2024年5月19日发(作者:经心香)
山东科技大学学士学位论文
摘要
摘要
目前锂离子电池正极材料LiCoO
2
仍在市场中占据主导地位,但由于其
自身缺陷及资源限制,在市场竞争中迫切需要开发一种新的正极材料,而
三元复合材料Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
同时具有Co系、Ni系和Mn系正极材
料的优点:比容量高、循环性能和热稳定性好,而且对环境友好,材料成
本较低,被认为是替代LiCoO
2
的最有前景的新一代锂离子电池正极材料。
作者在详细评述Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
正极材料的结构、电化学性能、制备
工艺及其发展方向的基础上,以优化制备工艺为目标,研究了用氢氧化钠
共沉淀法制备正极材料前驱体的新工艺。
本实验通过氢氧化物共沉淀法制备均匀的前驱体(Ni
1/2
Mn
1/2
)(OH)
2
。由
NiSO
4
·6H
2
O,MnSO
4
·H
2
O(阳离子比Ni׃Mn=1:1)组成的浓度为2mol/L
溶液,通过添加浓度为2mol/L的NaOH溶液和所需量的氨水,分别在氮气
氛围下,持续搅拌,沉淀。溶液在温度为50℃,且pH控制在11的条件下
保持12小时。
结果表明,氨水浓度为0.8~1.35mol/L时,合成的前驱体大小均匀,形
状为规则球形,提前络合,通入氮气保护可以优化其合成工艺。
关键词:锂离子电池;正极材料;共沉淀法;前驱体;氨水浓度
I
山东科技大学学士学位论文
Abstract
Abstract
At present LiCoO
2
still dominates the lithium ion battery cathode material
market, but due to its own shortcomings and resource constraints, there is an
urgent need to develop a new cathode material in the market competition.
Ternary complex Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
is the best alternative with LiCoO
2
cathode material due to its excellent properties, such as large capacity, good
cycle properties and thermal stability, environmental friendly, low cost, and
similar structure to cathode material with Co, Ni And Mn. The structure,
electrochemical performance, preparation technology and developing trends of
Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
cathode material were described by author. The precursor
of the lithium ion battery cathode material was prepared by the hydroxide
co-precipitation method to improve its preparation technology.
In order to prepare a homogeneous precursor(Ni
1/2
Mn
1/2
)(OH)
2
, we applied
the hydroxide co-precipitation method. An aqueous solution consisting of the
NiSO
4
·6H
2
O and MnSO
4
·H
2
O (cationic ratio of Ni:Mn=1:1) with a
concentration of 2mol/L was precipitated by adding NaOH solution (aq.) of
2mol/L and a desired amount of NH
3
·H
2
O solution (aq.) separately under argon
atmosphere along with continued stirring. The solution was maintained at 50℃
for 12h and the pH was controlled to 11.
The results show that, the precursor synthesized in a concentration of 0.8 ~
1.35mol/L of NH
3
·H
2
O have a uniform size, spherical shape for the rules, and an
early complexation, ventilation with nitrogen protection can optimize the
synthetic process.
Key words: Lithium ion batteries; Positive materials; Co-precipitation method;
Precursor; Ammonia concentration
II
2024年5月19日发(作者:经心香)
山东科技大学学士学位论文
摘要
摘要
目前锂离子电池正极材料LiCoO
2
仍在市场中占据主导地位,但由于其
自身缺陷及资源限制,在市场竞争中迫切需要开发一种新的正极材料,而
三元复合材料Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
同时具有Co系、Ni系和Mn系正极材
料的优点:比容量高、循环性能和热稳定性好,而且对环境友好,材料成
本较低,被认为是替代LiCoO
2
的最有前景的新一代锂离子电池正极材料。
作者在详细评述Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
正极材料的结构、电化学性能、制备
工艺及其发展方向的基础上,以优化制备工艺为目标,研究了用氢氧化钠
共沉淀法制备正极材料前驱体的新工艺。
本实验通过氢氧化物共沉淀法制备均匀的前驱体(Ni
1/2
Mn
1/2
)(OH)
2
。由
NiSO
4
·6H
2
O,MnSO
4
·H
2
O(阳离子比Ni׃Mn=1:1)组成的浓度为2mol/L
溶液,通过添加浓度为2mol/L的NaOH溶液和所需量的氨水,分别在氮气
氛围下,持续搅拌,沉淀。溶液在温度为50℃,且pH控制在11的条件下
保持12小时。
结果表明,氨水浓度为0.8~1.35mol/L时,合成的前驱体大小均匀,形
状为规则球形,提前络合,通入氮气保护可以优化其合成工艺。
关键词:锂离子电池;正极材料;共沉淀法;前驱体;氨水浓度
I
山东科技大学学士学位论文
Abstract
Abstract
At present LiCoO
2
still dominates the lithium ion battery cathode material
market, but due to its own shortcomings and resource constraints, there is an
urgent need to develop a new cathode material in the market competition.
Ternary complex Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
is the best alternative with LiCoO
2
cathode material due to its excellent properties, such as large capacity, good
cycle properties and thermal stability, environmental friendly, low cost, and
similar structure to cathode material with Co, Ni And Mn. The structure,
electrochemical performance, preparation technology and developing trends of
Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
cathode material were described by author. The precursor
of the lithium ion battery cathode material was prepared by the hydroxide
co-precipitation method to improve its preparation technology.
In order to prepare a homogeneous precursor(Ni
1/2
Mn
1/2
)(OH)
2
, we applied
the hydroxide co-precipitation method. An aqueous solution consisting of the
NiSO
4
·6H
2
O and MnSO
4
·H
2
O (cationic ratio of Ni:Mn=1:1) with a
concentration of 2mol/L was precipitated by adding NaOH solution (aq.) of
2mol/L and a desired amount of NH
3
·H
2
O solution (aq.) separately under argon
atmosphere along with continued stirring. The solution was maintained at 50℃
for 12h and the pH was controlled to 11.
The results show that, the precursor synthesized in a concentration of 0.8 ~
1.35mol/L of NH
3
·H
2
O have a uniform size, spherical shape for the rules, and an
early complexation, ventilation with nitrogen protection can optimize the
synthetic process.
Key words: Lithium ion batteries; Positive materials; Co-precipitation method;
Precursor; Ammonia concentration
II