫无意义的,因为要把变频器的投资收回,最少需要5-6年,
在这5-6年的时间里,工况还不知道要发生什么变化。 因此,变频器最好应用在需要调速,而
对启动性能及力矩调节要求不是很苛刻的场合,而这种场合比比皆是,这才是变频调速普遍应用
的原因。 因此可以说如果用直流调速控制器去控制交流电机那才是最好的,真能做到这一点,你
就是第二个比尔盖茨,甚至能那个诺贝尔奖。 无极调速的是一样的。
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken
verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins
commerciales.
только для людей, которые используются для обучения, исследований и
не должны использоваться в коммерческих целях.
以下无正文
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken
verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins
commerciales.
только для людей, которые используются для обучения, исследований и
не должны использоваться в коммерческих целях.
以下无正文
For personal use only in study and research; not for commercial use
2024年4月1日发(作者:邴腾骞)
For personal use only in study and research; not for commercial use
电机转矩、功率、转速之间的关系及计算公式
电动机输出转矩:
使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生
一定程度的扭转变形,故转矩有时又称为扭矩。
转矩与功率及转速的关系: 转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n
由此可推导出:
转矩=9550*功率/转速 《===》 功率=转速*转矩/9550
方程式中:
P—功率的单位(kW);
n—转速的单位(r/min);
T—转矩的单位(N.m);
9550是计算系数。
电机扭矩计算公式 T=9550P/n 是如何计算的呢?
分析:
功率=力*速度 即 P=F*V---——--公式
【1】
转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】
线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】
将公式2、3代入公式1得:
P=F*V=T/R*πR*n分/30 =π/30*T*n分
-----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟
如果将P的单位换成KW,那么就是如下公式:
P*1000=π/30*T*n
30000/π*P=T*n
30000/3.1415926*P=T*n
9549.297*P=T*n
这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。
转矩的类型
转矩可分为静态转矩和动态转矩。
※静态转矩
静态转矩是值不随时间延长而变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、
缓变转矩和微脉动转矩。
静止转矩的值为常数,传动轴不旋转;
恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩;
缓变转矩的值随时间延长而缓慢变化,但在短时间内可认为转矩值是不变的;
微脉动转矩的瞬时值有幅度不大的脉动变化。
※动态转矩
动态转矩是值随时间延长而变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。
振动转矩的值是周期性波动的;
过渡转矩是机械从一种工况转换到另一种工况时的转矩变化
过程;随机转矩是一种不确定的、变化无规律的转矩。
选择电动机时,如何选择功率与转矩?
电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选
择时应注意以下两点:
①如果电动机功率选得过小.就会出现“小马拉大车”现象,造成电动机长期过载.使其绝
缘因发热而损坏.甚至电动机被烧毁。
②如果电动机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分
利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。
要正确选择电动机的功率,必须经过以下计算或比较:
P=F*V/1000(P=计算功率KW,F=所需拉力N,工作机线速度M/S)
对于恒定负载连续工作方式,可按下式计算所需电动机的功率:
P1(kw):P=P/n1n2
式中n1为生产机械的效率;n2为电动机的效率,即传动效率。
按上式求出的功率P1,不一定与产品功率相同。因此.所选电动机的额定功率应等于或稍大
于计算所得的功率。
此外.最常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电动
机的功率进行对比。
具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用
相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。
验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得
的电流与该电动机铭牌上标出的额定电流进行对比。如果电功机的实际工作电流与铭脾上标出的
额定电流上下相差不大.则表明所选电动机的功率
合适。如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电动机的功
率选得过大,应调换功率较小的电动机。如果测得的电动机工作电流比铭牌上标出的额定电流大
40%以上.则表明电动机的功率选得过小,应调换功率较大的电动机。
适用于伺服电机额定功率、额定转速和额定转矩之间的关系互导,但实际的额定转矩值应该
是实际测量出来为准,因为有能量转换效率问题,基本数值大体一致,会有细微减小。。。
追问:
如果我是用无极调速的呢?
就电机输出功率与转矩而言,交流变频调速和直流调速有什么特点和区别?
回答:
论交流变频调速与直流调速一:变频器的发展直流电动机拖动和交流电动机拖动先后诞生与
19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。但是,由于技术上的
原因,在很长一段时期内,占整个电力拖动系统80%左右的不变速拖动系统中采用的是交流电动
机(包括异步电动机和同步电动机),而在需要进行调速控制的拖动系统中则基本上采用的直流
电动机。但是,众所周知,由于结构上的原因,直流电动机存在以下缺点:(1) 需要定期更换
电刷和换向器,维护保养困难,寿命较短;(2) 由于直流电动机存在换向火花,难以应用于存
在易燃易爆气体的恶劣环境;(3) 结构复杂,难以制造出大容量、高转速和高电压的直流电动
机。而与直流电动机相比,交流电动机则具有以下优点:(1) 结构坚固,工作可靠,易于维修
保养;(2) 不存在换向火花,可以应用于存在易燃易爆气体的恶劣环境;(3) 容易制造出大
容量、高转速和高电压的交流电动机。因此,很久以来,人们希望在许多场合下能够用可调速的
交流电动机来代替直流电动机,并在交流电动机的调速控制方面进行了大量的研究开发工作。但
是,直至20世纪70年代,交流调速系统的研究开发方面一直未能得到真正能够令人满意的成果,
也因此限制了交流调速系统的推广应用。也正是因为这个原因,在工业生产中大量使用的诸如风
机、水泵等需要进行调速控制的电力拖动系统中不得不采用挡板和阀门来调节风速和流量。这种
做法不但增加了系统的复杂性,也造成了能源的浪费。经历了20世纪70年代中期的第2次石油
危机之后,人们充分认识到了节能工作的重要性,并进一步重视和加强了对交流调速技术的研究
开发工作。随着电力电子技术、微电子技术和控制理论的发展,电力半导体器件和微处理器的性
能的不断提高,变频驱动技术也得到了显著的发展。随着各种复杂控制技术在变频器技术中的应
用,变频器的性能不断提高,而且应用范围也越来越广。目前变频器不但在传统的电力拖动系统
中得到了广泛的应用,而且几乎已经扩展到了工业生产的所有领域,并且在空调、洗衣机、电冰
箱等家电产品中也得到了广泛应用。变频器技术是一门综合性的技术,它建立在控制技术、电力
电子技术、微电子技术和计算机技术的基础之上,并随着这些基础技术的发展而不断得到发展。
表1-1列出了近年来变频器技术的基本发展过程。 二: 变频器调速控制系统的优势与传统的交
流拖动系统相比,利用变频器对交流电动机进行调速控制的交流拖动系统有许多优点,如节能,
容易实现对现有电动机的调速控制,可以实现大范围的高效连续调速控制,容易实现电动机的正
反转切换,可以进行高频度的起停运转,可以进行电气制动,可以用一台变频器对多台电动机进
行调速控制,电源功率因数大,所需电源容量小,可以组成高性能的控制系统等等。下面介绍一
下上面提到的变频器调速控制系统的各种主要优点。在许多情况下,使用变频器的目的是节能,
尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说,通过变频器进行调速控制可以代
替传统上利用挡板和阀门进行的风量、流量和扬程的控制,所以节能效果非常明显。因为以节能
为目的的调速运转对电动机的调速范围和精度要求不高,所以通常采用在价格方面比较经济的通
用型变频器。由于变频器可以看作是一个频率可调的交流电源,对于现有的进行恒速运转的异步
电动机来说,只需在电网电源和现有的电动机之间接入变频器和相应设备,就可以利用变频器实
现调速控制,而无须对电动机和系统本身进行大的设备改造。在采用了变频器的交流拖动系统中,
异步电动机的调速控制是通过改变变频器的输出频率实现的。因此,在进行调速控制时,可以通
过控制变频器的输出频率使电动机工作在转差率较小的范围,电动机的调速范围较宽,并可以达
到提高运行效率的目的。一般来说,通用型变频器的调速范围可以达到1:10以上,而高性能的
矢量控制方式的变频器的调速范围可以达到1:1000。此外,当采用矢量控制方式的变频器对异
步电动机进行调速控制时,还可以直接控制电动机的输出转矩。因此,高性能的矢量控制变频器
与变频器专用电动机的组合在控制性能方面可以达到和超过高精度直流伺服电动机的控制性能。
利用普通的电网电源运行的交流拖动系统,为了实现电动机的正反转切换,必须利用开闭器等装
置对电源进行换相切换。利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的
开关顺序即可以达到对输出进行换相的目的,很容易实现电动机的正反转切换而不需要专门设置
正反转切换装置。此外,对在电网电源下运行的电动机进行正反转切换时,如果在电动机尚未停
止时就进行相序的切换,电动机内将会由于相序的改变而流过大于起动电流的电流,有烧毁电动
机的危险,所以通常必须等电动机完全停下来之后才能够进行换相操作。而在采用变频器的交流
调速系统中,由于可以通过改变变频器的输出频率使电动机按照斜坡函数的规律进行加速,从而
达到限制加速电流的目的。因此,在利用变频器进行调速控制时更容易和其它设备一起构成自动
控制系统。对于利用普通的电网电源运行的交流拖动系统来说,由于电动机的起动电流较大并存
在着与起动时间成正比的功率损耗,所以不能使电动机进行高频度的起停运转。而对于采用了变
频器的交流调速系统来说,由于电动机的起停都是在低速区进行而且加减速过程都比较平缓,电
动机的功耗和发热较小,可以进行较高频度的起停运转。变频调速系统的上述特点可以用于采用
交流拖动系统的传送带和移动工作台等以达到节能的目的。这是因为,在利用异步电动机进行恒
速驱动的传送带以及移动工作台中,电动机通常一直处于工作状态,而采用变频器 进行调速控制
后,由于可以使电动机进行高频度的起停运转,可以使传送带或移动工作台只是在有货物或工件
时停止运行,从而达到节能的目的。由于在变频器驱动系统中电动机的调速控制是通过改变变频
器的输出频率进行的,当把变频器的输出频率降至电动机的实际转速所对应的频率以下时,负载
的机械能将被转换为电能,并被回馈给供电电网,并形成电气制动。此外,一些变频器还具有直
流制动功能,即在需要进行制动时,可以通过变频器给电动机加上一个直流电压,并利用该电压
产生的电流进行制动。同机械制动相比,电气制动有许多优点,例如体积小,维护简单,可靠性
好等。但是也应该注意到,由于在静止状态下电气制动并不能使电动机产生保持转矩,所以在某
些场合还必须采取相应的措施,例如和机械制动器同时使用等。高速驱动是变频器调速控制的最
重要的优点之一。这是因为对于直流电动机来说,由于受电刷和换向环等因素的制约,无法进行
高速运转。但是,对于异步电动机来说,由于不存在上述制约因素,理论上讲异步电动机的转速
可以达到相当高的速度。由于异步电动机的转速为: 公式(1—1)式中n——电机转速,r/min;
f——电源频率,HZ; p——电动机磁极个数; s——转差。当用工频电源(50HZ)对异步电
动机进行驱动时,二极电动机的最高速度只能达到3000r/min。为了得到更高的转速,则必须使
用专用的高频电源或使用机械增速装置进行增速。与此相比,目前高频变频器的输出频率已经可
以达到3000KHZ,所以当利用这种高速变频器对二极异步电动机进行驱动时,可以得到高达
180000r/min的高速。而且随着变频器技术的发展,高频电源的输出频率也在不断提高,因此进
行更高速度的驱动也将成为可能。此外,与采用机械增速装置的高速驱动系统相比,由于采用高
频变频器的高速驱动系统中并不存在异步电动机以外的机械装置,其可靠性更好,而且保养和维
修也更加简单。在变频器调速控制系统中,变频器和电动机是可以分离设置的。因此,通过和各
种不同的异步电动机的适当组合,可以得到使用于各种工作环境的交流调速系统,而对变频器本
身并没有特殊要求。例如,对有防爆和防腐蚀要求的环境,只需将电动机换为专用电动机,而使
用普通的变频器并将其安装在有防爆和防腐蚀要求的环境之外的普通环境即可。由于变频器本身
对外部来说可以看作是一个可以进行调频调压的交流电源,可以用一台变频器同时驱动多台异步
电动机或同步电动机,从而达到节约设备投资的目的。而对于直流调速系统来说,则很难做到这
一点。当用一台变频器同时驱动多台电动机时,若驱动对象为同步电动机,所有的电动机将会以
同样的速度(同步转速)运转,而当驱动对象为容量和负载都不相同的异步电动机时,则由于转
差的原因,各电动机之间会存在一定的速度差。因为变频器时通过交流—直流的电源变换后对异
步电动机进行驱动的,所以电源的功率因数不受电动机功率因数的影响,几乎为定值。此外,当
用电网电源对异步电动机进行驱动时,电动机的起动电流为额定电流的5—6倍,而在采用变频
器对异步电动机记性驱动时,由于可以将变频器的输出频率降至很低时起动,电动机的起动电流
很小,因而变频器输入端电源的容量也可以比较小。一般来说,变频器输入端电源的容量只需为
电动机 输出容量的1.5倍左右即可。这也说明变频器也可以同时起到减压起动器的作用。随着控
制理论、交流调速理论和电子技术的发展,变频器技术也得到了充分的重视和发展,目前,有高
性能变频器和专用的异步电动机组成的控制系统在性能上已经达到和超过了直流电动机伺服系
统。此外,由于异步电动机还具有对环境适应性强,维护简单等许多直流伺服电动机所不具备的
优点,所以在许多需要进行高速高精度控制的应用中这种高性能的交流调速系统正在逐步替代直
流伺服系统。而且由于高性能的变频器的外部接口功能也非常丰富,可以将其作为自动控制系统
中的一个部件使用,构成所需的自动控制系统。由于变频器具有上述优点,因而在各种领域中得
到了广泛的应用。 三: 变频器技术的发展动向变频器进入实用期已超过了1/4个世纪,在此期
间,作为变频器技术基础的电力电子技术和微电子技术都经理了飞跃性的发展,随着新型电力电
子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来
越小,而厂家则仍然在不断地为实现变频器的进一步小型化而做着新的努力。从技术方面来看,
随着变频器市场的进一步扩大,今后变频器技术将会随着与变频器有关的技术的发展在下面几个
方面进一步得到发展:(1) 大容量和小体积化;(2) 高性能和多功能化;(3) 易操作性的
提高;(4) 寿命和可靠性增加;(5) 无公害化。大容量化和小体积化将会随着电力半导体器
件的发展而不断的到发展。近年来,采用电压驱动的电力半导体器件IGBT(Isolated Gate Bipolar
Transistor,隔离门极双极晶体管)发展很快,并在迅速进入传统上使用BJT(双极功率晶体管)
和功率MOSFET(场效应管)的各种领域。此外,以IGBT为开关器件的IPM(Intelligent Power
Module,智能功率模块)和单片功率IC 芯片将功率开关器件与驱动电路,保护电路等集成在同
一封装内,具有高性能和可靠性好的优点,所以随着它们在大电流化和高耐压化方面的发展,必
将在中小型变频器中得到更加广泛的应用。随着微电子技术和半导体技术的发展,用于变频器的
CPU和半导体器件以及各种传感器的性能越来越高。而随着变频器技术的发展,交流调速理论日
益成熟,现代控制理论也在不断得到新的应用。这些都为进一步提高变频器的性能提供了条件。
此外,随着变频器的进一步推广应用,拥护也在不断提出各种新的要求,促使变频器的生产厂家
不断地在提高变频器性能和变频器功能方面做出新的努力,以满足用户的需要和争取在激烈的市
场竞争中立于不败之地。随着变频器市场的不断扩大,如何进一步提高变频器的易操作性,使普
通的技术人员甚至非技术人员也能很快的掌握变频器的使用技术已经成为厂家必须考虑的问题。
因为只有容易操作的产品才能够不断获得新的用户,并进一步扩大市场,所以今后的新型变频器
将更加容易操作。随着半导体技术的发展和电力电子技术的发展,变频器中所使用的各种元器件
的寿命和可靠性都在不断提高,这些都将使变频器本身的寿命和可靠性进一步增加。近年来,人
们对环境问题非常重视,并因此而出现了“绿色产品”的名称。因此,对于变频器来说,也必须
考虑其对周围环境的影响。在变频器推广应用的初期,噪声问题曾经是一个比较大的问题。随着
IGBT的低噪声变频器的出现,这个问题已经基本上得到了解决。但是,随着噪声问题的解决,人
们的目光又转向了变频器对周围环境的其它影响并在不断探索新的解决办法。例如,对于采用了
二极管整流电路和电压形PWM逆变电路的变频器来说,变频器本身造成的高次谐波将给电源电
压和电流带来畸变,并影响接于同一电源的其它设备。但是,通过在变频器中采用PWM整流电
路,就可以基本上解决这个问题。虽然因为价格和控制技术等方面的原因目前采用PWM整流电
路的变频器尚未得到推广,但是,随着变频器技术的发展和人们对环境问题的重视,不断减少变
频器对环境的影响直至推出真正的无公害变频器也已经成为大势所趋。四:都说变频调速比直流
调速好,直流调速真的要淘汰吗? 变频调速之所以比直流调速广泛运用是因为交流电机,不是变
频调速原理具有优越性,变频调速只能应用于调速,而对力矩是无法做到精确控制的,原因很简
单,直流调速的电枢和励磁不是耦合的,是分开的,这样对电枢电流和励磁电流能够做到精确控
制。而交流调速,电枢电流和励磁电流是耦合的,是无法做到精确控制的, 尽管目前的变频调速
具有矢量控制,也就是运用现代控制理论,通过矢量转换,将交流电机中耦合的电枢电流和励磁
电流解开,从而对其进行控制,也就是仿真直流调速的原理。但是要做到直流调速的控制特性目
前是很困难的。因此在轧机、造纸等对力矩要求很高行业,直流调速还是具有广泛性。而仅对速
度控制,目前变频调速是可以逼真直流调速的特性,因为交流电机的优越性是直流电机无法做到
的。 直流电机的电刷和体积的原因,限制了它的应用范围,变频调速可以说是由风机和水泵发展
而来的,是由于风机和水泵节能的需要,变频调速是最佳选择,不过我个人认为就目前电价和变
频器的自身的价格相比,这种节能是毫无意义的,因为要把变频器的投资收回,最少需要5-6年,
在这5-6年的时间里,工况还不知道要发生什么变化。 因此,变频器最好应用在需要调速,而
对启动性能及力矩调节要求不是很苛刻的场合,而这种场合比比皆是,这才是变频调速普遍应用
的原因。 因此可以说如果用直流调速控制器去控制交流电机那才是最好的,真能做到这一点,你
就是第二个比尔盖茨,甚至能那个诺贝尔奖。 无极调速的是一样的。
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken
verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins
commerciales.
только для людей, которые используются для обучения, исследований и
не должны использоваться в коммерческих целях.
以下无正文
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken
verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins
commerciales.
только для людей, которые используются для обучения, исследований и
не должны использоваться в коммерческих целях.
以下无正文
For personal use only in study and research; not for commercial use