2024年5月12日发(作者:前歆然)
维普资讯
第3 7卷第3期
上海师范大学学报(自然科学版)
Vo1.37.No.3
2 0 0 8年6月
Journal of Shanghai Normal University(Natural Sciences)
2 0 0 8,Jun.
磁性纳米粒子的制备及其细胞分离方面的应用
张春明 ,赵梗明2,斯庆苏都 ,谢湘华 ,谭 玲 ,董亚明h
(1.上海师范大学生命-9环境科学学院,上海200234;2.上海师范大学数理信息学院,上海200234;
3.华东理工大学理学院,上海200237)
摘要:介绍了一种始终在溶液中制备Fe 0 磁性纳米粒子的化学共沉淀,并对制得的粒子进
行表面修饰的方法.通过IR,XRD和AFM等测试仪器对样品进行了表征.结果表明:采用化学
共沉淀的方法制备出的磁性纳米粒子具有单分散性,且粒径比较均一,约在30nm.由于制备
过程均在液体中进行,故制备周期短,污染小.同时利用自制的免疫磁性Fe 0 纳米粒子能较
好地分离脐血中的CD133细胞,细胞体外扩增明显.
关键词:纳米Fe O ;免疫磁性纳米粒子;脐带血;CD133细胞
中图分类号:TQ138.1 文献标识码:A 文章编号:1000_5137(2008)03—0291-05
0 引 言
磁性纳米颗粒以其优越的物理特性,在生物医学领域具有广泛的应用前景….通过包裹不同的有
机官能团,可以将这些磁性颗粒运用在蛋白质固定、细胞分离、靶向药物等领域 .生物细胞分离技术
是一项应用在生物领域中十分重要的纳米技术,它是能否快速获得研究所需细胞标本的关键.以往的细
胞分离技术主要有梯度离心法 J、流式细胞分选法 等.但这些方法存在纯度不高、制备量偏小、影响
细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究 J.近几年,随着对磁性纳米粒子研究的深
入,人们开始利用磁性纳米粒子来分离细胞….单纯的磁性纳米粒子易于团聚、生物兼容性差 J,因此,
制备超小粒径、分散性好的磁性纳米颗粒具有十分重要的应用价值.
目前纳米Fe O 的制备方法主要有:机械球磨法 ,共沉淀法 加 ,乳化法 “ ,水解法 ,水热法
等,这些方法各有优缺点.普通的共沉淀法制备的纳米Fe O 粒子粒径分布范围宽,粒径不容易控制,易
团聚,重珊I生差,且在制备的过程中粒子易受到污染,从而影响其在生物方面的应用.
为了在反应中控制生成颗粒的大小,得到粒径分布均匀的Fe O 粒子,本研究在共沉淀法的基础
上,通过控制一系列的反应条件,制得磁性流体,然后直接在其表面包裹SiO ,避免了污染.再通过化学
修饰使之成为生物功能化的磁性纳米粒子.利用化学连接方法将单克隆抗体CD133连接到其表面得到
免疫磁性Fe O 纳米粒子,利用它从单个核细胞中分离出CD133细胞,并对细胞进行半固体培养,观察
其在体外的扩增情况.
收稿日期:2007—12-05
作者简介:张春明(1980一),男,上海师范大学生命与环境科学学院硕士研究生;董亚明(1957一),男,博士,上海师
范大学生命与环境科学学院教授.
通讯作者.
维普资讯
上海师范大学学报(自然科学版)
1 实验部分
1.1试剂与实验仪器
材料:FeC1 ・6H 0(99.O%),FeC1 ・4H O(99.5%),氨水(26%~28%)、正硅酸乙酯(TEOS)
(上海试剂公司);N一(2一氨基乙基)一3一氨基丙基三甲氧基硅烷(AEAPS)(Geel,Belgium),戊二醛
(中国医药集团上海化学试剂分公司);磷酸盐缓冲溶液(PBS)(自制),RPMI1640(自制),以上所用试
剂均为分析纯;CD133抗体(Miltenyibiotec).
测试仪器:红外吸收光谱仪(NICOLET380);原子力显微镜(AFM)(NanoScope III a SPM系统
Veeco);倒置显微镜(Japan.Nikon 810181);D—MAX 2000 X射线衍射仪.
1.2实验过程
1.2.1 磁性纳米粒子的制备以及SiO 的包裹
按3:2比例称取FeC1 ・6H O和FeC1 ・4H O固体,分别加入水中配成0.5mol/L的溶液,将2种
溶液倒人三颈瓶中,混匀.在60%条件下向此混合溶液中缓慢滴加氨水,超声同时搅拌至pH为9,反应
完全后,再超声分散1h,搅拌0.5h,磁沉淀,洗涤制得磁性纳米粒子;按比例取100 mL的乙醇和水,混
匀,把洗涤好的粒子分散到其中,超声15min,转人250mL的三颈瓶,加入TEOS,在一定的搅拌速度下逐
渐加入氨水,恒温水浴下反应5 h磁分离,洗涤,直至清洗液不再浑浊;产物置于真空干燥箱中恒温干
燥,12h后取出,得到包裹好SiO 的磁性纳米粒子.将粒子分散到二次水中备用.
1.2.2纳米粒子的修饰与细胞的分离
量取1 mL包裹后的Fe O 磁性纳米粒子流体,加入到40mL甲醇,丙三醇和二次蒸馏水的混合溶液
中,超声混匀.转移至三颈烧瓶中搅拌并缓慢加入AEAPS,在一定温度下反应5h.沉淀用甲醇洗涤若干
遍,恒温下真空干燥,得到表面修饰氨基的磁性纳米粒子.取适量上述制备的粒子,分散到PBS中,配制
成磁性纳米粒子分散体系.向上述体系中加入戊二醛,反应数小时用PBS洗涤后重新分散到PBS溶液
中,得到纳米粒子分散体系.取1mL分散液,向其中加入CD133单克隆抗体,常温下反应12h,磁性分离
用PBS洗涤后,重新分散,得到免疫磁性Fe O 纳米粒子.
取30~40mL的脐带血,用PBS稀释1倍.以4:6比例加入淋巴细胞分离液和稀释后的脐血,按密
度梯度离心法分离单个核细胞,取出单个核细胞(MNC)带,用1640培养基洗涤2次.为了得到CD133
细胞,将分离出的单个核细胞经洗涤后,向其中加入0.5mL的上述制备的表面连接有CD133单克隆抗
体的免疫磁性Fe O 纳米粒子,充分混匀后,4~8℃下孵育20~30min,磁性分离目标细胞CD133,再用
1640洗涤数次,即可得所需CD133细胞.采用甲基纤维素半固体法培养CD133细胞.
2结果与讨论
2.1 1R分析
图1是Fe,O (a),SiO /Fe,O (b)的红外谱图.谱线a中,580cm 处是Fe,0 的特征吸收峰;在谱
线b中,1104cm 处的强吸收峰是由组成SiO 膜的Si—O—Si键的反对称伸缩振动引起的,798cm 附
近的吸收峰是由Si—O—Si键的对称伸缩振动引起的,963cm 附近的吸收峰则归属于Si—O键的对称
伸缩振动,表明经过了多次的磁沉淀和洗涤后在Fe,O 外层包裹了SiO 膜.
从图1中可以看出,粒子改性以后,Fe—O的特征吸收峰由580cm 移向560.2cm~,发生了红移,
这可能是由于磁性粒子受纳米尺寸的限制,降低了对表面原子键的束缚,导致表面粒子中局部电子的重
排;当Fe O 粒子的尺寸降低到纳米范畴时,其表面结合力常数逐渐变大,因此表现在Fe—O的特征吸
收带向较低的波数移动.
2.2 XRD分析
图2是Fe,O 和SiO /Fe,O 的XRD谱图.将包裹前后Fe,O 的x射线衍射光谱与Fe O 的标准谱图
维普资讯
第3期 张春明,赵梗明,斯庆苏都,等:磁性纳米粒子的制备及其细胞分离方面的应用 293
图1 Fe3O4(a),SiO2/Fe3O4(b)的红外光谱图 图2 Fe3O4,SiO2/Fe3O4的XRD谱图
相比较可以看出,包裹前后Fe。O 的峰形和峰宽基本一致,仅存在Fe。O 的一种晶态,都是立方的尖晶石
型结构,结晶度较好,没有SiO 衍射峰的存在,说明SiO 是以无定型形态存在于Fe。O 的表面.这是由于
制备这种粒子,没有经过煅烧,因此Fe。O 表面的SiO 为无定型形态的.从图2中还可以看出,XRD衍射
峰较宽而不尖锐,这说明磁性粒子的粒径比较细小,根据Scherrer公式:D=,c A cos0,D为晶体粒子
的平均粒径(K=0.89; 为衍射角,A是x射线波长为0.154056 nm; 为最高峰的半高峰宽)对样品
进行平均粒径的估算,得到所制样品的平均粒径D=20nm.
2.3 AFM分析
图3,4,5分别是Fe。O ,SiO:/Fe。O 及局部放大的SiO /Fe。O 的AFM图像.由图3可以看出,包裹
前的磁性粒子分散性差,极易团聚.这是因为在分离过程中由于粒子部分磁化,容易造成团聚;且包裹前
的磁性粒子粒径很小,粒子间的范德华作用力较大,也会造成团聚.图4是包裹后的Fe O 粒子的AFM
图像,由图4可见,改性后Fe。O 粒子较改性前团聚程度较轻,分散性大大提高.从图5中可以明显看出
粒子表面包裹了一层物质,即SiO,,这与前面的红外谱图分析的结果相符.
由AFM图可知,包裹前Fe O 粒子的粒径在15nm左右,包裹后粒子的粒径在30nm左右,外层膜的
厚度为8nm左右,这与XRD的表征结果略有差别,可能是由于在制备粒子粉体的过程中引起硬团聚的
原因.经包裹后的磁性纳米粒子的粒径较小,分散性较好.这是因为包裹了一层SiO 后,改变了磁性纳
米粒子的表面活性,大大降低粒子的表面能,阻止磁性粒子因互相接近而引起的颗粒聚集及沉降.总之,
采用对磁性流体直接包裹的方式,避免了粒子在干燥过程中的硬团聚问题,也解决了粒子研磨过程中可
能引入杂质的难题,从而得到较理想的结果,并获得无污染、分散性很好且适用于生物细胞分离的磁性
纳米粒子.
图3未包裹的Fe3O4粒子 图4 SiO2/Fe3O4粒子 图5局部放大SiO2/Fe3O4粒子
2.4磁性纳米粒子在细胞分离方面的应用
图6,7,8,9分别是利用磁性粒子分离出来的单个核细胞和CD133细胞经培养后的显微图.从图7
维普资讯
上海师范大学学报(自然科学版) 2008年
和图9相比较的结果可以看出,用磁性纳米粒子分离出来的CD133细胞与单个核细胞一样,具有很好
的活性,能够很好地增殖,形成了集落.同时也证明了本实验室所制备的免疫磁性纳米粒子不仅能较好
地分离出目标细胞,而且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与[14]中
报道的对细胞的活性没有影响的结果一致.
图6单个核细胞(MNC)(7d)
图7 CD133细胞(7d)
图8单个核细胞(MNC)(14d) 图9 CD133细胞(14d)单个核细胞(MNC)(7d)
3结论
本研究采用化学共沉淀法通过控制实验条件成功地制备了Fe。O 纳米粒子,然后直接对其进行表
面包裹SiO:,再利用化学修饰和化学连接方法得到了无污染、分散性很好并适用于生物细胞分离的免
疫磁性纳米粒子,实验结果表明:这种免疫磁性Fe。O 纳米粒子具有很好的单分散性,且粒径比较的均
一
,
为30nm左右.使用自制的免疫磁性Fe。O 纳米粒子能较好地分离脐血中的CD133细胞,而且分离与
纯化出来的CD133细胞活力不受影响,与单个核细胞相比具有更强的增殖能力.
参考文献:
[1]HAI Y,PAI V,CHEN C J.Development ofmagnetic device for cell separation[J].Magn Magn Mater,1999,194(1—3):
254—261.
[2]WEISSLEDER R,BOGDANOV A,NEUWELT E A.Long—circulating iron oxides for MR imaging[J].Papisov M Adv
Drag Del Rev,1995,16:321—334.
[3]JORDAN A,SCHOLZ R,WUST P,et a1.Endocytosis of dextran and effect of intracellular hyperthermia on human moin—
维普资讯
r}rL
第3期 张春明,赵梗明,斯庆苏都,等:磁性纳米粒子的制备及其细胞分离方面的应用 295
mary carcinoma cells in vitro[J].Magn Magn Mater,1999,194:185—196.
[4] 丁伟荣,吴晓牧,饶燕飞.入骨髓问充质干细胞体外分离培养方法的比较研究[J].江西医药,2007,42(2):115
117.
龚雪,刘慧雯.肝干细胞的来源与移植应用[J].中国临床康复,2005,9(26):186—188.
甘志峰,姜继森.单分散磁性纳米颗粒的制备及生物高分子在其上的组装[J].化学进展,2005,17(6):978—986.
魏衍超,杨连生.生物高分子磁性微球的制备、结构、性质和应用[J].磁性材料及器件,1999,30(6):18—21.
李贵平,汪勇先.抗癌胚抗原单抗免疫磁性纳米微粒的制备及其与~(188)Re的放射性标记放射免疫学杂志[J].
放射免疫学杂志,2005,12(6):380—383.
[9]
英廷照,沈辉,章永化,等.高分散纳米Fe O 颗粒的制备和表征[J].机械科学与技术,1998,17(11):147—148,
151.
[10]
都有为,陆怀先,顾新运.Fe O 生成过程的研究[J].应用科学学报,1985,3(3):267—273.
[11]
ARTURO M,LOPEZ Q,JOSE R.Magnetic Iron Oxide Nanoparticles Synthesized via Microemulsions[J].Jomaaal of
Colloid and Interface Science,1993,1(58):446—451.
[12]
邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报(自然科学版),1999,38(5):711—715.
[13]
LIU Z L.DING Z H,YAO K L.Preparation and characterization of polymer—coated core—shell structured magnetic mi—
crobeads[J].Magn Magn Mater,2003,265:98—105.
[14]
KUHARA M,TAKEYAMA H,TANAKA T,et.a1.Magnetic cell separation using antibody binding with protein A ex-
pressed on bacterial mangetic particle[J].Anal Chem,2004,76:6207—6213.
Preparation of magnetic nano-particles
and their application in cell separation
ZHANG Chun—ming ,ZHAO Geng—ming2
,
SIQING Su—du ,
XIE Xiang—hua ,TAN Ling ,DONG Ya—ming
(1.College of Life and Enviornment Sciences,Shanghai Normal University,Shanghai 200234,China;
2.College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China;
3.School of Science,East China University of Science nad Technology,Shanghai 200237,China)
Abstract:Ferriferous oxide nano—particles were prepared using chemical CO—precipitation method and then the particles were mod—
ified by chemical reagent and the whole process was carried out in a solution.Infrared spectra.X—ray difraction and atomic
force microscope were applied to characterize the magnetic nano—particles.The results indicate that the well dispersed,non—poilu—
ted and bio—compatible nano—particles were obtained with their average diameter of around 30 nm.CD133 cells were well separated
using this kind of magnetic nano—particles and a good increment was obtianed.
Key words:nano fertiferous oxide particles;immunomagnetic nano—particles;navel blood;atomic force microscope
(责任编辑:郁慧)
2024年5月12日发(作者:前歆然)
维普资讯
第3 7卷第3期
上海师范大学学报(自然科学版)
Vo1.37.No.3
2 0 0 8年6月
Journal of Shanghai Normal University(Natural Sciences)
2 0 0 8,Jun.
磁性纳米粒子的制备及其细胞分离方面的应用
张春明 ,赵梗明2,斯庆苏都 ,谢湘华 ,谭 玲 ,董亚明h
(1.上海师范大学生命-9环境科学学院,上海200234;2.上海师范大学数理信息学院,上海200234;
3.华东理工大学理学院,上海200237)
摘要:介绍了一种始终在溶液中制备Fe 0 磁性纳米粒子的化学共沉淀,并对制得的粒子进
行表面修饰的方法.通过IR,XRD和AFM等测试仪器对样品进行了表征.结果表明:采用化学
共沉淀的方法制备出的磁性纳米粒子具有单分散性,且粒径比较均一,约在30nm.由于制备
过程均在液体中进行,故制备周期短,污染小.同时利用自制的免疫磁性Fe 0 纳米粒子能较
好地分离脐血中的CD133细胞,细胞体外扩增明显.
关键词:纳米Fe O ;免疫磁性纳米粒子;脐带血;CD133细胞
中图分类号:TQ138.1 文献标识码:A 文章编号:1000_5137(2008)03—0291-05
0 引 言
磁性纳米颗粒以其优越的物理特性,在生物医学领域具有广泛的应用前景….通过包裹不同的有
机官能团,可以将这些磁性颗粒运用在蛋白质固定、细胞分离、靶向药物等领域 .生物细胞分离技术
是一项应用在生物领域中十分重要的纳米技术,它是能否快速获得研究所需细胞标本的关键.以往的细
胞分离技术主要有梯度离心法 J、流式细胞分选法 等.但这些方法存在纯度不高、制备量偏小、影响
细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究 J.近几年,随着对磁性纳米粒子研究的深
入,人们开始利用磁性纳米粒子来分离细胞….单纯的磁性纳米粒子易于团聚、生物兼容性差 J,因此,
制备超小粒径、分散性好的磁性纳米颗粒具有十分重要的应用价值.
目前纳米Fe O 的制备方法主要有:机械球磨法 ,共沉淀法 加 ,乳化法 “ ,水解法 ,水热法
等,这些方法各有优缺点.普通的共沉淀法制备的纳米Fe O 粒子粒径分布范围宽,粒径不容易控制,易
团聚,重珊I生差,且在制备的过程中粒子易受到污染,从而影响其在生物方面的应用.
为了在反应中控制生成颗粒的大小,得到粒径分布均匀的Fe O 粒子,本研究在共沉淀法的基础
上,通过控制一系列的反应条件,制得磁性流体,然后直接在其表面包裹SiO ,避免了污染.再通过化学
修饰使之成为生物功能化的磁性纳米粒子.利用化学连接方法将单克隆抗体CD133连接到其表面得到
免疫磁性Fe O 纳米粒子,利用它从单个核细胞中分离出CD133细胞,并对细胞进行半固体培养,观察
其在体外的扩增情况.
收稿日期:2007—12-05
作者简介:张春明(1980一),男,上海师范大学生命与环境科学学院硕士研究生;董亚明(1957一),男,博士,上海师
范大学生命与环境科学学院教授.
通讯作者.
维普资讯
上海师范大学学报(自然科学版)
1 实验部分
1.1试剂与实验仪器
材料:FeC1 ・6H 0(99.O%),FeC1 ・4H O(99.5%),氨水(26%~28%)、正硅酸乙酯(TEOS)
(上海试剂公司);N一(2一氨基乙基)一3一氨基丙基三甲氧基硅烷(AEAPS)(Geel,Belgium),戊二醛
(中国医药集团上海化学试剂分公司);磷酸盐缓冲溶液(PBS)(自制),RPMI1640(自制),以上所用试
剂均为分析纯;CD133抗体(Miltenyibiotec).
测试仪器:红外吸收光谱仪(NICOLET380);原子力显微镜(AFM)(NanoScope III a SPM系统
Veeco);倒置显微镜(Japan.Nikon 810181);D—MAX 2000 X射线衍射仪.
1.2实验过程
1.2.1 磁性纳米粒子的制备以及SiO 的包裹
按3:2比例称取FeC1 ・6H O和FeC1 ・4H O固体,分别加入水中配成0.5mol/L的溶液,将2种
溶液倒人三颈瓶中,混匀.在60%条件下向此混合溶液中缓慢滴加氨水,超声同时搅拌至pH为9,反应
完全后,再超声分散1h,搅拌0.5h,磁沉淀,洗涤制得磁性纳米粒子;按比例取100 mL的乙醇和水,混
匀,把洗涤好的粒子分散到其中,超声15min,转人250mL的三颈瓶,加入TEOS,在一定的搅拌速度下逐
渐加入氨水,恒温水浴下反应5 h磁分离,洗涤,直至清洗液不再浑浊;产物置于真空干燥箱中恒温干
燥,12h后取出,得到包裹好SiO 的磁性纳米粒子.将粒子分散到二次水中备用.
1.2.2纳米粒子的修饰与细胞的分离
量取1 mL包裹后的Fe O 磁性纳米粒子流体,加入到40mL甲醇,丙三醇和二次蒸馏水的混合溶液
中,超声混匀.转移至三颈烧瓶中搅拌并缓慢加入AEAPS,在一定温度下反应5h.沉淀用甲醇洗涤若干
遍,恒温下真空干燥,得到表面修饰氨基的磁性纳米粒子.取适量上述制备的粒子,分散到PBS中,配制
成磁性纳米粒子分散体系.向上述体系中加入戊二醛,反应数小时用PBS洗涤后重新分散到PBS溶液
中,得到纳米粒子分散体系.取1mL分散液,向其中加入CD133单克隆抗体,常温下反应12h,磁性分离
用PBS洗涤后,重新分散,得到免疫磁性Fe O 纳米粒子.
取30~40mL的脐带血,用PBS稀释1倍.以4:6比例加入淋巴细胞分离液和稀释后的脐血,按密
度梯度离心法分离单个核细胞,取出单个核细胞(MNC)带,用1640培养基洗涤2次.为了得到CD133
细胞,将分离出的单个核细胞经洗涤后,向其中加入0.5mL的上述制备的表面连接有CD133单克隆抗
体的免疫磁性Fe O 纳米粒子,充分混匀后,4~8℃下孵育20~30min,磁性分离目标细胞CD133,再用
1640洗涤数次,即可得所需CD133细胞.采用甲基纤维素半固体法培养CD133细胞.
2结果与讨论
2.1 1R分析
图1是Fe,O (a),SiO /Fe,O (b)的红外谱图.谱线a中,580cm 处是Fe,0 的特征吸收峰;在谱
线b中,1104cm 处的强吸收峰是由组成SiO 膜的Si—O—Si键的反对称伸缩振动引起的,798cm 附
近的吸收峰是由Si—O—Si键的对称伸缩振动引起的,963cm 附近的吸收峰则归属于Si—O键的对称
伸缩振动,表明经过了多次的磁沉淀和洗涤后在Fe,O 外层包裹了SiO 膜.
从图1中可以看出,粒子改性以后,Fe—O的特征吸收峰由580cm 移向560.2cm~,发生了红移,
这可能是由于磁性粒子受纳米尺寸的限制,降低了对表面原子键的束缚,导致表面粒子中局部电子的重
排;当Fe O 粒子的尺寸降低到纳米范畴时,其表面结合力常数逐渐变大,因此表现在Fe—O的特征吸
收带向较低的波数移动.
2.2 XRD分析
图2是Fe,O 和SiO /Fe,O 的XRD谱图.将包裹前后Fe,O 的x射线衍射光谱与Fe O 的标准谱图
维普资讯
第3期 张春明,赵梗明,斯庆苏都,等:磁性纳米粒子的制备及其细胞分离方面的应用 293
图1 Fe3O4(a),SiO2/Fe3O4(b)的红外光谱图 图2 Fe3O4,SiO2/Fe3O4的XRD谱图
相比较可以看出,包裹前后Fe。O 的峰形和峰宽基本一致,仅存在Fe。O 的一种晶态,都是立方的尖晶石
型结构,结晶度较好,没有SiO 衍射峰的存在,说明SiO 是以无定型形态存在于Fe。O 的表面.这是由于
制备这种粒子,没有经过煅烧,因此Fe。O 表面的SiO 为无定型形态的.从图2中还可以看出,XRD衍射
峰较宽而不尖锐,这说明磁性粒子的粒径比较细小,根据Scherrer公式:D=,c A cos0,D为晶体粒子
的平均粒径(K=0.89; 为衍射角,A是x射线波长为0.154056 nm; 为最高峰的半高峰宽)对样品
进行平均粒径的估算,得到所制样品的平均粒径D=20nm.
2.3 AFM分析
图3,4,5分别是Fe。O ,SiO:/Fe。O 及局部放大的SiO /Fe。O 的AFM图像.由图3可以看出,包裹
前的磁性粒子分散性差,极易团聚.这是因为在分离过程中由于粒子部分磁化,容易造成团聚;且包裹前
的磁性粒子粒径很小,粒子间的范德华作用力较大,也会造成团聚.图4是包裹后的Fe O 粒子的AFM
图像,由图4可见,改性后Fe。O 粒子较改性前团聚程度较轻,分散性大大提高.从图5中可以明显看出
粒子表面包裹了一层物质,即SiO,,这与前面的红外谱图分析的结果相符.
由AFM图可知,包裹前Fe O 粒子的粒径在15nm左右,包裹后粒子的粒径在30nm左右,外层膜的
厚度为8nm左右,这与XRD的表征结果略有差别,可能是由于在制备粒子粉体的过程中引起硬团聚的
原因.经包裹后的磁性纳米粒子的粒径较小,分散性较好.这是因为包裹了一层SiO 后,改变了磁性纳
米粒子的表面活性,大大降低粒子的表面能,阻止磁性粒子因互相接近而引起的颗粒聚集及沉降.总之,
采用对磁性流体直接包裹的方式,避免了粒子在干燥过程中的硬团聚问题,也解决了粒子研磨过程中可
能引入杂质的难题,从而得到较理想的结果,并获得无污染、分散性很好且适用于生物细胞分离的磁性
纳米粒子.
图3未包裹的Fe3O4粒子 图4 SiO2/Fe3O4粒子 图5局部放大SiO2/Fe3O4粒子
2.4磁性纳米粒子在细胞分离方面的应用
图6,7,8,9分别是利用磁性粒子分离出来的单个核细胞和CD133细胞经培养后的显微图.从图7
维普资讯
上海师范大学学报(自然科学版) 2008年
和图9相比较的结果可以看出,用磁性纳米粒子分离出来的CD133细胞与单个核细胞一样,具有很好
的活性,能够很好地增殖,形成了集落.同时也证明了本实验室所制备的免疫磁性纳米粒子不仅能较好
地分离出目标细胞,而且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与[14]中
报道的对细胞的活性没有影响的结果一致.
图6单个核细胞(MNC)(7d)
图7 CD133细胞(7d)
图8单个核细胞(MNC)(14d) 图9 CD133细胞(14d)单个核细胞(MNC)(7d)
3结论
本研究采用化学共沉淀法通过控制实验条件成功地制备了Fe。O 纳米粒子,然后直接对其进行表
面包裹SiO:,再利用化学修饰和化学连接方法得到了无污染、分散性很好并适用于生物细胞分离的免
疫磁性纳米粒子,实验结果表明:这种免疫磁性Fe。O 纳米粒子具有很好的单分散性,且粒径比较的均
一
,
为30nm左右.使用自制的免疫磁性Fe。O 纳米粒子能较好地分离脐血中的CD133细胞,而且分离与
纯化出来的CD133细胞活力不受影响,与单个核细胞相比具有更强的增殖能力.
参考文献:
[1]HAI Y,PAI V,CHEN C J.Development ofmagnetic device for cell separation[J].Magn Magn Mater,1999,194(1—3):
254—261.
[2]WEISSLEDER R,BOGDANOV A,NEUWELT E A.Long—circulating iron oxides for MR imaging[J].Papisov M Adv
Drag Del Rev,1995,16:321—334.
[3]JORDAN A,SCHOLZ R,WUST P,et a1.Endocytosis of dextran and effect of intracellular hyperthermia on human moin—
维普资讯
r}rL
第3期 张春明,赵梗明,斯庆苏都,等:磁性纳米粒子的制备及其细胞分离方面的应用 295
mary carcinoma cells in vitro[J].Magn Magn Mater,1999,194:185—196.
[4] 丁伟荣,吴晓牧,饶燕飞.入骨髓问充质干细胞体外分离培养方法的比较研究[J].江西医药,2007,42(2):115
117.
龚雪,刘慧雯.肝干细胞的来源与移植应用[J].中国临床康复,2005,9(26):186—188.
甘志峰,姜继森.单分散磁性纳米颗粒的制备及生物高分子在其上的组装[J].化学进展,2005,17(6):978—986.
魏衍超,杨连生.生物高分子磁性微球的制备、结构、性质和应用[J].磁性材料及器件,1999,30(6):18—21.
李贵平,汪勇先.抗癌胚抗原单抗免疫磁性纳米微粒的制备及其与~(188)Re的放射性标记放射免疫学杂志[J].
放射免疫学杂志,2005,12(6):380—383.
[9]
英廷照,沈辉,章永化,等.高分散纳米Fe O 颗粒的制备和表征[J].机械科学与技术,1998,17(11):147—148,
151.
[10]
都有为,陆怀先,顾新运.Fe O 生成过程的研究[J].应用科学学报,1985,3(3):267—273.
[11]
ARTURO M,LOPEZ Q,JOSE R.Magnetic Iron Oxide Nanoparticles Synthesized via Microemulsions[J].Jomaaal of
Colloid and Interface Science,1993,1(58):446—451.
[12]
邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报(自然科学版),1999,38(5):711—715.
[13]
LIU Z L.DING Z H,YAO K L.Preparation and characterization of polymer—coated core—shell structured magnetic mi—
crobeads[J].Magn Magn Mater,2003,265:98—105.
[14]
KUHARA M,TAKEYAMA H,TANAKA T,et.a1.Magnetic cell separation using antibody binding with protein A ex-
pressed on bacterial mangetic particle[J].Anal Chem,2004,76:6207—6213.
Preparation of magnetic nano-particles
and their application in cell separation
ZHANG Chun—ming ,ZHAO Geng—ming2
,
SIQING Su—du ,
XIE Xiang—hua ,TAN Ling ,DONG Ya—ming
(1.College of Life and Enviornment Sciences,Shanghai Normal University,Shanghai 200234,China;
2.College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China;
3.School of Science,East China University of Science nad Technology,Shanghai 200237,China)
Abstract:Ferriferous oxide nano—particles were prepared using chemical CO—precipitation method and then the particles were mod—
ified by chemical reagent and the whole process was carried out in a solution.Infrared spectra.X—ray difraction and atomic
force microscope were applied to characterize the magnetic nano—particles.The results indicate that the well dispersed,non—poilu—
ted and bio—compatible nano—particles were obtained with their average diameter of around 30 nm.CD133 cells were well separated
using this kind of magnetic nano—particles and a good increment was obtianed.
Key words:nano fertiferous oxide particles;immunomagnetic nano—particles;navel blood;atomic force microscope
(责任编辑:郁慧)